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Summary
The goal of zero-shot RL is to provide algorithms for recovering optimal policies for all

possible reward functions given interaction data with the environment. Naturally, how well we
can recover the optimal policies highly depends on the quality of the data used to learn them. Up
until now, most algorithms leverage decoupled exploration policies for collecting data in order
to learn a generalist representation of all optimal policies. A central argument to this paper is
that the exploration policy should not be completely decoupled from the zero-shot algorithm and
should try to minimize the uncertainty that the algorithm has of its representations. We frame
the exploration problem for zero-shot RL as minimization of the epistemic uncertainty on the
learned value functions, and realize this in the case of well familiar algorithm, forward-backward
(FB) representations. Crucially, in several empirical settings, using an exploration policy that
maximizes the cumulative epistemic uncertainty of the FB representation leads to significant
improvements of the algorithm’s sample complexity. This enables us to learn well-performing
policies fast, with fewer amount of data than other exploration approaches.

Contribution(s)
1. This paper phrases the exploration problem for zero-shot RL as uncertainty minimization of

a posterior over occupancy measures for a particular representation of an occupancy measure.
The main difference to previous work is that, while previous work considers completely
off-policy exploration algorithms to collect data, this paper considers the uncertainty of the
model for data collection in an unsupervised RL setting.
Context: The representation for occupancy measure used is the FB-representation (Touati
& Ollivier, 2021) which encodes all optimal policies. We use an ensemble method ap-
proximation to the posterior distribution. Crucially, because of non-uniqueness, the FB
representation does not allow simple modeling of the posterior uncertainty over FB via
ensemble disagreement – there is a necessity of having a single B representation in order to
have an informative notion of uncertainty. Furthermore, the F -uncertainty is projected to the
more practical uncertainty over Q-functions for particular latent policy conditioning z.

2. We introduce an efficient algorithm for exploration tailored to forward-backward (FB)
representations which can be seen as a variant of uncertainty sampling (Lewis & Gale, 1994).
Context: The algorithm relies on sampling a posterior-mean greedy policy πz which
has highest uncertainty in the predictive posterior distribution for a particular state s and
executing it in the environment. This exploration strategy, while simple and not considering
correlation in uncertainty reduction across all policies πz, z ∈ Z , is a surprisingly efficient
method for exploration in FB representations.

3. Experimental validation of proposed exploration on several continuous control environments
from the DeepMind Control suite (Tassa et al., 2018) in the online learning setting, where we
evaluate zero-shot performance on different reward functions within several environments.
Context: There is no notion of exploration in the unsupervised RL setting, therefore there
is no need to balance the exploration-exploitation trade-off when collecting data. This setup
is fundamentally different than single-task online learning, where typically we balance an
intrinsic exploration signal or noise with the extrinsic task reward.
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Abstract
Zero-shot reinforcement learning is necessary for extracting optimal policies in absence1
of concrete rewards for fast adaptation to future problem settings. Forward-backward2
representations (FB) have emerged as a promising method for learning optimal policies3
in absence of rewards via a factorization of the policy occupancy measure. However,4
up until now, FB and many similar zero-shot reinforcement learning algorithms have5
been decoupled from the exploration problem, generally relying on other exploration6
algorithms for data collection. We argue that FB representations should fundamentally7
be used for exploration in order to learn more efficiently. With this goal in mind,8
we design exploration policies that arise naturally from the FB representation that9
minimize the posterior variance of the FB representation, hence minimizing its epistemic10
uncertainty. We empirically demonstrate that such principled exploration strategies11
improve sample complexity of the FB algorithm considerably in comparison to other12
exploration methods.13

Figure 1: We condition an exploration policy on a reward embedding z ∈ Z maximizing the
predictive variance of Qπz , and execute it for collecting data during learning. At inference time, we
compute the reward embedding z based on reward evaluation of the dataset, aligned with Touati &
Ollivier (2021).

1 Introduction14

Reinforcement learning provides a framework to obtain optimal or near-optimal policies from sub-15
optimal data given a reward function. However, we cannot possibly enumerate all rewards which16
are of interest to solve in the future, and hence most RL approaches rely on fixed rewards for training,17
limiting the generalizability of the learnt policies to new tasks. Zero-shot RL aims to close this gap, by18
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learning optimal policies for all possible reward functions. In this way, an agent may, with a minimal19
amount of extra computation, infer an optimal policy for any reward function given at test time.20

