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ABSTRACT

In various scientific and engineering fields, the primary research areas have re-
volved around physics-based dynamical systems modeling and data-driven time
series analysis. According to the embedding theory, dynamical systems and time
series can be mutually transformed using observation functions and physical re-
construction techniques. Based on this, we propose Embedding Duality Theory,
where the parameterized embedding layer essentially provides a linear estimation
of the non-linear time series dynamics. This theory enables us to bypass the param-
eterized embedding layer and directly employ physical reconstruction techniques
to acquire a data embedding representation. Utilizing physical priors results in a
10× reduction in parameters, a 3× increase in speed, and maximum performance
enhancements of 18% in expert, 22% in zero-shot, and 53% in few-shot tasks with-
out any hyper-parameter tuning. All methods are encapsulated as a plug-and-play
module at https://anonymous.4open.science/r/PSR-001/.

1 INTRODUCTION

The explosion of real-time sensing data from the physical world opens up new opportunities for data-
driven time series analysis, achieving widespread recognition in energy, transportation, education,
meteorology, and other domains by leveraging the strong fitting capabilities of neural networks (Jin
et al., 2024; Nie et al., 2022; Hu et al., 2024b; Mao et al., 2024). However, deep time series models
struggle to comprehend the underlying physical laws of data, leading to a propensity for overfitting
and lacking generalizability to unseen data (Zeng et al., 2023; Zhang et al., 2023; Hu et al., 2024a).

In numerous scientific and engineering disciplines, another central focus lies in dynamical systems
that evolve over space and time, exampled in fluid mechanics, thermodynamics, and neuroscience
(Brunton et al., 2020; Tan et al., 2023; Chen et al., 2021). According to the Takens (Takens, 1980)
and Whitney theorems (Whitney, 1936), time series can be viewed as observations stemming from
underlying dynamical systems, leading to a principal way to model the essence of time series data.

Figure 1: Dynamical systems embody physical laws unfolding in space and time, with time series as the
low-dimensional observations. Our embedding duality theory bridges these two frameworks, demonstrating that
parameterized hidden state representations are the model’s estimation of dynamical system structures.

Our main goal is to develop a rich body of empirical and theoretical connections between the two
frameworks. As illustrated in Figure 1, the dynamical system is primarily built on spatial coordinates
sampled from physical equations, encapsulating the first-principle physical laws as they evolve over
time. On the other hand, data-driven time series analysis first projects time series data into a high-
dimensional latent space by a trainable embedding layer, relying on neural networks to model temporal
dependencies based on the hidden representations. According to the Embedding Theory (Sauer et al.,
1991), dynamical systems and time series can be mutually transformed through observation functions
and numerical reconstruction techniques. Building on this inspiration, we introduce the concept of
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Figure 2: Performance comparison of
physics-guided time series embedding ver-
sus original method across eight aspects.

Embedding Duality: hidden state representation in deep
time series model is equivalent to the underlying dynamical
system structure of the data in phase space. Theoretically,
we demonstrate that parameterized embeddings serve as a
linear estimation of underlying nonlinear dynamics, inher-
iting various physical properties of the system. Moreover,
the feature space of system dynamics will transform into an
ellipsoid space with model gradients. Empirically, Various
experimental results, including dim scaling law, causal mod-
eling, and visualizations, further support our propositions.

Supported by the Embedding Duality, we can skip parame-
terized embedding layers and directly apply physical priors
and numerical techniques to reconstruct the underlying dy-
namical system structure as data embeddings (referred to
as physics-guided time series embedding). Harnessing the
powerful fitting capability of neural networks, we aim to sub-
sequently parameterize the function-to-function dynamical
system evolution within the Sobolev space for various down-
stream tasks. Leveraging the physical priors, as shown in
Figure 2, where the octagon values quantify the performance
improvement achieved through physics-guided embeddings, we have improved multiple model archi-
tectures on real-world time series analysis benchmarks. As immediate consequences of this paper:

• We innovatively integrate dynamical system Embedding Theory into the time series analysis tasks,
bridging physical embedding and parameterized embedding from both theoretical and empirical
perspectives. The Embedding Duality and various dynamical evidence are proposed.

• For expert models, which train from scratch on a specific dataset, we evaluate over ten embedding
techniques, with our proposed physics-guided embedding achieving up to a 10× reduction in
parameters, a 3× speed increase, an 18% performance boost, and improved robustness across four
time series analysis tasks and three neural network architectures. Notably, the physics-guided
model reaches optimal performance without hyper-parameter tuning, while the carefully designed
architecture yields marginal gains depending on specific hyper-parameters (Qiu et al., 2024).

