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ABSTRACT

We introduce adaptive weight sparsity, an algorithm that allows a neural network
to learn a sparse connection pattern during training. We demonstrate that the pro-
posed algorithm shows performance benefits across a wide variety of tasks and
network structures, improving state-of-the-art results for recurrent networks of
comparable size. We show that adaptive weight sparsity outperforms traditional
pruning-based approaches to learning sparse configurations on convolutional and
recurrent networks. We offer insights into the algorithm’s behavior, demonstrating
that training-time adaptivity is crucial to the success of the method and uncovering
an interpretable evolution toward small-world network structures.

1 INTRODUCTION

It is widely known that the structure of a neural network influences its performance. Contemporary
neural networks almost exclusively use fixed connection patterns, many of which are defined by
structured sparse connectivity. For instance, convolutional networks (LeCun et al., 1998) leverage
block sparse connectivity for efficiency. Recent work on separable convolutions incorporates even
more sparsity (Chollet, 2016). Even feed-forward network architectures may be considered upper-
triangular block-sparse embeddings within a recurrent framework.

In our work we study a mechanism that allows the learning of general sparse network structures.
Specifically we study the effects of coupling gradient-based training with network structure evolu-
tion. We introduce adaptive weight sparsity, an optimization method that learns to arrange connec-
tions within a network. This approach allows more efficient use of an allotted parameter budget.
Controlling for number of nonzero parameters, there is no reason to expect dense connection pat-
terns to be the most efficient arrangement. In fact, the success of structured sparse architectures
suggests the opposite.

There are several benefits of adapting network structure during training: (1) An appropriate learning
rule can progress incrementally towards structures that more efficiently process information. (2)
The ability to remove and add connections allows more degrees of freedom in the optimization
procedure for a fixed computational budget. Additional degrees of freedom increase the likelihood
of converging to better results. (3) Constraining which network connections are active and trainable
at any given time can allow learning to progress more rapidly and act as a regularizer.

The adaptive weight sparsity method supplements a given neural architecture with a tunable sparse
structure (details in Section 3). A guided discrete search on the structure is coupled with standard
gradient descent on the parameter matrices. Our approach is a novel method of combining these
two learning problems. It allows the gradient to guide the combinatorial structure search, selecting
which structural mutations should be made. In turn, the choice of connection structure supresses
many would-be gradient entries. In this manner, the learned network structure induces a biased
estimate of an implied dense gradient. These mutually influential processes ultimately lead the
network toward better solutions.

We demonstrate that this approach improves the performance of a number of existing models. The
results from our method are also well-suited to producing sparse networks for efficient inference in
field deployments. In particular, adaptive weight sparsity outperforms pruning, the principal existing
technique for improving the efficiency of inference. Furthermore, we expect weight sparsity during
training to become increasingly important as improved general handling of sparse linear algebra
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operations and emerging specialized hardware (Parashar et al., 2017; Nurvitadhi et al., 2017) provide
additional acceleration for such methods.

2 RELATED WORK

Recent work shows the promise of sparse neural network topologies. Separable convolutions (Chol-
let, 2016; Zhang et al., 2017) use additional block sparsity in the channel and spatial dimensions
to achieve performance and efficiency gains beyond regular convolutions. Changpinyo et al. (2017)
have shown that random fixed sparse layers are more parameter-efficient than dense layers in con-
volutional networks.

Another line of work focuses on pruning of trained networks for computationally efficient inference
(Parashar et al., 2017). For example, Han et al. (2015b) train a dense network to completion, then
remove weights with the lowest magnitudes, and finally perform a fine-tuning training step. Earlier
work by Hassibi & Stork (1993) suggests the use of second-order derivatives for determining weight
significance. Alternative pruning techniques have been investigated by Han et al. (2015a), Srinivas
& Babu (2015), and Wen et al. (2016). Mariet & Sra (2015), Murray & Chiang (2015), and Hu et al.
(2016) have considered pruning approaches at the neuron, rather than connection, level. Collins &
Kohli (2014) and Srinivas et al. (2017) use regularization techniques to induce a sparse structure
during training. Denil et al. (2013) developed a model that learns only a small number of connection
parameters and predicts the rest. Adaptive weight sparsity is notably distinct from these approaches
in that it maintains sparsity throughout training and adapts the connection structure continually.

