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ABSTRACT

This paper explores the simplicity of learned neural networks under various set-
tings: learned on real vs random data, varying size/architecture and using large
minibatch size vs small minibatch size. The notion of simplicity used here is that
of learnability i.e., how accurately can the prediction function of a neural net-
work be learned from labeled samples from it. While learnability is different from
(in fact often higher than) test accuracy, the results herein suggest that there is a
strong correlation between small generalization errors and high learnability. This
work also shows that there exist significant qualitative differences in shallow net-
works as compared to popular deep networks. More broadly, this paper extends
in a new direction, previous work on understanding the properties of learned neu-
ral networks. Our hope is that such an empirical study of understanding learned
neural networks might shed light on the right assumptions that can be made for a
theoretical study of deep learning.

1 INTRODUCTION

Over the last few years neural networks have significantly advanced state of the art on several tasks
such as image classification (Russakovsky et al.| (2015)), machine translation (Xiong et al.| (2016)),
structured prediction (Belanger & McCallum|(2016)) and so on, and have transformed the areas of
computer vision and natural language processing. Despite the success of neural networks in making
these advances, the reasons for their success are not well understood. Understanding the perfor-
mance of neural networks and reasons for their success are major open problems at the moment.
Questions about the performance of neural networks can be broadly classified into two groups: i)
optimization i.e., how are we able to train large neural networks well even though it is NP-hard to
do so in the worst case, and ii) generalization i.e., how is it that the training error and test error are
close to each other for large neural networks where the number of parameters in the network is much
larger than the number of training examples (highly overparametrized). This paper explores three
aspects of generalization in neural networks.

The first aspect is the performance of neural networks on random training labels. While neural
networks generalize well (i.e., training and test error are close to each other) on real datasets even
in highly overparametrized settings,|Zhang et al.[(2017) shows that neural networks are nevertheless
capable of achieving zero training error on random training labels. Since any given network will
have large error on random test labels, Zhang et al.|(2017)) concludes that neural networks are indeed
capable of poor generalization. However since the labels of the test set are random and completely
independent of the training data, this leaves open the question of whether neural networks learn
simple patterns even on random training data. Indeed the results of Rolnick et al.[(2017) establish
that even in the presence of massive label noise in the training data, neural networks obtain good
test accuracy on real data. This suggests that neural networks might learn some simple patterns even
with random training labels. The first question this paper asks is

(Q1): Do neural networks learn simple patterns on random training data?

A second, very curious, aspect about the generalization of neural networks is the observation that
increasing the size of a neural network helps in achieving better test error even if a training error of
zero has already been achieved (see, e.g.,|Neyshabur et al.|(2014)) i.e., larger neural networks have
better generalization error. This is contrary to traditional wisdom in statistical learning theory which
holds that larger models give better training error but at the cost of higher generalization error. A
recent line of work proposes that the reason for better generalization of larger neural networks is
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implicit regularization, or in other words larger learned models are simpler than smaller learned
models. See | Neyshabur| (2017) for references. The second question this paper asks is

(Q2): Do larger neural networks learn simpler patterns compared to smaller neural networks when
trained on real data?

The third aspect about generalization that this paper considers is the widely observed phenomenon
that using large minibatches for stochastic gradient descent (SGD) leads to poor generalization |Le-
Cun et al.l

(Q3): Are neural networks learned with small minibatch sizes simpler compared to those learned
with large minibatch sizes?

All the above questions have been looked at from the point of view of flat/sharp minimizers Hochre-
iter & Schmidhuber (1997). Here flat/sharp corresponds to the curvature of the loss function around
the learned neural network. Krueger et al|(2017) for true vs random data, [Sagun et al.| (2017) for
large vs small neural networks and [Keskar et al.| (2016) for small vs large minibatch training, all
look at the sharpness of minimizers in various settings and connect it to the generalization perfor-
mance of neural networks. While there certainly seems to be a connection between the sharpness of
the learned neural network, there is as yet no unambiguous notion of this sharpness to quantify it.
See |Dinh et al.|(2017) for more details.