• For foundation models, which leverage pre-training on diverse datasets or few samples, our methods
lead to maximum improvements of 53% in zero-shot and 22% in few-shot tasks. This generality is
expected to promote the emergence of physics-guided large-scale time series foundation models.

2 FORMULATION

Definition 1 (Dynamical System). Let the domain S be an open subset of Rd and set an integer
k ≥ 1. Define the system state as x : S 7→ Rm where x =

(
x1, . . . , xm

)
. Then, an expression of:

F
(
Dkx(s), Dk−1x(s), . . . , Dx(s),x(s), s

)
= 0

is called a kth order system of partial differential equation (or ordinary differential equation when
d = 1), where F : Rmdk ×Rmdk−1 × . . .×Rmd×Rm×S 7→ Rm and s ∈ S. Continuous systems
typically exist on locally differentiable manifold spacesM Vlachos et al. (2008); Hu et al. (2024a).

Problem Statement. Given multivariant historical sampled data U ∈ RC×T , the time series analysis
model aims to derive a nonlinear functional mapping f : U → Y for various downstream tasks,
e.g., forecasting, classification, anomaly detection, imputation. Adhere to the standard deep learning
paradigm, f can be decomposed into Embedding, Encoder, and Decoder parts, while in this paper:

(1) Embedding employs mathematical methods to reconstruct the underlying dynamical system
based on time series data U , ü which is the research focus of this paper presented in Section 4.

(2) Encoder serves as a flexible architecture, with CNN-based (Luo & Wang, 2024), Transformer-
based (Wen et al., 2023), and SSM-based (Hu et al., 2024b) models selected for this paper. Linear
models (Zeng et al., 2023), which generally do not require embedding layers, fall outside the scope.

(3) Decoder follows mainstream time series model paradigms, utilizing token flattening and projection
(Wang et al., 2024) operations to generate various output results depending on the task.
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Figure 3: Existing parameterized embedding (a-c) and physics-guided non-parametric embedding (d-f) tech-
niques. (a) Each time series patch utilizes a shared linear projection layer to obtain hidden representations. (b)
Dense time series are processed using windowed spectral transformations with gradients for adaptability. (c)
Multivariant time series are embedded using a shared linear layer on a grid measure. (d) Time Delay embedding
based on predetermined hyper-parameters. (e) Higher-order derivative values are concatenated to reconstruct
dynamical structures. (f) Integral terms can replace higher-order derivatives to address numerical instability.

3 RELATED WORK
Parameterized Embedding in Deep Time Series Models. The embedding technique, serving as a
space transformationRn 7→ Rm, facilitates the mapping of discrete sparse features into continuous
dense vector representations, laying a solid foundation for success across various machine learning
domains. In time series analysis benchmark, mainstream methods utilize patch operation (Figure 3a)
to conduct local linear projection (Nie et al., 2022), with certain models using convolutions to address
inter-block information isolation (Hu et al., 2024c; Zhang et al., 2024b; Lin et al., 2024). Additionally,
for audio modeling tasks, windowed spectral transformation techniques (Figure 3b), such as short-
time Fourier transform, are commonly employed to extract time-frequency representations, thereby
addressing concerns related to information density (Erol et al., 2024). Grid embeddings (Figure 3c)
are commonly employed to handle the spatial-temporal relationships within the data (Gupta et al.,
2021; Wu et al., 2023). Furthermore, several studies leveraged self-supervised learning to obtain
enhanced embedding representations (Lee et al., 2023; Fraikin et al., 2023; Zhang et al., 2024a).

Embedding Theory for Dynamics System Reconstruction. Since significant results proposed
by (Whitney, 1936; Takens, 1980) and formalized in (Sauer et al., 1991), the Embedding Theory
has pervaded through almost all aspects of nonlinear dynamical systems (Definition 1). The time
series x(t) ∈ Rn can be broadly interpreted as successive, though not always regular, observations
of a dynamical system F ∈ Rm via a measurement function h : Rm 7→ R

n(n < m). The main
goal is to reconstruct the underlying system and explore its properties, which paved the way for
developing numerous techniques like derivatives (Packard et al., 1980), integrals (Gilmore, 1998),
time delay (Takens, 1980; Abarbanel et al., 1994), and principal component embedding (Broomhead
& King, 1986). The system dynamics is subsequently learned using preferred modeling tools such as
recurrent neural networks (Sangiorgio & Dercole, 2020), state space models (Alonso et al., 2024; Hu
et al., 2024a), and reservoir computing (Haluszczynski & Räth, 2019; Yan et al., 2024), etc. Attraos
(Hu et al., 2024a) pioneered using the time delay embedding technique in time series forecasting
tasks, while our paper extensively explores various embedding techniques (Section 4.1), and provides
comprehensive theoretical (Section 4.2) and experimental (Section 5) analysis.