Structure-space search has been attempted within a reinforcement learning framework in which an
agent is trained to select neural architectures (Zoph & Le, 2016; Cai et al., 2017).

3 ADAPTIVE WEIGHT SPARSITY

The adaptive weight sparsity algorithm is designed to prune small weights and activate weights in
new locations. We introduce a binary {0, 1} mask variable for every parameter in a model. In fact,
the algorithm admits more efficient implementation by storing matrices in compressed sparse row
format, but we adopt this notation here for convenience. When the mask is 0, the corresponding
weight is not used by the model, and we say it is inactive.

The model is initialized by setting a target fraction α of the weights to be active. Active weights
are initialized according to the initialization procedure of the baseline model. During the course of
training we keep track of the active weights (a fraction a of all possible weights) and after every
training step we adjust the sparsity structure. Inactive weights are set to zero at all times.

We apply the following procedure to each weight matrix of the network. In the pruning stage, we
randomly sample a fraction β1 of active weights and compute the mean w of their magnitudes. Note
that sampling allows for computational efficiency but adds no expressive power to the algorithm,
which is already probabilistic. We apply a sigmoid-based probability distribution to determine if an
active weight with magnitude |w| in the sample should be pruned by setting its mask to 0:

P (1→0|w,w, a) = 1

1 + exp[g( |w|kw − 1− s(a− α))]

Here the parameter s controls a term that biases the process to keep the fraction of active weights
a close to its target value α. Absent this bias factor, k controls the pruning threshold, resulting
in deactivations of weights of magnitude kw with probability 0.5. Finally, g is a smoothing term
and in the limiting case of large g the probability distribution becomes a binary step function that
deterministically forces pruning of weights whose magnitude falls below the threshold.

We introduce a similar stochastic procedure for activating new weights. We sample a fraction β0
of the inactive parameters to obtain a set w̃ of new candidate weight locations. We compute the
average magnitude∇ of the gradient∇wJ of our loss with respect to each w ∈ w̃ and activate each
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Figure 1: Steps of the adaptive sparsity algorithm: (a) sample active weights, (b) compute deacti-
vating probability and identify pruning targets, (c) apply deactivation, (d) sample inactive weights
and compute their gradients, (e) calculate activation probability and identify initialization targets, (f)
initialize new weights.

w with probability

P (0→1|∇wJ,∇, a) =
1

1 + exp[g( |∇wJ|
l∇ − 1 + s(a− α))]

.

Here the parameter l determines the threshold of gradient magnitudes that force initialization of new
weights. Activated weights are initialized with small values according to the gradients, with noise
drawn from a uniform random interval of radius r:

wnew = cg
∂J

∂w
+ n, n ∼ U(−r, r) .

4 EXPERIMENTAL RESULTS

We experiment with varying all hyperparameters described in Section 3. For simplicity and con-
creteness, in the experiments described in this paper we focus on the effect of α that controls the
fraction of active weights and k that determines the rate of structural mutation. At specified epoch
boundaries (N a multiple of epoch size) we analyze the full set of active weights (β = 1) and prune
and initialize weights deterministically when corresponding thresholds are met (g →∞) initializing
new values randomly (cg = 0) with radius r = 2kw. We also keep the number of nonzero param-
eters constant fixed in the course of single experiment (s → ∞), and between experiments with
different values of α by adjusting layer dimensions accordingly.

