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Abstract

We present our solution for the LLM Merging Competition: Building LLMs1

Efficiently through Merging at NeurIPS 2024. We experimented with a range of2

base models and merging strategies, ultimately choosing Llama3-8B-Instruct and its3

variants as our foundation model, merged using the DARE-TIES strategy. To further4

improve inference-time performance, we incorporated few-shot enhancement and5

chain-of-thought prompting techniques. We secured 1st place on the released6

public dataset with a score of 0.83, and achieved a score of 0.41 in the Finals.7

1 Introduction8

Large Language Models (LLMs) have demonstrated significant success across a wide range of Natural9

Language Processing (NLP) downstream tasks [1, 2, 3, 4, 5], such as mathematical reasoning [6,10

7, 8],instruction following[9, 10], code generation[11, 12] and multilingual processing[13, 14].11

However, adapting LLMs to new tasks or expanding their multi-task capabilities, whether through12

instruction tuning or pretraining from scratch, imposes significant computational demands. To address13

these challenges, model merging [15] has emerged as a practical and efficient approach to enhance14

the multi-task performance of LLMs in resource-constrained or training-free scenarios. Considerable15

efforts have been devoted to developing techniques that seamlessly integrate fine-tuned models into16

a cohesive multitask merged model, effectively addressing issues like parameter alignment, weight17

interference, and task-specific optimization without incurring heavy computational overhead.18

The LLM Merging Challenge emphasizes the significance of exploring model merging as a strategy19

for developing unified, adaptable multitask models that can operate efficiently and effectively under20

limited resource conditions. In this competition, we experimented with a variety of base models21

released prior to May 1, 2024, including Mistral-7B-Instruct-v2, Llama3-8B-Instruct, Flan-T5-large,22

Gemma-7B-Instruct, and WizardLM-2-7B. We also explored several merging strategies, such as Task23

Arithmetic [16], TIES-Merging [17], DARE [18], and Consensus [19]. After careful comparison,24

we selected Llama3-8B-Instruct and its variants as our foundation model, merging them using the25

DARE-TIES strategy. The merged model inherited the strengths of its sub-models and demonstrated26

stronger zero-shot capabilities. We further enhanced the merged model by incorporating Chain-of-27

Thought [20] and Few-Shot learning [21] techniques. The results demonstrate that the merged model28

retains and also benefits from in-context learning [22] capabilities. In terms of results, we secured 1st29

place on the public dataset with a score of 0.83 and achieved a score of 0.41 in the Finals.30
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2 Method31

We conducted experiments on multiple model merging methods to determine the most effective32

approach for combining selected models. We implemented and compared the following methods:Task33

Arithmetic[16], TIES-Merging[17] , DARE[18] and Consensus[19]. Below is a brief overview of34

each method.35

Task Arithmetic creates a “task vector” for each fine-tuned model by subtracting a common base36

model, merging these task vectors linearly, and then adding them back to the base. This method37

retains the unique features of each model, especially when they share a common foundation, but may38

be limited in mitigating parameter interference.39

TIES-Merging (Trim, Elect Sign & Merge) approach enhances Task Arithmetic method by applying40

magnitude sparsification to task vectors, then employs a sign consensus algorithm to reduce both41

interference of redundant parameter values and disagreement on the sign of a given parameter’s42

values across models.43

DARE (Drop and Rescale) also reduces interference by sparsifying task vectors, but it differs with44

TIES by using random pruning with a rescaling technique. DARE can optionally incorporate the45

TIES sign consensus algorithm (dare_ties) or be applied linearly (dare_linear). This method has46

shown a strong capacity to maintain the strengths of the original models, even in complex merge47

scenarios.48

Consensus method identifies task-specific paramaters in merged models and then removes "selfish"49

weights, which benefit only one task and interfere with others, and “catastrophic” weights, which are50

irrelevant to all tasks and degrade performance. By constructing “task masks” that identify which51

weights are important across multiple tasks, Consensus Merging ensures that only shared, beneficial52

parameters are retained. Like DARE, Consensus is also a plug-and-play module that can be applied53

to other merging method like Task Arithmetic(consensus_ta) and TIES-Merging(consensus_ties).54