4 PHYSICS-GUIDED TIME SERIES EMBEDDING
In this section, we commence by elucidating the implementation of our physic-guided embeddings,
including the Time Delay, Principal Component, High-order Derivatives, and Integral-Differential
methods. We summarize their properties before progressing to the proposed Embedding Duality.

4.1 TECHNICAL DETAILS

Time Delay Embedding (TD-Emb). As shown in Figure 1(d), time delay embedding augments
a scalar time series x ∈ RT into a higher-dimensional dynamical system F ∈ Rm×(T−(m−1)τ),
where F(t) = (x(t), x(t− τ), . . . , x(t− (m− 1)τ)), by embedding dimension m and time delay
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Table 1: Comprehension comparison for various physics-guided embedding methods.
Method Interpretability Performance Robustness Convergence Rate Hyper-parameter

ü Time Delay (TD-Emb) Best Good Good Best m, τ ← physical prior

ü High-order Derivatives (HD-Emb) Good Best Best Good m,∆← typically (3,1)
Integral-differential (ID-Emb) Trivial Trivial Good Good ∆← typically (1)

Principal Component (PC-Emb) Trivial Poor Poor Poor m, k ← physical prior

τ . Theoretically, when m exceeds twice the dynamical dimension, the homeomorphic structure can
be reconstructed (Vlachos et al., 2008). In this paper, τ is set heuristically as a quarter of the most
dominant period in the signal1 and m is determined by the CC method (Kim et al., 1999).

For multivariant time series, guided by the Lyapunov exponents of each variable, we can either
employ a channel-independent strategy (CI) or concatenate {Fi}Ci=1 (Vlachos et al., 2008) as a whole
to employ a channel-dependent strategy (CD). This will be omitted in the following descriptions.
Principal Component Embedding (PC-Emb). TD-Emb is the most popular method for visualizing
the dynamical structures of systems within Euclidean space. However, its performance is highly
sensitive to the choice of hyper-parameters. As an alternative, PC-Emb, outlined in Eq. 1, begins
by applying TD-Emb to obtain X , followed by the computation of the covariance matrix C from X .
Finally, a k-dimensional Principal Component Analysis (PCA) is performed to derive the system
representation F . Where X ∈ Rm×(T−(m−1)), C ∈ Rm×m, and F ∈ Rm×k.

X = TD-Emb(m, τ = 1, x) Cij = ⟨Xij⟩ F = PCA(k,C) (1)

High-order Derivatives Embedding (HD-Emb). In addition to the TD-Emb method, we leverage
the multi-order characteristics of the system in Definition 1 by directly concatenating high-order
derivatives to construct F ∈ R(m+1)×T . In Eq. 2, we utilize the Forward Differencing technique to
approximate this continuous process, with hyper-parameters: order m and discrete step size ∆.

F(t) =
(
x(t),

dx(t)

dt
, . . . ,

dmx(t)

dtm

)
(Continuous)

dx(t)

dt
≈ x(t+∆)− x(t)

∆
(Discrete) (2)

Although m and ∆ can still be calculated using numerical methods (Tan et al., 2023), our experiment
results indicate that m = 3 and ∆ = 1 generally yield the best performance. In some studies related
to ordinary differential equations and state-space models (Smith et al., 2022; Gu & Dao, 2023; Hu
et al., 2024b), ∆ is defined as a learnable parameter to selectively emphasize important information
in the data. In this research, we prioritize the efficiency of non-parameterized physical priors, while
the exploration of trainable High-order Derivatives embedding is left for future work.

Integral-differential Embedding (ID-Emb). However, in the HD-Emb method, the approxima-
tions of successive higher-order derivatives are generally negatively impacted by the signal-to-noise
ratio. In Eq. 3, an alternative method is to replace the high-order terms with the integral value by only
hyper-parameter ∆, where continuous integration can be approximated using summation operations.