We prioritize obtaining results on a wide variety of common models and test our method on a fully
connected network, a variational autoencoder (Kingma & Welling, 2013), an LSTM as in Karpathy
et al. (2016), a small convolutional network, and the ResNet-110 model (He et al., 2016). We
use ReLU nonlinearities and minimize cross-entropy loss using the ADAM (Kingma & Ba, 2015)
optimizer and minibatches of size 128 with a learning rate of 0.001. Our model details are outlined
in Table 1.
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Table 1: Experimental Details

Model Dataset
Layer Sizes
(base model)

Training
Epochs

Adaptive
Frequency
(epochs)

Notes

Fully Connected MNIST 64-64-64 20 2
Variational Autoencoder MNIST 256-10-256 500 5 Used RMSProp, batch-size 256.
LSTM War and Peace 512 100 1 Used early stopping. Dropout 0.5. 100 time steps.
Convolutional Network CIFAR-10 32-64-64 200 5 3x3 filters. 10−3 L2 weight decay.
ResNet CIFAR-10 5 See He et al. (2016)

We compare the adaptive weight sparsity method to both the baseline case of a fully dense network
with the same number of parameters per layer and with a sparse control in which the location of
active weights is random and fixed. The results are detailed below and are illustrated in Table 2 and
Figure 2.

4.1 ADAPTIVE SPARSITY

Adaptive weight sparsity outperforms the baseline and the random sparse control across all models.
The results are particularly pronounced for the LSTM network, for which adaptive weight sparsity
outperforms the best published result for a network with the same number of parameters (Karpathy
et al., 2016). On all experiments, a k value of 0.5 or 0.25 yields accuracy improvements compared
to the baseline, giving a useful heuristic to facilitate hyperparameter tuning. Larger k values typ-
ically impair model performance, as too many weights are replaced at each epoch. Performance
approaches that of the fixed random sparse control as k → 0, as expected.

Interestingly, random sparse networks also outperform dense baselines somewhat on several exper-
iments. Decreasing α reduces performance after a certain point – this is unsurprising, as allowing
α→ 0 tends towards network topologies with no path from input activations to outputs. The optimal
α value varies with the model, though logα = −0.5 gives better-than-baseline performance across
all models tested. It is notable that fixed random sparsity is more susceptible to poor performance
with small alpha values than adaptive sparsity. This suggests that adaptivity makes a model more
robust to network size and overall connection sparsity. The result is reasonable, as given enough
training time, adaptive weight sparsity can produce connected paths and clusters of active weights
within a sparse network.

4.2 GENERALIZATION AND TRAINING ACCURACY

Our results show that adaptive sparsity improves generalization: Across all models, when we eval-
uate instances with the same loss value on the training set (by choosing snapshots from different
points in the training process), those trained with adaptive sparsity consistently give better valida-
tion accuracy than the baseline model.

However, adaptive sparsity outperforms the other training methods on both the training and valida-
tion sets. It trains more quickly and achieves better accuracy. We conclude that adaptive weight
sparsity has benefits beyond regularization. One notable exception to this pattern is our LSTM
model which performs slightly worse than the baseline on the training set but significantly better on
the validation set.

4.3 COMPARISON WITH WIDE DENSE MODELS

It is informative to compare a network trained with adaptive weight sparsity to a dense network with
an equal number of activations. In several cases we observed the adaptive sparse model outperforms
this dense counterpart despite its parameter deficit. This occurs in our tests with the CNN and with
the LSTM for logα = −0.5. We attribute this gain to better regularization.

In other cases, the adaptive sparse models yield performance between that of the baseline and wide
dense models, consistent with an interpretation (outlined in Section 5) that adaptive sparsity captures
part of the expressivity of a wider network.
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Table 2: Experimental Results

− logα
Random
Fixed Sparse

Random Sparse
Channel-wise

Adaptive Sparse
(best k) Pruned

Wide Dense
(more params)

Fully Connected (% Error) Baseline: 2.9
0.5 2.6 2.3 (0.25) 2.4 2.2
1.0 2.5 2.3 1.8 1.9
1.5 2.6 2.2 (0.25) 1.7 1.9
2.0 2.5 2.3 (0.25) 1.9 1.9

Variational Autoencoder (Loss) Baseline: 105.9
0.5 105.5 103.2 (0.25) 102.1 100.8
1.0 108.2 103.5 (0.25) 104.4 100.7

LSTM (Cross-entropy Loss) Baseline: 1.178 Best published result with same # parameters: 1.161
0.5 1.154 1.114 (0.5) 1.122 1.129
1.0 1.171 1.144 (0.5) 1.122 1.098

Convolutional Network (% Error) Baseline: 18.7
0.5 18.4 19.4 17.0 (0.25) 17.8 17.6
1.0 19.1 20.5 17.3 (0.5) 18.3 17.9