There are several zero-shot RL methods that have been proposed to solve this problem. The earliest21
instantiation of such methods is that of the successor representation (SR) in the tabular setting (Dayan,22
1993), which has subsequently been extended to the continuous setting with function approximations23
(Barreto et al., 2017). The caveat of SR is the need to assume a linear dependence between the reward24
and a feature map, which needs to be handcrafted in advance by the user. This approach cannot easily25
tackle generic rewards or goal-oriented RL. In the goal-oriented setting, for example, it would require26
introducing one feature per possible goal state, requiring infinitely many features in continuous27
spaces. Several frameworks have been proposed to learn this feature map efficiently (Hansen et al.,28
2019; Liu & Abbeel, 2021; Wu et al., 2018). More recent work has proposed forward-backward29
(FB) representations (Touati & Ollivier, 2021), which aims to factorize the occupancy distribution of30
the policies into a forward representation (F ) of the current state and backward representation (B)31
of a target state. While the linearity of SR’s allows us to infer the optimal policy by solving linear32
regression onto the sampled rewards, FB infers an optimal policy by Monte Carlo estimation of an33
integral, which, given a well-learned factorization of the occupancy distribution yields the optimal34
policy representation z for any given reward function. A critical part in both FB and SR frameworks35
is that of learning an accurate occupancy distribution (or successor measure ) for all policies, which36
requires observing significant amount of environment state transitions.37

Up until now, this problem has been tackled by using exploration policies that are decoupled from38
the zero-shot algorithm (Touati & Ollivier, 2021; Touati et al., 2022), mostly involving exploration39
policies trained with an intrinsic exploration reward (Eysenbach et al., 2018; Burda et al., 2018; Lee40
et al., 2019; Liu & Abbeel, 2021; Pathak et al., 2017; 2019). Relevant to this work, Chen et al. (2017)41
proposed ensemble disagreement on the Q-value as an intrinsic reward for efficient exploration. Alter-42
natively, ensemble disagreement has been utilized in dynamics models for guiding exploration (Pathak43
et al., 2017). In fact, subsequently, many works have successfully used this type of approach for44
exploration, connecting it with the notion of "epistemic uncertainty" (Vlastelica et al., 2021; Sukhija45
et al., 2023; Sancaktar et al., 2022). While these methods yield successful exploration in some settings,46
a major disadvantage is that the exploration bonus doesn’t depend on the rewards, so the exploration47
may focus on irrelevant aspects of the environment unrelated to the task (Chen et al., 2017).48

A key question of this work is how should we best interact with the environment to learn all49
optimal policies in the unsupervised RL setting sample efficiently? We aim to collect samples that50
are most informative about the occupancy measure of optimal policies encoded by a zero-shot51
RL algorithm, in other words, we want to minimize the uncertainty over the occupancy measures.52
To this end, for modeling the occupancy measures we utilize the learned FB factorization of53
occupancies (Touati & Ollivier, 2021) which also has a representation space of optimal policies.54
Inspired by Lakshminarayanan et al. (2017), we model the posterior predictive uncertainty over the F55
representation by utilizing an ensemble of F representations. Consequently, the disagreement of the56
ensemble is a measure of uncertainty over F . Because of the mechanics of the FB representations,57
this naturally translates to the predictive uncertainty over the value function Qπz (s, a) for particular58
policy πz parametrized by reward embedding z, which is a more useful notion of uncertainty.59
Motivated by insights from Bayesian experimental design, we introduce an exploration algorithm that60
samples policies that are greedy w.r.t. to the mean of the Qπz -posterior, but have highest uncertainty.61
This can be seen as a variant of uncertainty sampling (Lewis & Gale, 1994). Our empirical evaluation62
indicates that utilizing this notion of uncertainty significantly improves the sample complexity of FB63
with a suprisingly simple exploration algorithm.64

In summary, in this work we provide an epistemic-uncertainty-guided method for efficiently learning65
forward-backward representations that (i) exhibits zero-shot generalization in unsupervised RL,66
(ii) leads to sample efficiency gains compared to other exploration alternatives and (iii) compares67
favorably to current FB methods when evaluated on several benchmarks.68
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2 Related Work69

Unsupervised Reinforcement Learning. Zero-shot (unsupervised) reinforcement learning frame-70
works can be traced back to the concept of a successor representation (Dayan, 1993), which relies on71
inferring the discounted occupancy measure of all policies. A direct extension of this are successor72
features (Barreto et al., 2017), where a feature map is a assumed which linearizes the reward w.r.t. a73
representation z, the main caveat being that the map needs to be a-priori specified. Consequently,74
many extensions exist to learn the feature map (Hansen et al., 2019; Laskin et al., 2022). Orthogonally,75
several works attempt to infer diverse skills in an online (Eysenbach et al., 2018) or offline fashion,76
mostly optimizing for a mutual-information objective. In contrast to the former, forward-backward77
representations assume a factorization of the occupancy measure, where z encodes an optimal value78
function for a specific reward. These can be traced back to Blier et al. (2021), and subsequent79
works have shown their effectiveness in deep RL benchmarks (Touati & Ollivier, 2021; Touati et al.,80
2022; Pirotta et al., 2024; Tirinzoni et al., 2025), also dealing with the offline estimation problem of81
the FB (Jeen et al., 2023). In contrast to successor features, there has been no proper analysis of82
exploration for learning FB representations more efficiently. Our work aims to fill this gap.83