This paper takes a complementary approach: it looks at the above questions through the lens of
learnability. Let us say we are considering a multi-class classification problem with c classes

and let D denote a distribution over the inputs x ~ R<. Given a neural network A, draw

n independent samples z!,--- % from D and train a neural network A/ on training data

(" N (28)), -, (2, N(2tF)), where N (z) € [c] denotes the prediction of A on z. The learn-

n?

ability of a neural network V' is defined to be

LMY E [1{N<z):mx>}}“00%- 1)

ztt x~D

Note that L(N) implicitly depends on D, the architecture and learning algorithm used to learn N as
well as n. This dependence is suppressed in the notation but will be clear from context. Intuitively,
larger the L(N), easier it is to learn A/ from data. This notion of learnability is not new and is
very closely related to probably approximately correct (PAC) learnability [Valiant (1984); [Kearns
& Vazirani| (1994). In the context of neural networks, learnability has been well studied from a
theoretical point as we discuss briefly in Sec[2} There we also discuss some related empirical results
but to the best of our knowledge there has been no work investigating the learnability of neural
networks that are encountered in practice.

This paper empirically investigates the learnability of neural networks of varying sizes/architectures
and minibatch sizes, learned on real/random data in order to answer (Q1) and (Q2) and (Q3). The
main contributions of this paper are as follows:

Contributions: The results in this paper suggest that there is a strong correlation between gener-
alizability and learnability of neural networks i.e., neural networks that generalize well are more
learnable compared to those that do not generalize well. Our experiments suggest that

e Neural networks do not learn simple patterns on random data.

e [ earned neural networks of large size/architectures that achieve higher accuracies are more
learnable.

e Neural networks learned using small minibatch sizes are more learnable compared to those
learned using large minibatch sizes.

Experiments also suggest that there are qualitative differences between learned shallow networks
and deep networks and further investigation is warranted.

Paper organization: The paper is organized as follows. Section [2] gives an overview of related
work. Section [3] presents the experimental setup and results. Section [5] concludes the paper with
some discussion of results and future directions.
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2 RELATED WORK

Learnability of the concept class of neural networks has been addressed from a theoretical point of
view in two recent lines of work. The first line of work shows hardness of learning by exhibiting a
distribution and neural net that is hard to learn by certain type of algorithms. We will mention one
of the recent results, further information can be obtained from references therein. [Song et al.|(2017)
(see also/Shamir|(2016)); Shalev-Shwartz et al.|(2017)) show that there exist families of single hidden
layer neural networks of small size that is hard to learn for statistical query algorithms (statistical
query algorithms [Kearns| (1998)) capture a large class of learning algorithms, in particular, many
deep learning algorithms such as SGD). The result holds for log-concave distributions on the input
and for a wide class of activation functions. If each sample is used only ones, then the hardness in
their result means that the number of samples required is exponentially large. These results do not
seem directly applicable to input distributions and networks encountered in practice.

The second line of work shows, under various assumptions on D and/or /, that the learnability of
neural networks is close to 1|Arora et al.|(2014);Janzamin et al.| (2015)); Giryes et al.|(2016);/Zhong
et al.| (2017). Recently, |Goel & Klivans|(2017) give a provably efficient algorithm for learning one
hidden layer neural networks consisting of sigmoids. However, their algorithm, which uses the
kernel method, is different from the ones used in practice and the output hypothesis is not in the
form of a neural network.

Using one neural net to train another has also been used in practice, e.g. |Ba & Caurana (2013);
Hinton et al.|(2015); [Urban et al.| (2016). The goal in these works is to train a small neural net to
the data with high accuracy by a process often called distillation. To this end, first a large network
is trained to high accuracy. Then a smaller network is trained on the original data, but instead of
class labels, the training now uses the classification probabilities or related quantities of the large
network. Thus the goal of this line of research, while related, is different from our goal.

3 EXPERIMENTS

In this section, we will describe our experiments and present results.

3.1 EXPERIMENT SETUP

All our experiments were performed on CIFAR-10 Krizhevsky et al|(2009). The 60,000 training
examples were divided into three subsets Dy, Do and D3 with D; and Dy having 25000 samples
each and D3 having 10000 samples. We overload the term D; to denote both the unlabeled as well
as labeled data points in the i split; usage will be clear from context. For all the experiments, we
use vanilla stochastic gradient descent (SGD) i.e., no momentum parameter, with an initial learning
rate of 0.01. We decrease the learning rate by a factor of % if there is no decrease in train error for
the last 10 epochs. Learning proceeds for 500 epochs or when the training zero-one error becomes
smaller than 1%, whichever is earlier. Unless mentioned otherwise, minibatch size of 64 is used and
the final training zero-one error is smaller than 1%. For training, we minimize logloss and do not
use weight decay. The experimental setup is as follows.