Another concurrent paper, EMR-Merging [23], proposes a similar concept but relies on separate55

masks for each downstream task instead of generating a single, unified model. Since this approach56

might conflict with competition rules, we chose not to adopt it.57

Our experiments demonstrated that DARE consistently outperformed other methods, retaining a58

higher degree of each model’s performance while reducing interference. Specifically, the dare_ties59

variant yielded the best results, combining the benefits of TIES’s sparsification and sign consensus60

algorithm with DARE’s adaptive pruning.61

Based on these findings, we selected DARE as the final model merging method for this competition.62

Algorithm 1 Model Merging Evaluation Process
Require: Pre-trained model θPRE, fine-tuned models {θiSFT}Ni=1, hyperparameters, test dataset

test.csv
Ensure: Merged model predictions submission.csv

1: Use the DARE-TIES to merge models: θMERGED = dare_ties(θPRE, {θiSFT}Ni=1, hyperparameters)
2: for each multiple-choice task in test.csv do
3: Compute the token-length normalized log probabilitiesa across options using θMERGED
4: Select the option with the highest probability
5: Apply self-consistency and chain-of-thought (CoT) strategies
6: end for
7: for each generative task in test.csv do
8: Generate response directly using θMERGED
9: end for

10: Consolidate all generated responses into submission.csv

ahttps://blog.eleuther.ai/multiple-choice-normalization/
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Figure 1: Statistical distribution of questions in the provided benchmark: (Left) distribution of
multiple-choice questions, and (Right) distribution of generation-based questions.

3 Experiments64

Benchmark statistics. The test set provided for benchmarking the performance of merged models65

consists of 807 questions, with 457 multiple-choice and 350 generation-based questions.66

Figure 1 shows the statistical distribution of these questions across the two main categories. The67

multiple-choice questions span various domains, with physics knowledge (84 questions, 18.38%)68

and pronoun resolution & cloze tasks (100 questions, 21.88%) being the most prevalent, followed69

by coding-related, grammar-related, and other types of questions. The generation-based questions70

encompass a range of tasks, including question-answering & one-shot reasoning (98 questions,71

27.92%), semantic similarity detection, and SQL generation. We conducted data analysis to extract72

publicly available datasets from MMLU[2], IFeval[5], RecipeNLG[24], TriviaQA[25], MedQA[26],73

and others. These datasets represent a comprehensive evaluation of multidisciplinary knowledge,74

instruction following, semantic understanding, code comprehension, and math reasoning.75

Experiment setup. For multiple-choice questions, we calculate the probability of generating each76

option and select the option with the highest probability as the answer. For generation-based77

questions, we decode the answer based on the instruction and calculate the ROUGE-L score between78

the generated answer and the human-written ground truth. Decoding is performed with a maximum79

length of 1024 tokens and bf16 precision, with specific stop tokens set to eliminate irrelevant outputs.80

Multiple-choice and generation-based questions use separate chat templates for inference.81

After thorough comparison, we select DARE [18] as our merging strategy, utilizing SGLang [27] for82

efficiency. To ensure consistent results during reasoning, the temperature for all LLMs was set to83

zero. All experiments were conducted on two RTX 4090 GPUs with a fixed seed.84

For multiple-choice questions, performance is evaluated using accuracy, while for generation-based85

questions, ROUGE-L is employed as the metric. As ground truth answers are not available, we86

initially generate responses using GPT-4 in a zero-shot setting to establish an offline evaluation87

reference. These responses are subsequently reviewed and refined manually to create a high-quality88

answer set with minimal discrepancies, serving as a reliable benchmark for offline evaluation and89

optimization of the merging algorithm.90

Baselines. As discussed in existing literature [28], a stronger base model tends to yield a more91

capable merged model. We first evaluate the performance of several training-free LLMs on both92

multiple-choice and generation-based tasks. The individual base models include Mistral-7B-Instruct-93

v2, Llama3-8B-Instruct, Flan-T5-large, Gemma-7B-Instruct, and WizardLM-2-7B, all evaluated in a94

zero-shot setting to identify the most suitable candidates for merging.95

We further explore the potential of merged models to enhance performance through SOTA model96

merging strategies. Specifically, we merge MaziyarPanahi/Llama-3-8B-Instruct-v0.81 and meta-97

llama/Meta-Llama-3-8B-Instruct2, experimenting with different merging strategies such as Task98