Exploration in Reinforcement Learning. Lee et al. (2019) attempt to solve the exploration84
problem by inferring the state marginal distribution of the policy and trying to match it to a user-85
defined target distribution. Osband et al. (2016) propose ensembles of Q values for exploration86
by uniformly sampling a Q function and subsequently following a policy associated with it for87
exploration. Several works have extended the classic upper confidence bound (UCB) exploration88
strategy to deep RL via ensemble methods (Chen et al., 2017; Lee et al., 2021), with Lee et al.89
(2021) additionally proposing to account for the error in Q-targets by down-weighting based on90
ensemble disagreement. Sukhija et al. (2024) utilize an ϵ-greedy policy with picking a Boltzmann91
policy with a mutual-information term for the dynamics. Metelli et al. (2019) propagate uncertainty92
over Q-values by constructing a TD update by Wasserstein barycenters V ; they propose several93
variants for inferring a policy (mean estimation, particle sampling). Our work fits into the realm of94
ensemble-based exploration techniques, however in the context of zero-shot RL.95

Deep Bayesian Inference. The problem of exploration is closely related to active learning (Chaloner96
& Verdinelli, 1995; Settles, 2009), also known as experimental design in the statistics literature. Active97
learning methods that yield strong theoretical generally query data points based on information-98
theoretic criteria (Krause et al., 2008; Settles, 2009; Hanneke, 2014). These methods have recently99
generalized to deep learning. Since exact Bayesian inference is computationally intractable for neural100
networks, a variety of approximations have been developed (Mackay, 1992; Neal, 2012). Gal et al.101
(2017); Chen et al. (2017) propose more computationally efficient methods than Bayesian neural102
networks, such as Monte Carlo dropout as an approximation of the posterior of the model parameters103
(Gal et al., 2017) or closer to our work, ensemble of neural networks (Osband et al., 2016; Chen et al.,104
2017; Lakshminarayanan et al., 2017) for predictive uncertainty quantification. Several recent works105
further leverage such uncertainty estimates for active fine-tuning of vision or action models (Hübotter106
et al., 2024; Bagatella et al., 2024).107

3 Background108

In this paper we will utilize the standard notion of a reward-free Markov Decision Process which109
is defined by a tuple M = (S, ρ0,A,P, γ), with state space S, initial state distribution ρ0, action110
space A, transition kernel P and discount factor γ.111

For the MDP M, a policy π : S → A induces the successor measure Mπ (Blier et al., 2021) for any112
initial state-action pair (s0, a0):113

Mπ(s0, a0, X) :=
∑
t≥0

γtP ((st+1, at+1) ∈ X | s0, a0, π) ∀X ⊂ S ×A. (1)
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Given Mπ and a reward function r : S ×A → R, we may write the value function of the policy π114
for reward r simply as Qπ

r (s, a) =
∑

s′,a′ Mπ(s, a, s′, a′)r(s′, a′).115

Given a representation space Z = Rd and a family of policies (πz)z∈Z parameterized by z, the FB116
representation looks for representations F : S × A × Z → Z and B : S × A → Z, such that the117
successor measure Mπz in (1) factorizes as:118

Mπz (s0, a0, s, a) ≈ ⟨F (s0, a0, z), B(s, a)⟩, πz(s) = argmax
a∈A

⟨F (s, a, z), z⟩, (2)

where z is the latent representation of the policy πz of dimension d. Assuming (2) holds, then for119
any reward function r, the policy πzr where zr :=

∑
s,a∈S×A r(s, a)B(s, a) is optimal for r with120

optimal Q-function Q∗
r(s, a) = ⟨F (s, a, zr), zr⟩, i.e. the policy is guaranteed to be optimal for any121

reward function (Touati & Ollivier, 2021)[Theorem 2].122

In practice, we choose a parametric model Fθ and Bϕ for the F and B representations, as approxi-123
mations to the true successor measure factorization. There are several off-the-shelf algorithms for124
learning Mπz (Blier et al., 2021; Eysenbach et al., 2021), however the quality of the representation is125
tightly coupled with 1) the chosen factorization dimension d and 2) the approximation error which126
can be result of model miss-specification or lack of data. In this work we attempt to tackle the second127
issue, which can be handled via quantifying posterior uncertainty and utilizing it to guide exploration,128
as has been done in previous works (Osband et al., 2013; 2016; Chen et al., 2017).129