Step 1 Train a network N; on (labeled) D;.
Step 2 Use NV to predict labels for (unlabeled) Do, denoted by N1(Ds).
Step 3 Train another network N5 on the data (Ds, N1(D5)).

Learnability of a network is computed as ﬁ Zlﬂ}' LN, (D3)=Na2(D3)} X 100%. All the numbers

reported here were averaged over 5 independent runs. We now present experimental results aimed
at answering (Q1), (Q2) and (Q3) we raised in Section

3.2 EFFECT OF DATA

The first set of experiments are aimed at understanding the effect of data on the simplicity of learned
neural networks. We work with three different kinds of data. In this section we vary the data in three
ways



Under review as a conference paper at ICLR 2018

e True data: Use labeled images from CIFAR-10 for D in[Step 1}

e Random labels: Use unlabeled images from CIFAR-10 for D; in[Step 1|and assign them
random labels uniformly between 1 and 10.

e Random images: Use random images and labels in where each pixel in the image
is drawn uniformly from [—1, 1].

For this set of experiments architecture of NV; was the same as that of N,. The networks N7 and Ny
were varied over different architectures: VGG |Simonyan & Zisserman|(2014)), GoogleNet |Szegedy
et al.| (2015), ResNet [He et al.| (2016a)), PreActResnet |[He et al. (2016b) , DPN |Chen et al. (2017)
and DenseNet Huang et al.|(2016). We also do the same experiment on shallow convolutional neural
networks with one convolutional layer and one fully connected layer. For the shallow networks, we
vary the number of filters in N; and N» from {16, 32,64, 128,256,512,1024}. We start with 16
filters since that is the minimum number of filters where the training zero one error goes below 1%.
The learnability values for various networks for true data, random labels and random images are
presented in Table [I] for shallow convolutional networks, Table 2] for popular deep convolutional
networks and Table 3] for shallow multilayer perceptrons (MLPs).

Network | Random Labels | Random Images | True Data | True Data Acc.
16 21.57£0.66 14.19+1.01 58.81+0.4 53.91£0.56
32 22.07+0.34 16.13+0.44 68.32+0.3 58.67+0.41
64 28.98+0.38 22.91+0.65 73.04+£.25 61.37£0.36
128 35.34+0.55 31.05£1.75 76.12+0.34 62.90+0.35

256 40.93£0.62 40.5+0.84 78.05+0.29 63.80+0.32
512 43.51+0.91 49.4342.78 79.56+0.5 64.43£0.11
1024 46.49+1.15 52.06£0.29 80.41£.09 64.88+0.33

Table 1: Learnability comparison of shallow networks on CIFAR-10 dataset with a batchsize of 64
averaged across five independent runs.

Network Random Labels | Random Images | True Data | True Data Acc.
VGGI11 17.99+0.34 11.30£0.15 73.4740.63 72.9340.36
VGG13 16.82+0.54 12.51+0.15 75.21£1.25 75.01+£0.56
VGG16 17.88+0.49 11.97+0.34 75.41£0.77 75.78+0.60
VGGI19 17.95+0.62 11.78+0.46 75.8440.49 76.104+0.28
ResNet18 14.96+0.20 13.56+0.58 69.9340.74 69.98+0.55
Resnet34 16.14+0.54 13.96+0.07 72.22+0.85 71.88+£0.41
PreActResnet18 16.33 4+0.35 14.6140.80 70.8340.75 68.35£1.97
DPN26 17.03+0.30 12.61+0.05 70.36+0.70 69.84+0.27
DenseNet121 19.32+0.26 13.35+0.35 79.46+0.08 79.47+0.67
GoogleNet 16.10£0.55 13.7740.02 78.55+1.26 78.5840.31

Table 2: Learnability comparison of popular neural network architectures on CIFAR 10 dataset with
a batchsize of 64 averaged across five independent runs.

Network Depth | Random Labels | Random Images | True Data | True Data Acc.
1 21.3940.35 45.131+0.83 50.18%+0.72 40.88+0.65
2 17.654+0.43 34.89+1.29 48.58+0.57 42.6240.53
3 15.99+40.21 24.7810.91 48.62+1.01 42.83+0.63
4 13.744-0.01 20.3340.99 48.1240.83 42.7440.83
5 12.60+£0.60 16.5540.12 46.12+0.81 42.76+0.52

Table 3: Learnability comparison of MLPs (Multi Layer Perceptrons) of fixed hidden unit size 64
and varying depth on CIFAR-10 dataset with a batchsize of 64 averaged across five independent
runs.