ResNet-110 (% Error) Baseline: 6.5
0.5 6.4 6.2 5.9 (0.25) 6.4 5.65
1.0 6.2 6.2 5.9 (0.25) 6.5 5.1

Above: experimental results on validation sets. The bold figure indicates best-performing model
for the given parameter budget. Baseline refers to the model with no sparsity or adaptivity. Note
that “wide dense” figures refer to networks scaled by α−1 but not sparsified – these are given for
reference, but contain more parameters than other models on the same row. Best-performing values
of k for a given α are indicated parenthetically next to adaptive sparsity figures.

4.4 COMPARISON WITH PRUNING

We compare adaptive weight sparsity to pruning, a technique that also results in a sparse model
but by a different method. For comparison we use the method of Han et al. (2015b), pruning the
smallest weights after training a dense network and subsequently fine-tuning the sparse network
controlling for the final number of active parameters. Adaptive weight sparsity is superior for the
more complicated models tested (convolutional, ResNet, and LSTM). The simplest two models
(fully-connected and VAE on MNIST) perform better using the pruning method. This suggests
that the optimization benefits offered by adaptive sparsity are effective at guiding optimization of
sufficiently complex models.

5 ANALYSIS OF WEIGHT ADAPTIVITY

We distinguish between effects of the network topology learned through adaptivity and the effects
of the adaptive process itself.

5.1 ROLE OF ADAPTIVITY

We find evidence that the adaptivity process itself is necessary to obtain the benefits of adaptive
sparsity. To demonstrate this we take the sparsity pattern resulting from a training session with
adaptive sparsity and use this as a fixed sparse structure for a new network trained from scratch (see
Figure 3). Doing so eliminates much of the benefit of adaptive sparsity. In no instances does the
resulting model achieve the same performance as one trained with adaptive sparsity. Across all our
feedforward models, the learned topology accounts for roughly 30% of the observed improvement
of adaptive sparsity over random fixed sparsity (and 0% on the recurrent network). We conclude
that adaptive weight sparsity succeeds as an optimization method for other reasons in addition to the
topology it learns.
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Figure 2: Results for best choices of α and the adaptive threshold k. Controlling for number of
parameters, adaptive weight sparsity yielded the best results across all models. Note that the LSTM
model employed early stopping. Best viewed in color.

These results are not too surprising, as adaptive sparsity produces connection patterns that are de-
pendent on the associated parameter values. Dense local clusters arise in response to their utility,
assuming learned roles the particular network being trained. In this sense, fixed sparse structures
trained with gradient descent will always be sub-optimal compared to adaptive structures. We ob-
serve this effect to be most pronounced in an LSTM network where it is amplified by the recurrent
temporal paths through the network.

We now consider how an adaptivity mechanism is able to overcome the limitations of fixed network
structures. Consider adaptive sparsity as an optimization technique. The potential for adding and
removing weights corresponds to the ability to periodically move in extra dimensions of parameter
space. Allowing the connection pattern to adjust over time accounts for the possibility that different
degrees of freedom may be needed at different stages in the optimization process. Furthermore, this
adjustment allows for more efficient use of model parameters, as is empirically observed in the form
of a decrease in low-strength weights during training (Figure 4).

These new degrees of freedom are obtained at the cost of pinning the smallest model weights to ex-
actly zero. This costs a small amount in accuracy at the time of pruning in exchange for exploration
of model structure space. Over time, this allows the model to converge to a point nearby a theoreti-
cal convergence point for the corresponding dense model. Hence, weight adaptivity allows a sparse
model to capture, to some approximation, the expressive power of an equally wide but dense model.
This interpretation suggests it may be useful to slowly increase model density over training time as
an accelerated and better-regularized means for finding dense solutions. We leave this possibility
for follow-up work.
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Figure 3: A representative example of training a
network from scratch using the connection pattern
learned by adaptive sparsity, with logα = −0.5, k =
0.25. On all models, this experiment yielded less im-
provement over random sparsity than full adaptivity,
and sometimes none at all. Best viewed in color.