3.1 Bayesian Reinforcement Learning130

In the setting of Bayesian inference, ideally one would be able to formulate a prior distribution131
over the parameters of the FB representation Θ = (θ, ϕ) and subsequently, given evidence in132
form of data at the i-th iteration, compute the posterior distribution via Bayes’ rule p(Θ|Di) =133
p(Θ)p(Di|Θ)

p(Di)
. This is intractable for high-dimensional Θ, since it requires computing the marginal134

p(Di) =
∫
Θ
p(Di|Θ)p(Θ)dΘ. Hence, many works have utilized various approximations to posterior135

distributions over neural networks (Blundell et al., 2015; Osband et al., 2016; Chen et al., 2017).136

Beyond proper quantification of uncertainty over Θ, which is typically taken to be as variance137
or entropy of Θ ∼ p(Θ|Di) for continuous Θ, the uncertainty of the predictions is of crucial138
interest in optimal data collection, which is a fundamental question in active learning and optimal139
experimental design. In the field of bandits and reinforcement learning, this is also familiar under140
the term exploration. For RL in particular, one might want to compute a posterior over the unknown141
reward function r and transition kernel P of the MDP (Osband et al., 2013) or parameters of the Q-142
value function – this is often approximated as an ensemble of neural networks in deep reinforcement143
learning (Osband et al., 2016; Chen et al., 2017). Subsequently, this posterior is utilized in formulating144
an exploration strategy by a policy, a popular choice being a Upper-Confidence Bound (UCB) strategy145
by setting the policy to be π(s) := argmaxa∈A Q̄(s, a) + α

√
Var[Q(s, a)|s, a] (Chen et al., 2017),146

encouraging more uncertain actions. This strategy stems from the well-known UCB algorithm in147
the bandit literature (Auer et al., 2002; Auer, 2002). Further strategies exist that have been utilized148
in the literature, such as Thompson sampling where a particle is sampled from the posterior and149
subsequently exploited (Osband et al., 2013; Thompson, 1933).150

Remark 3.1. All of these methods focus on the exploitation-exploration tradeoff, which is ill-defined in151
the context of unsupervised reinforcement learning. This problem is fundamentally a pure exploration152
problem.153

4 Posterior uncertainty in forward-backward representations154

In the unsupervised RL setting, accurately estimating the successor measure for all policies is of155
crucial interest. Given our prior distribution over the parameters of the FB representation Θ = (θ, ϕ),156
we are tasked with updating the posterior distribution over the parameters as new evidence is collected.157
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Building on prior work that has successfully leveraged ensembles to approximate the posterior158
distribution over Q∗ (Osband et al., 2016; Chen et al., 2017), we consider a similar approach for the159
FB representation. Crucially, Chen et al. (2017) suggest decoupled Q networks trained with standard160
1-step TD error in order to approximate a posterior distribution given data D. The FB representation161
entails a factorization of M into F and B, therefore naturally we might be tempted to construct a162
posterior over F and B. This however can cause issues, especially when utilizing ensemble methods,163
since the representation is non-unique (details can be found in Blier et al. (2021)). This is easy164
to see if we view the F and B functions as matrices, assuming a rotation matrix R, we have that165
M = F⊤RR−1B = F̃⊤B̃, i.e. F̃ and B̃ encode the same set of occupancy measures, however with166
the representation space rotated. We alleviate this problem by fixing B and modeling the posterior167
distribution over F alone.168

Following Chen et al. (2017), we adopt a naive posterior update over F : for the k-th ensemble169
member in [0, . . . ,K − 1], we minimize the empirical forward-backward loss over a batch of170
b sampled transitions (si, ai, si+1)

b−1
i=0 , independently sampled future states (s′i)

b−1
i=0 , and reward171

embeddings zi,172

ℓ(θk, ϕ) =
1

2b2

∑
0≤i,j<b−1

(〈
Fθk(si, ai, zi), Bϕ(s

′
j)
〉
− γ

∑
a∈A

πzi(a | si+1)
〈
Fθ−

k
(si+1, a, zi), Bϕ−(s

′
j)
〉)2

(3)

− 1

b

∑
0≤i<b

〈
Fθk(si, ai, zi), Bϕ(si)

〉
, (4)

where θ−k and ϕ− denote the target networks for Fθ−
k

and Bϕ− , respectively. In practice, an additional173
orthonormality regularization on B is added as per Touati & Ollivier (2021) to normalize the174
covariance of B (otherwise one could for example scale F up and B down since only FTB is fixed).175

Equipped with a model to approximate the posterior distribution over forward representations, we176
are left with determining a strategy for collecting evidence to maximally reduce uncertainty of the177
posterior distribution, which is a challenging problem in deep learning. To design such an algorithm,178
we take inspiration from Bayesian experiment design (MacKay, 1992; Chaloner & Verdinelli, 1995).179
We shall adopt a well-known active learning heuristic – uncertainty sampling (Lewis & Gale, 1994),180
which queries data points with the highest predictive uncertainty, but still provably minimizes posterior181
uncertainty under a homoscedastic, independent Gaussian noise model.182