We see from the results that the learnability values of neural networks learned using true data are
much larger compared to the values for those learned using random labels or random images. This
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Network | Random Labels | Random Images | True Data | True Data Acc.
16 13.52+0.54 8.98+0.59 38.56£1.10 26.13£0.36
32 18.92+0.43 16.931+0.90 44.05£0.67 28.89+0.43
64 22.61+£1.13 25.7440.72 47.18+0.73 30.32£0.18
128 25.88+0.30 34.34+2.27 48.87+£0.47 30.71+£0.18
256 28.52+0.88 43.27£2.15 49.7540.32 31.39+0.13
512 29.62+1.07 47.4542.04 50.71£0.29 31.68+0.19
1024 30.57+£1.05 48.08+2.41 51.06+0.26 32.10+0.19

Table 4: Learnability comparison of shallow CNNs on CIFAR-100 dataset with a batchsize of 64
averaged across five independent runs.

Class

Network Arch: 0 1 2 3 4 3 6 7 8 9
True Data
GoogleNet 10.89 | 8.95 9.73 8.88 | 1229 | 9.04 | 9.13 | 11.48 | 885 | 10.75
DenseNet 9.19 9.27 851 | 11.18 | 12.14 | 8.90 6.35 | 16.54 | 9.28 8.65
Shallow conv 1024 1045 | 9.45 9.14 9.08 9.72 | 12.44 | 10.15 | 1041 | 9.50 9.65
Shallow conv 16 11.78 | 9.67 9.44 9.48 9.83 | 1035 | 990 | 1037 | 9.16 | 10.03
Random Labels
DenseNet 10.17 | 824 | 11.54 | 6.84 | 11.11 | 10.81 | 10.70 | 9.17 | 11.01 | 10.42
GoogleNet 9.33 | 11.51 | 6.76 9.71 | 12.82 | 9.20 | 1032 | 7.08 | 10.70 | 12.57
Shallow conv 1024 11.86 | 10.05 | 13.93 | 10.07 | 9.79 | 12.69 | 14.60 | 4.88 4.94 7.19
Shallow conv 16 8.86 9.78 | 11.89 | 10.40 | 10.14 | 7.39 | 10.69 | 10.99 | 12.37 | 7.50
Random Images
DenseNet 4.05 8.07 2.02 9.02 049 | 17.59 | 0.75 | 17.85 | 37.46 | 2.70
GoogleNet 2878 | 7.29 | 456 | 4.50 1.13 | 12.12 | 21.79 | 8.45 0.93 | 10.46
Shallow conv 1024 342 | 22.07 | 19.03 | 6.79 5.00 3.46 8.99 7.88 4.19 | 19.17
Shallow conv 16 9.68 | 10.13 | 9.33 8.70 8.52 | 11.76 | 12.01 | 11.91 | 8.69 9.28

Table 5: Class wise Percentage distribution for N7 predictions on D5 for CIFAR-10 Dataset. Shal-
low 16 refers to a single layer ConvNet with 16 number of filters.

clearly demonstrates that the complexity of a learned neural network heavily depends on the training
data. Given that complexity of the learned model is closely related to its generalizability, this further
supports the view that generalization in neural networks heavily depends on training data. Similar
results can be observed for shallow convolutional networks on CIFAR-100 in Table 4l

It is perhaps surprising that the learnability of networks trained on random data is substantially
higher than 10% for shallow networks, on the other hand it’s close to 10% for deeper networks.
Some of this is due to class imbalance: in the case of true data, class imbalance is minimal for all
architectures. While, when trained on random labels or random images output of N7 on Dy was
skewed. This happened both for shallow networks and deeper networks but was slightly higher for
shallow networks. Table[5|presents the percentage of each class in the labels of N1 on D2. However,
we do not have a quantification of how much of learnability in the case of shallow networks arises
due to class imbalance and a compelling reason for high learnability of shallow networks.