Figure 4: Number of low-strength weights
(relative to mean) over time on a represen-
tative layer of the multi-layer perceptron
model. For the non-baselines logα = −2.
For the adaptive run, k = 0.5. Best
viewed in color.

5.2 LEARNED CONNECTIVITY PATTERNS

We also investigate what general trends arise in the sparsity patterns learned via the adaptive sparsity
mechanism. We are in part motivated by our results (e.g. Figure 3) which do show some performance
improvements attributable to the final learned topologies themselves. Furthermore, we note that a
connection structure can be important for model performance even if it does not give good results
when trained from scratch. We consider the connectivity patterns as a graph and employ standard
graph-theoretic metrics for analysis. We chart the evolution of four metrics over training time. The
first, algebraic connectivity, is formally the second-smallest eigenvalue of the Laplacian matrix of
the graph. Intuitively, it indicates how “connected” the graph structure is, roughly corresponding
to how much modification would be required to split it into multiple disconnected components (a
disconnected graph has an algebraic connectivity of zero) (Chung, 1997). Second, we take the GINI
coefficient – a measure of inequality in a distribution – of the nodes of the graph by their degree
(number of connections in and out) (Gini, 1921). A higher GINI coefficient indicates a tendency of
certain nodes to accumulate a disproportionate number of connections. Third, we track the global
clustering coefficient, which is proportional to the fraction of possible triangles present in a graph;
this indicates the tendency of graph nodes to form clusters (Wasserman & Faust, 1994). Finally,
we measure the average length of the shortest path between arbitrary nodes in the graph, which
measures how quickly information may be propagated through the graph.

These results are most easily interpretable for a single-layer recurrent model, since its structure
allows for all possible connections between nodes. Hence, we present results for our one-layer
LSTM model, considering the four sets of self-connections (the output of the recurrent layer feeds
into the input gate, the recurrent input, the forget gate, and the output gate of the next time step) as
separate graphs.

The data (see Figure 5) show consistent trends: connectivity of the graphs decreases, node degree
inequality increases, clustering increases, and shortest path length remains constant. The first two
phenomena suggest a graph fragmenting into subregions dominated by hubs with many connections.
The combination of increased clustering and constant shortest path length indicates, by definition, an
evolution toward what is known as a small-world graph (Watts & Strogatz, 1998). As noted in Latora
& Marchiori (2001), small-world network structures commonly arise in social, engineering, and
biological contexts, and are characterized by high efficiency in propagating information. They are
particularly notable for their prevalence in the brain (Bassett & Bullmore, 2006; Morelli et al., 2004;
Stam, 2004). Future study may elucidate further the significance of these trends, particularly in light
of of recent work by Bölcskei et al. (2017) establishing theoretical efficiency bounds on sparse neural
network structures, and by Grohs et al. (2016) demonstrating the emergence of multiscale behavior
in neural networks (consistent with a locally connected small-world structure). The difference in
behavior among the four types of weights in the LSTM layer also remains to be explored. For now,
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Figure 5: Evolution of a variety of graph metrics during the training of an LSTM model with weight
adaptivity. Best viewed in color.

we may conclude that weight adaptivity naturally leads to loosely connected network topologies
with tight clusters and permits efficient communication across the network despite this decrease in
connectivity.

6 CONCLUSION

We have described a framework for adapting sparse connection patterns during training, and we
have shown empirically that it outperforms densely connected networks with the same number of
parameters for a wide variety of models and tasks. We have also provided evidence that adaptive
weight sparsity outperforms traditional pruning methods. We attribute the success of the method
both to more efficient learned model structures, which we find to resemble small-world networks,
and to the role of reconfiguring weights during training as an optimization technique.

Future work could more fully explore the space of the adaptive weight sparsity algorithm, analyzing
the effect of hyperparameters other than α and k. One might also experiment with extensions to
the algorithmic framework, considering deactivation probability functions that depend on time since
a parameter’s last pruning, or on other factors not used in this work. Additionally, the improve-
ments observed by applying adaptive weight sparsity after initially blocking convolutional weights
channel-wise suggest that experimenting with different initial sparse graph structures could prove
fruitful.
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