Aligned with previous work that showed that disagreement in ensemble methods can be effectively183
used for quantifying predictive uncertainty (Lakshminarayanan et al., 2017), for a given query point184
x = (s, a, z), we model our distribution over F as a uniformly weighted mixture of {Fk}Kk=1 of185
Gaussian distributions i.e.186

p(F |x; θ,D) ≈ 1

K

K∑
k

N (F ;µθk(x),Σθk(x)), (5)

where x = (s, a, z) for ease of reading and µθk ,Σθk are the predicted mean and covariance by187
ensemble member k.188

In the limiting case of Σθk → 0 ∀k, this posterior distribution becomes a mixture of Dirac delta189
functions, with the corresponding covariance being190

Cov[F |x; θ,D] =
1

K

K∑
k

(Fk(x)− F̄ (x)(Fk(x)− F̄ (x))⊤. (6)

where Fk := µθk and F̄ := 1
K

∑
k µθk . While in previous work the variance of point estimates has191

been used in place of epistemic uncertainty exploration (Lakshminarayanan et al., 2017), here we192
have a matrix quantity, the covariance of the F -representations. One viable option is to measure193
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Figure 2: Epistemically guided FB exploration (FBEE). During exploration we uniformly sample
reward embeddings from a hypersphere (left), and take samples over our posterior distribution F
as represented by the K ensemble members F1:K (K = 4 in the figure) (middle-left). Then we
project our F -posterior to a Q-posterior via Qπz = ⟨F (s, πz(s), z), z⟩ (middle-right) and compute
the Q-predictive uncertainty for all sampled z’s (left) via ensemble disagreement. We finally explore
with the reward embedding zE that has maximum Q-predictive uncertainty.

the volume of Eq. (6), by computing Det(Cov[F | s, a, z,D]), the trace or maximum eigenvalue.194
There is however an argument against using Eq. (6) to quantify uncertainty to guide data collection.195
The primary object of interest for us is Qπz for extracting greedy policies πz that are optimal w.r.t.196
some reward. We may utilize the relationship Qπz = ⟨F (s, a, z), z⟩, to project our F -posterior to a197
Q-posterior, to arrive to the Q-predictive uncertainty for the query sample (s, a, z).198

Var[Qπz (s, a) | D] =
1

K

K∑
i=0

⟨Fk(s, a, z)− F̄ (s, a, z), z⟩2. (7)

This corresponds to a Gaussian approximation to predictive posteriors on Qπz . In case of a Gaussian199
posterior, we have that its entropy is monotonic w.r.t. the variance, i.e. for the case of Eq. (7) the200
predictive variance can be seen as a measure of information for the input query x. It is worth noting201
that because of the non-trivial dependence between Fπz and z, it is unclear how the predictive202
uncertainty of Fπz will affect the uncertainty on Qπz , which might be lower or higher after the203
projection with z. This has the important consequence that minimizing the uncertainty on one versus204
the other may lead to significantly different algorithmic behaviors.205

5 Epistemic exploration for FB representations206

While we have a notion of posterior uncertainty phrased as the variance of the empirical predictive207
Q-posterior distribution in Eq. (7), it is still unclear how one can best formulate an exploration208
policy for collecting data to improve the FB representation. To design such an algorithm, we take209
inspiration from Bayesian experimental design (Chaloner & Verdinelli, 1995; MacKay, 1992). A210
natural objective for active exploration is maximizing mutual information between F and observed211
transition data Di, which quantifies the reduction in entropy of F conditioned on the observations.212
In certain settings the predictive posterior variance is shown to be proportional to information213
gain (MacKay, 1992), hence it is a reasonable "guide" for exploration.214

In general, we are seeking to define an exploration policy πE which is going to extend D1:n−1 to215
D1:n such that the collected data Dn provides the most amount of information about Fπz for all216
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{πz}z∈Z . To this end, we take the approach of selecting a πz given s, a that we are most uncertain217
about in terms of predictive variance, which may be seen as a variant of uncertainty sampling,218

πE = argmax
πz

Var
[
Ea∼πz(s)[Q

πz (s, a)] | s, a, z]
]

s.t. z ∈ Z, (8)

where we make use of the posterior predictive variance in Eq. (7), which captures the uncertainty of the219
future return of πz . Although the exploration policy in Eq. (8) is a greedy policy w.r.t. ⟨F̄πz (s, a), z⟩,220
we can still expect that executing πz reduces the uncertainty over Qπz . Moreover, the uncertainty of221
different Q-posteriors depends on z in a non-trivial way via Fπz , hence a reduction in uncertainty222
in Qπz is likely to reduce uncertainty across multiple z ∈ Z . This is loosely motivated by the223
"information never hurts" principle, which is a consequence of monotonicity of entropy H[X |Y ] ≤224
H[X] in light of new evidence Y . We provide pseudocode of our algorithm in Algorithm 1 and a225
visual schematic in Fig. 2.226