For any given example, let us denote TLP(z) def 1N, (2)=y(=)}» Where y(z) denotes the true label

of x and PLP(x) def 1{N,(x)=Ns(z)}- Tables|6|and|7| present the percentage of examples for the

PLP

TLP 0 1 - PLP | 1
(1) 171 '96’? ' ??8? 0 75.84 [ 19.83
: : 1 15.29 | 39.04

Table 6: Ny: Shallow net with 1024 filters,
Ns: Shallow net with 1024 filters; in percent-
age

Table 7: N7: Shallow net with 16 filters, Ny:
Shallow net with 16 filters; in percentage
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PLP PLP
TLP 0 1 TLP 0 1
0 14.58. | 12.93 0 11.21 | 9.97
1 11.94 | 60.55 1 10.23 | 68.59
Table 8: Ni: VGGI11 and Ny: VGGI1; in Table 9: N;: GoogleNet, N»o: GoogleNet; in
percentage percentage

four different possibilities of TLP and PLP for shallow networks while Tables [§and [9] present these
results for VGG-11 and GoogleNet. The key point we would like to point out from these tables is
that if we focus on those examples where N7 does not predict the true label correctly i.e., TLP = 0
or the first row in the tables, we see that approximately half of these examples are still learned
correctly by N,. Contrast this with the learnability values of N; learned with random data which
are all less than 20%. This suggests that networks learned on true data make simpler predictions
even on examples which they misclassify.

3.3 EFFECT OF NETWORK SIZE/ARCHITECTURE

The second set of experiments are aimed at understanding the effect of network size and architecture
on the learnability of the learned neural network. First, we work with shallow convolutional neural
networks (CNN) with 1 convolutional layer and 1 fully connected layer.

The results are presented in Table Even though training accuracy is always greater than 99%,
test accuracy increases with increase in the size of N7 — [Neyshabur et al.| (2014) reports similar
results for 2-layer multilevel perceptrons (MLP). It is clear that for any fixed V2, the learnability of
the learned network increases as the number of filters in V7 increases. This suggests that the larger
learned networks are indeed simpler than the smaller learned networks. Note also that for every /Vq,
its learnability values are always larger than its test accuracy when Ny has 16 or more filters. This
suggests that N» learns information about NV; that is not contained in the data.

We performed the same experiment for some popular architectures as in Section [3.2] The results
are presented in Table Note that the accuracies reported here are significantly lower than those
reported in published literature for the corresponding models; the reason for this is that our data size
is essentially cut by half (see Section [3.1). Except for the case where N> is ResNet18 and Ny is
either a VGG or ResNet, there is a positive correlation between test accuracy and learnability i.e., a
network with higher test accuracy is more learnable. We do not know the reason for the exception
mentioned above. Furthermore, the pattern observed for shallow networks, that learnability is larger
than accuracy, does not seem to always hold for these larger networks.

3.4 EFFECT OF BATCH SI1ZE

The third set of experiments are aimed at understanding the effect of minibatch size on the learned
model. For this set of experiments, N; and N, are again varied over different architectures while
keeping the architectures of N; and N, same. The minibatch size for training of No is
fixed to 64 while the minibatch size for training of N; is varied over {32,64,128,256}.
Table T3] presents these results. It is clear from these results that for any architecture, increasing the
minibatch size leads to a reduction in learnability. This suggests that using a larger minibatch size
in SGD leads to a more complex neural network as compared to using a smaller minibatch size.

3.5 VARIABILITY OF PREDICTIONS

In this section, we will explore a slightly orthogonal question of whether neural networks learned
with different random initializations converge to the same neural network, as functions. While there
are some existing works e.g., |(Goodfellow et al.|(2014), which explore linear interpolation between
the parameters of two learned neural networks with different initializations, we are interested here
in understanding if different SGD solutions still correspond to the same function. In order to do this,
we compute the confusion matrix for different SGD solutions. If SGD is run k times (k = 5 in this
case), recall that the (i, j) entry of the confusion matrix, where 1 < 4,5 < k gives the fraction of
examples on which the i and j® SGD solutions agree. The following are the confusion matrices
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N, .
M # Params