1https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

3

https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct


Models or Methods Multiple-choice Generation-based Online Bench

Physics Pronoun Res Coding Grammar Overall Rouge-L Online Score

Unmerged base model

Mistral-7B-Instruct-v0.2 50.0 71.0 81.4 92.0 58.9 38.0 43.0
Llama3-8B-Instruct 60.7 73.0 84.8 90.0 62.8 46.6 53.0
WizardLM-2-7B 39.3 60.0 74.6 78.0 52.1 42.5 -
Flan-T5-large 19.1 79.0 11.9 82.0 41.8 26.9 36.0
Gemma-7B-Instruct 47.6 55.0 81.4 92.0 52.5 16.4 -

Merged model

Task Arithmetic [16] 59.2 71.0 76.8 85.0 61.7 43.0 49.0
TIES-Merging [17] 66.7 58.0 84.9 96.0 65.6 42.5 58.0
Consensus [18] 55.9 71.0 85.7 100 64.6 39.0 57.0
DARE-TIES [19] 61.9 74.0 86.44 94.0 68.2 43.2 60.0

+CoT 61.9 63.0 98.3 96.0 72.4 45.0 65.0
+Few-Shot 65.5 71.0 100.0 94.0 74.2 36.8 65.0

Table 1: Performance of base models (zero-shot) and merged models on key multiple-choice and
generation-based tasks using different merging strategies, including Task Arithmetic, TIES-Merging,
Consensus, and DARE, with CoT and Few-Shot enhancements for DARE.

Arithmetic, TIES-Merging, Consensus-Ties, and DARE-Ties. In our configuration, we set the99

density and weight3 of meta-llama/Meta-Llama-3-8B-Instruct to 0.6 and 0.5, respectively, while100

configuring MaziyarPanahi/Llama-3-8B-Instruct-v0.8 with a density of 0.55 and a weight of 0.5.101

Furthermore, we investigate whether the merged model could retain and leverage the In-context102

Learning [22] capabilities by integrating DARE merging with Chain-of-Thought [20] and Few-103

Shot [21] enhancements.104

We also apply LoRA [29] to Llama-3-8B-Instruct for task-specific (e.g., MMLU, Semantic Similarity105

Detection), parameter-efficient fine-tuning prior to merging. However, due to overfitting to specific106

tasks, the merged model exhibits a loss of generalization on other types of tasks, often resulting in107

repeated outputs.108

Main Results. The overall results are reported in Table 1 using 1. We analyze from the following109

perspectives.110

Selecting an Appropriate Base Model by Performance Variability. We evaluate encoder-decoder111

models like T5 and decoder-only LLMs such as Llama3-8B-Instruct and Mistral-7B-Instruct-v0.2 on112

both offline and online benchmarks. Llama3-8B-Instruct achieves the highest online score of 53.0,113

followed by Mistral-7B-Instruct-v0.2, leading us to select Llama3-8B-Instruct as the base model.114

Merged LLMs Outperform the Training-free Base Models. Overall, the merged models deliver115

significant performance gains over the unmerged base models, with improvements of 1–7%. Notably,116

DARE-TIES performs best, reaching an online score of 60.0, followed by TIES-Merging. However,117

these gains primarily result from improvements in multiple-choice questions, while in this specific118

case, performance on generation-based questions declines compared to base model.119

Merged LLMs also Retain and Benefit from In-context Learning Abilities. We evaluate the120

DARE-TIES merging strategy with CoT and Few-Shot enhancements, and results show that the121

merged model retains and also benefits from in-context learning capabilities. It achieves accuracies122

of 72.4% and 74.2% on multiple-choice questions, respectively. However, as few-shot examples are123

challenging to obtain in online evaluations, we retain only the CoT technique.124

4 Conclusion125

We examine various model merging strategies to enhance large language models across multiple-126

choice and generation-based tasks. Thanks to effective model merging techniques and in-context127

learning capabilities, DARE-TIES with Chain-of-Thought (CoT) achieves notable performance gains,128

particularly in multiple-choice accuracy. Experimental results highlight model merging as an efficient129

way to build adaptable, high-performance multitask LLMs in resource-limited environments.130

3Weight refers to the relative weighting of the task vector, while Density represents the fraction of the task
vector’s weights retained after sparsification.
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