Remark 5.1. While our definition of the policy in Eq. (8) is purely explorational, in the absence of a227
set of evaluation reward functions it is also reasonable, since there is no direct notion of "exploitation"228
in purely unsupervised RL.229

Algorithm 1 FB Uncertainty Sampling (FBEE)

1: Input: K-ensemble of Fθk and Fθ−
k

, Bϕ and Bϕ− .
2: while not converged do
3: Pick πE according to Eq. (8).
4: Collect data Di = Rollout(πE)
5: Add data to buffer D1:n = D1:n−1 ∪ Dn.
6: Fit {Fθi}Ki , Bϕ and policies πz with D0:n.

6 Experiments230

Our experimental section is designed to provide an empirical answer to the following two questions:231
(i) Does FBEE exhibit similar zero-shot generalization in online unsupervised RL compared to232
the original FB method?, (ii) Does the epistemically guided exploration in FBEE lead to sample233
efficiency gains compared to other exploration alternatives?, (iii) What is the effect of exploring over234
reward embeddings z’s compared to over actions? and (iv) How often should we update the chosen235
reward embedding zE during an exploration episode?236

Environments: We benchmark FBEE on 15 downstream tasks across 5 domains in the DeepMind237
Control Suite (DMC) (Tassa et al., 2018), see Fig. 3). Details on the domains and tasks can be found238
in Appendix A.1.239

Baselines: We compare FBEE with several baselines for online unsupervised RL. The first baseline240
is FB (Touati & Ollivier, 2021), the original FB algorithm that conducts uninformed exploration241
by uniformly sampling random reward emedding z’s. We also compare against a naive RANDOM242
policy that performs random exploration over the action space. We additionally compare against243
FB-RND (Touati et al., 2022), which decouples the exploration method from the learning of the244
FB representation by leveraging a pure exploration method, namely RND (Burda et al., 2018).245
We note that the exploration bonuses distilled by RND remain independent of any estimate of FB246
representations. Notably, in this setting, we can leverage precollected exploration datasets from247
the Unsupervised Reinforcement Learning Benchmark (Laskin et al., 2021), and hence the FB248
representation is trained fully offline. We also implement two variants of our algorithm: FBEE-249
POLICY explicitly learns an exploration policy πθ : S → Z by maximizing the objective in Eq. (8)250
through gradient descent, while FBEE-SAMPLING approximates the maximizer via zero-order251
optimization. Due to lack of space, we reserve results of FBEE-POLICY to the Appendix. Finally, we252
implement an ablation of our method FBEE-EPISODE to study the impact of how long to optimize253
for the most uncertain reward embedding zE . With FBEE-EPISODE, we only compute zE (via254
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Figure 3: Environments used in our experiments. (Left to right): Walker, Cheetah, Hopper,
Quadruped, Point-mass maze. In the Point-mass maze domain, we show an example
of initial state (yellow point), which always starts in the top-left room, and the 20 test goals (red
circles).

Eq. (8)) at the beginning of each training episode, whereas the default implementation optimizes for255
it every 100 interaction steps (10 times more frequently). We implement this ablation for both FB256
(FB-EPISODE) and our method FBEE -EPISODE.257

Results We evaluate zero-shot performance of FBEE on 15 tasks across 5 domains in DMC every258
100k exploration steps. At evaluation time, given a task reward function r(s, a), the agents acts with259
the reward representation zR = E(s,a)∼D[r(s, a)B(s, a)] for 1000 environment steps. The reward260
function is bounded to [0,1], hence maximum return per task is of 1000. In practice, we compute the261
expectation by taking the average over relabeled samples from the current replay buffer. Zero-shot262
scores curves averaged across tasks for every domain are shown in Fig. 4. For zero-shot scores per263
each task, see Fig. 6.264

As shown in Fig. 4, FBEE asymptotically achieves similar or better performance than the original FB265
method, hence answering our question i). Most importantly, we observe that in all the environments,266
FBEE exhibits significant sample efficiency gains compared to FB across all domain, empirically267
showcasing that FBEE achieves the most important goals of our work, which is that of driving efficient268
exploration, hence answering our question ii). We notice that in easier tasks such as cheetah the269
performance gap between FB and FBEE is reduced, showcasing that random exploration over reward270
embeddings is still a fairly good strategy. In these lines, we would like to notice that we find somewhat271
remarkable the general sample efficiency showcased by the naive FB exploration. We reserve to272
future work a deeper analysis on this finding. This naturally flows to answering our question iii) by273
which we empirically show that randomly exploring over reward embeddings leads to much sample274
efficiency than doing it at the action level. This can be observed by the low performance of the275
RANDOM among all domains.276