‘ Test Acc. ‘

6 |

32 ‘ 64

‘ 128 ‘ 256 ‘ 512 ‘ 1024 ‘

16
32
64
128

256
512
1024

33

42186
84362
168714

674826
1349642
2701910

7418

53.9140.56
58.6740.41
61.37+0.36
62.9040.35
63.8040.32
64.4340.11
64.8810.33

58.8140.40
63.86+0.06
67.60£0.04
68.80£0.11
70.634-0.08
71.6940.05
71.8540.43

61.61+0.49
68.3240.30
71.37£0.58
73.5240.38
74.534+0.22
76.23+0.28
76.4540.37

63.7840.54
69.2510.88
73.04+0.25
75.0440.10
77.5340.10
77.1540.05
78.0140.32

65.09+0.24
70.00+1.23
74.4840.05
76.12+0.34
77.6110.04
78.07+£0.06
79.1940.38

65.0840.21
70.0340.62
73.80+0.19
76.731+0.27
78.0540.29
79.43+0.06
79.3640.31

65.1240.19
71.1440.22
74.9240.36
76.6010.14
78.1040.01
79.56+0.50
79.9040.19

63.9440.73
70.4410.66
74.04£0.01
76.89+0.09
77.5610.68
78.96+0.02
80.41£0.09

Table 10: Learnability values for shallow 2-layer CNNs of various sizes. Values in the first column
represent the number of filters in N; and values in the header row represent the number of filters in

Ns.
Ny
N, # Params | Test Accuracy 1 2 3 4 5
1 197322 40.8840.65 50.184+0.72 | 48.85+1.02 | 48.38+£0.32 | 48.04+0.39 | 48.04+0.04
2 201482 42.6240.53 48.48+0.10 | 48.58+0.57 | 50.03+0.43 | 48.96+0.33 | 47.80%1.11
3 205642 42.8340.63 48.06+0.30 | 48.09£0.19 | 48.624+1.01 | 48.39+1.14 | 47.45£0.24
4 209802 42.7440.83 46.35+0.41 | 46.89+£0.76 | 48.324+0.95 | 48.12+0.83 | 46.40£0.12
5 213962 42.76+£0.52 44.96+£0.92 | 46.14+0.92 | 46.62+0.57 | 46.25+0.61 | 46.12+0.81
Table 11: Learnability values for shallow MLPs of various sizes. Values in the first column represent
the depth of V; and values in the header row represent the depth of V5. Each MLP layer had a hidden
unit size of 64 followed by a ReLU
N, N2 # of Layers, Params | Test Accuracy VGG11 ResNet18 | GoogleNet | DenseNetl21
DPN26 89-11574842 69.844+0.27 | 68.54+£0.97 | 69.844+0.89 | 72.33+0.52 | 72.4740.15
ResNet18 62-11173962 69.981+0.55 | 68.79+0.68 | 69.944+0.55 | 71.76+0.24 | 73.33£0.29
ResNet34 110-21282122 71.884+0.41 71.514+0.41 | 71.14£0.01 | 72.2240.69 | 73.86+0.09
VGG11 34-9231114 72.93+0.36 | 73.47£0.39 | 69.461+0.57 | 72.39+0.11 | 73.4240.03
VGG13 42-9416010 75.01+0.56 | 74.87+0.67 | 70.83+0.08 | 73.84+0.83 | 74.6540.01
VGG16 54-14728266 75.78+0.60 | 74.23+1.04 | 72.284+0.14 | 74.40+0.66 | 74.76+0.39
VGG19 66-20040522 76.10+0.28 | 74.66+0.10 | 71.8440.15 | 74.29+0.93 | 76.7540.12
GoogLeNet 258-6166250 78.58+0.31 70.75£0.18 | 71.2441.55 | 78.5541.58 77.74+£0.05
DenseNet121 362-6956298 79.47+0.67 | 73.41£0.37 | 73.954+0.56 | 78.61+0.01 | 79.46+0.01

Table 12: Learnability values for various popular architectures. The first column gives the architec-
ture of N7 and the header row shows the architecture of No. See text for discussion.

Batch size
N /N 32 64 128 256

VGGl11 74.56 £0.71 | 73.75 £0.07 | 72.05 +0.83 | 69.10 +0.53
VGG13 74.85 £0.43 | 73.95 £1.13 | 73.32 £0.23 | 69.84 +0.29
VGG16 74.87 £0.60 | 74.73 £0.44 | 73.14 £0.25 | 69.88 £0.32
VGG19 74.44 £0.40 | 74.38 £0.03 | 73.03 £0.15 | 70.74 +0.52
ResNet18 72.51 £0.87 | 70.06 £0.45 | 64.98 £0.17 | 61.72 +0.64

DenseNet121 73.79 £0.25 | 73.33 £0.06 - -

GoogleNet 72.01 £0.25 | 71.55 £0.54 - -

Table 13: Learnability comparison of network architectures on CIFAR-10 dataset with varying batch
sizes. For this experiment we fixed N2 to be VGG11 with batch size of 64. GoogleNet and DenseNet
architectures ran out of memory for batch size of 128 and 256.

for different SGD solutions, left for a shallow network with 1024 filters and right for VGG-11.

0
0
0
0

1. 093 093 093 0.93 1. 073 0.73 073 0.72
93 1. 093 094 0.94 073 1. 0.74 073 0.74
93 093 1. 093 0.94 0.73 074 1. 074 0.75
93 094 093 1. 0.93 0.73 073 074 1. 0.74
93 094 094 093 1. 0.72 0.74 0.75 0.74 1.
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Figure 1: Shallow network with 1024 filters Figure 2: VGGI11

For both the networks, we see that the off-diagonal entries are quite close to each other. This seems
to suggest that while the different SGD solutions are not same as functions, they agree on a common
subset (93% for shallow network and 73% for VGG-11) of examples. Furthermore, for VGG-11, the
off-diagonal entries are very close to the test accuracy — this behavior of VGG-11 seems common
to other popular architectures as well. This seems to suggest that different SGD solutions agree on
precisely those examples which they predict correctly, which in turn means that the subset of exam-
ples on which different SGD solutions agree with each other are precisely the correctly predicted
examples. However this does not seem to be the case. Figures [I] and [2] show the histograms of
the number of distinct predictions for shallow network and VGG-11 respectively. For each number
i € [k], it shows the fraction of examples for which the k& SGD solutions make exactly ¢ distinct
predictions. The number of examples for which there is exactly 1 prediction, or equivalently all
the SGD solutions agree is significantly smaller than the test accuracies reported above.

4  WHY CORRELATION BETWEEN LEARNABILITY AND GENERALIZATION?

0 5 10 15 220 5 B 3B &0 0 1 20 E Ey 50 60 o 5 10 15 ]
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(a) True Data (b) Random Labels (c) Random Images

Figure 3: Plot of learnability and generalization error vs epochs for shallow 2-layer CNN's

The experimental results so far show a clear correlation between learnability and generalizability of
learned neural networks. This naturally leads to the question of why this is the case. We hypothesize
that learnability captures the inductive bias of SGD training of neural networks. More precisely,
when we start training, intuitively, the initial random network generalizes well (i.e., both train and
test errors are high) and is also simple (learnability is high). As SGD changes the network to re-
duce the training error, it becomes more complex (learnability decreases) and generalization error
increases. Figure [3] which shows the plots of learnability and generalizability of shallow 2-layer
CNNs supports this hypothesis.

5 DISCUSSION AND CONCLUSION

This paper explores the learnability of learned neural networks under various scenarios. The results
herein suggest that while learnability is often higher than test accuracy, there is a strong correlation
between low generalization error and high learnability of the learned neural networks. This paper
also shows that there are some qualitative differences between shallow and popular deep neural
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networks. Some questions that this paper raises are the effect of optimization algorithms, hyper-
parameter selection and initialization schemes on learnability. On the theoretical front, it would
be interesting to characterize neural networks that can be learned efficiently via backprop. Given
the strong correlation between learnability and generalization, driving the network to converge to
learnable networks might help achieve better generalization.
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A LEARNABILITY OF NETWORKS ON MNIST

No. of Hidden Units | # Params | Learnability | Test Accuracy
1 805 97.25+£0.34 | 37.43£0.98
2 1600 96.06 £0.51 | 73.50 £1.49
3 2395 96.65 £0.36 | 84.58 +0.21
4 3190 95.69 £0.07 | 89.04 £0.54
5 3985 92.80 £0.74 | 92.09 £0.26
6 4780 90.27 +£2.49 | 93.16 £0.13

Table 14: Learnability and Accuracy comparison of single layer MLP with varying hidden unit size
for N7 on MNIST dataset averaged across five independent runs. For all of the above results we

fixed N, to a single layer MLP with hidden unit size of 4.

In this section, we present in Table[T4] the learnability and test accuracy values of single layer MLPs
with different number of hidden units trained on MNIST. While we still observe correlation between
learnability and test accuracy, the learnability values are much higher than the test accuracy values.
This clearly demonstrates that high learnability is does not necessarily require high test accuracy but

can occur even when test accuracies are low.
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