Finally, we are left with question iv), evaluating the impact on the zE frequency update during an277
exploration episode. We observe that for all methods the higher the frequency the better, although278
differences are only highly noticeable for the hopper, maze tasks. For FBEE, this could be279
caused by several reasons. Our posterior update over F differs from theoretically sound approaches280
(e.g., Metelli et al. (2019) suggested propagating uncertainty through a TD update involving Wasser-281
stein barycenters), and can potentially incur in myopic behavior. In practice, however, practical282
instantiations of similar algorithms (Metelli et al., 2019) resort to the same approach as ours. Our283
hypothesis is that, as we update each of the ensemble members against its own target network, each284
member provides a temporally extended (and consistent) estimate of the value uncertainty via TD285
estimates, hence propagating uncertainty and alleviating myopic behavior. This was also observed286
by Osband et al. (2016). A second hypothesis would be that of our exploration strategy πE not287
guaranteed of picking the zE to maximize uncertainty in Q over all z’s, but instead picking the z that288
greedily maximizes it. However, we empirically show that our method leads to significant sample289
efficiency gains compared to other exploration alternatives and we leave this analysis for future work.290

F -uncertainty versus Q-uncertainty. As we have argued in Section 4, Fπz -uncertainty and Qπz -291
uncertainty may lead to different exploration behaviors. For purpose of demonstration, we analyze292
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Figure 4: Zero-shot scores averaged over different downstream task as number of environment
samples increases. Metrics are averaged over 30 evaluation episodes and 10 independent random
seeds. Shaded area is 1-standard deviation. Topline is maximum score of FB-RND (offline method
with precollected data). Note: RND buffer for the Hopper task is not available in URLB benchmark
(Laskin et al., 2021).

the average uncertainty across state-action pairs for the Maze experiment. In Fig. 5 we observe how293
the uncertainty of Fπz relates to the uncertainty of Qπz for different z samples in a particular FB294
checkpoint from training – although there is a slight positive correlation between the determinant of295
CoVar[Fπz | s, a, z] and Var[Qπz | s, a, z]] in expectation. With a quite low R2 score of 0.18, this296
signifies that there is no strong correlation signal. In fact, we observe instances where we have high297
Qπz uncertainty and low Fπz uncertainty.298
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Figure 5: Regression scatter plot of the determinant of CoVar[Fπz | s, a, z] and Var[Qπz | s, a, z] for
a FB checkpoint in Maze experiment.

7 Conclusion299

In this work we have proposed an epistemically-guided exploration framework for sample efficient300
learning of FB representations. We have done so by maintaining an ensemble approximation of the301
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predictive posterior distribution over Qπz , and subsequently picking the least certain πz in terms of302
variance of Qπz , which can be seen as an instance of uncertainty sampling. This is a pure exploration303
algorithm since the exploration-exploitation trade-off is non-existant in the zero-shot RL setting. In304
experiments, this is a suprisingly effective exploration strategy which outperforms other exploration305
algorithms on the DMC benchmark.306

While this is an initial attempt at phrasing an exploration algorithm for zero-shot RL, many extensions307
are henceforth possible, such as extending this approach to further uncertainty-based exploration308
algorithms such as UCB or Thompson sampling. An efficient exploration algorithm necessarily needs309
to take into account how information is correlated across different z ∈ Z in order to maximally310
reduce it with least amount of data. Finally, a full Bayesian treatment of FB representations is still311
an open question, especially with the assumption of a full posterior over F and B, which is a difficult312
object because of the non-uniqueness of FB.313
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A Appendix427

A.1 Environments428

All the environments are based on the DeepMind Control Suite(Tassa et al., 2018) and some adapted429
by (Touati et al., 2022).430

• Point-mass Maze: a 2-dimensional continuous maze with four rooms. The states are 4-dimensional431
vectors encoding for positions and velocities of the point mass, and the actions are 2-dimensional432
vectors. Importantly, the initial position of the point-mass is always sampled from a uniform433
distribution over the spatial domain of the top-left room only. At test, we evaluate performance of434
agents on 20 goal-reaching tasks (5 goals in each room described by their (x,y) coordinates. See435
figure . This task is set as a goal-reaching task and hence we compute zR at evaluation time by:436
zR = B(s).437

• Cheetah: A 17 state-dimensional running planar biped consisting of positions and velocities438
of robot joints. Actions are 6-dimensional. We evaluate on 4 tasks walk, run, walk439
backward, run backward. Rewards are linearly proportional to the achieved velocity up to440
the desired task velocity.441

• Walker: A 24 state-dimensional planar walker consisting of positions and velocities of robot joints.442
Actions are 6-dimensional. We evaluate on 4 tasks: stand, run, flip. In the stand task443
reward is a combination of terms encouraging an upright torso and some minimal torso height. The444
walk and run task rewards include a component linearly proportional to the achieved velocity up445
to the desired task velocity. flip includes a component encouraging angular momentum.446

• Hopper: A 15-dimensional planar one-legged hopper. Actions are 4 dimensional. We evaluate on447
5 tasks: stand, hop, flip. In the stand the reward encourages a minimal torso height. In448
the hop, hop backward tasks the rewards have an additional term that is linearly proportional449
to the achieved velocity up to the desired task velocity. In the flip, flip backward includes450
a component encouraging angular momentum.451

• Quadruped a four-leg spider navigating in 3D space. States and actions are 78 and 12 dimensional452
respectively. We evaluate on 4 tasks: stand, walk, run jump. stand reward encourages453
an upright torso, walk and run have an additional term that is linearly proportional to the achieved454
velocity up to the desired task velocity. jump includes a term encouraging some minimal height of455
the center of mass.456

A.2 Prior information on rewards457

When dealing with high dimensionality environments, learning future probabilities for all states is458
very difficult and generally requires large d to accommodate for all possible rewards. In general,459
we are often interested in rewards that depend not on the full state but on a subset of it. If this460
is known in advance, the representation B can be trained on that part of the state only, with same461
theoretical guarantees (Appendix, Theorem 4 (Touati & Ollivier, 2021)). Hence, when knowing462
that the reward will be only a function of a subset of the state and action spaces G, we can leverage463
an environment-dependant feature map φ : S ×A → G, and learn B(g) instead of B(s, a), where464
g = φ(s, a). Importantly, rewards can be arbitrary functions of g. This was also suggested in465
(Touati & Ollivier, 2021). In what follows, we list the feature maps that were used for the different466
environments.467

• Point-mass Maze: ϕ(s, a) = [x, y].468

• Chetah: ϕ(s, a) = [vx, Ly ] where vx is the velocity along the x-axis in the robot frame and Lx is469
the angular momentum about x-axis.470

• Walker: ϕ(s, a) = [vx, torsoz, torsozw ] where vx is the horizontal velocity of the center of mass,471
torsoz is the height of the torso and torsozw is the projection from the z-axis of the torso to the472
z-axis of the world frame.473
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• Hopper: ϕ(s, a) = [vx, torsoz,foot ] where vx is the horizontal velocity of the center of mass and474
torsoz,foot is the height of the torso with respect to the foot.475

• Humanoid: ϕ(s, a) = [torsoz, v, torsozw ] where torsoz is the height of the torso, v is the velocity476
of the center of mass in the local frame, and torsozw is the projection from the z-axis of the torso477
to the z-axis of the world frame.478

• Quadruped ϕ(s, a) = [v, torsozw ] where v is the torso velocity vector in the local frame and479
torsozw is the projection from the z-axis of the torso to the z-axis of the world frame.480

B Hyperparameters481

In Table 1 we summarize the hyperparameters used in our experiments. For a fair comparison, unless482
specified, we used the same parameters among all methods. Most of the parameters were adapted483
from (Touati et al., 2022).484

Table 1: Hyperparameters.

Hyperparameter Value

Optimizer Adam (default hyperparameters)
Learning rate 10−4

Batch size 256
Ratio gradient step/environment step 0.5
1 Z-dimension 50 (100 for maze)
Discount factor γ 0.98 (0.99 for maze)
Mix ratio for z sampling 0.3
Momentum coefficient for target networks update 0.99
Number of reward labels for task inference 104

Number of ensemble members 5
Frequency of z updates (training) 0.01

C Additional experiments485

C.1 Zero-shot scores per task486

We evaluate zero-shot performance of FBEE on 15 tasks across 5 domains in DMC every 100k487
exploration steps. At evaluation time, given a task reward function r(s, a), the agents acts with the488
reward representation zR = E[r(s, a)B(s, a)] for 1000 environment steps. The reward function is489
bounded to [0,1], hence maximum return per task is of 1000. In practice, we compute the expectation490
by taking the average over relabeled samples from the current replay buffer. Zero-shot scores across491
domains for all tasks is shown in Fig. 6. In this section we additionally show another ablation of492
our method, namely FBEE-POLICY which explicitly learns an exploration policy πθ : S → Z by493
maximizing the objective in Eq. (8) through gradient descent. In general we observe that it performs494
in par with FBEE-SAMPLING, and we attribute the mismatches in performance to not extensive495
hyperparameter finetuning.496
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Figure 6: Zero-shot scores for different downstream task as number of environment samples increases.
Metrics are averaged over 30 evaluation episodes and 10 independent random seeds. Shaded area is
1-standard deviation. Topline is maximum score of FB-RND (offline method with precollected data).
Note: RND buffer for the Hopper task is not available in URLB benchmark (Laskin et al., 2021).