F(t) =
(∫ t

−∞
x(t)dt, x(t),

dx(t)

dt

)
(Continuous)

∫ t

−∞
x(t)dt ≈ ∆

T∑
i=1

x(t+ i∆) (Discrete) (3)

Patch & Padding. In order to reduce computational complexity and enhance model stability, we
adhere to mainstream practices (Nie et al., 2022) by segmenting the obtained dynamical system F
using two parameters: patch length and stride. For lengths that are not divisible, we employ the left
zero-padding operation, which achieves optimal performance compared to other padding types.

Discussion. As shown in Table 1, we provide a comprehensive comparison of the four methods.
Both TD-Emb and HD-Emb achieve optimal performance in two metrics each. In contrast, ID-Emb
is constrained by a fixed dimension of 3, and PC-Emb tends to lose critical nonlinear information
during the PCA process, resulting in poor performance. Consequently, the experimental section will
primarily focus on the first two methods. Furthermore, we have encapsulated various embedding
methodologies within the code repository, enabling direct invocation with a single line of code.

4.2 THEORETICAL JUSTIFICATION FOR EMBEDDING DUALITY

Proposition 4.1. The embedding method, which uses a shared linear matrix, is an integral transfor-
mation h(t) =

∫ t

−∞ x(s)ϕ(t, s)dµ(s) with limited time-invariant measure µ and polynomial basis ϕ.

1The sine wave x(t) = sin(ωt) yields the most circular embedding in a 2D plane with τ = 2π/4ω
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Figure 4: Illustration for (a) Parameterized embedding and (b) Physics-guided embedding technology.

Considering polynomials as universal approximators for dynamical systems (Bollt, 2021), Proposition
4.1 indicates that parameterized embedding methods (Figure 3(a-c)) essentially projects input time
series into polynomial spectral space to represent the dynamical structure, where the measure µ, or
weight function sometimes, is governed by patch length, ϕ is parameterized by the embedding matrix.
Proposition 4.2. For the full-rank embedding matrix, the embedding process is a similarity transfor-
mation that maintains the original dynamical properties (system eigenvalues).
Typically, the dense matrix in deep models is considered to be full rank. Proposition 4.2 shows that
the parameterized embedding process is a mere space coordinate transformation, with non-linear
time series dynamics linearized by the average Jacobin value within the data patch.
Lemma 4.3. A continuous function f is K-Lipschitz when ∥f(x1)− f (x2) ∥ ≤ K∥x1 − x2∥, then:

(1) The state space model with the negative diagonal matrix A and normalization layers is 1-Lipschitz.

(2) The fully connected and convolution neural network with normalization layers is 1-Lipschitz.

(3) The standard dot-product attention is not Lipschitz. The L2 attention is bounded Lipschitz.
The Lipschitz continuity restricts the dynamical structure under small perturbations, ensuring that
when K=1, the dynamical properties are generally preserved. Lemma 4.3 allows us to disregard
the influence of the encoder architecture in most cases, even though the transformer backbone may
not always be optimal, to focus exclusively on the dynamical changes within the embedding layer.
Moreover, it provides a solid foundation for flexibly replacing the embedding layer as needed.

Dynamical Feature Space As illustrated in Figure 4(a), for the embedding projection matrix
V = eig(v1, · · · , vM ) initialized with a normal distribution, when the dimension is sufficiently large,
its feature space can be considered spherical. For the gradient∇ passed into the embedding layer, we
can apply the singular value decomposition (SVD) with the diagonal matrix S = diag(σ1, · · · , σM )
and orthogonal matrix U = (u1, · · · , uM ), specifically,∇vm = σum. This process can be described
as the transformation of a spherical feature space (slice) into an ellipsoidal feature space.
Lemma 4.4. The Lyapunov exponents λm = lim

t→∞
1
t lnσm(t) of the system attractors are the mean

logarithmic growth rates of the principal axes lengths of the ellipsoidal feature space.

According to Lemma 4.4, the attractors of the system, which represent underlying data patterns, are
reflected in the lengths of the axes within the ellipsoidal feature space. In Figure 4(a), scaling the
embedding layer’s feature space using model gradients can be interpreted as an adaptive estimation
of the underlying dynamical structure, where the system attractor is captured through the logarithms
of the eigenvalues of the Oseledec matrix (ose, 1968). In contrast, as demonstrated in Figure 4(b), our
proposed physics-guided embeddings bypass this adaptive scaling process. Rather than relying on
gradient-based adjustments, they reconstruct the system’s dynamical trajectory using physical priors
and numerical methods, obtaining the attractor representation directly through patch operations. This
provides a more efficient and interpretable means to capture the system’s dynamics.

Dynamical System Characteristics According to the Embedding Theory, insufficient phase space
dimensions cause dynamical structures to stack, obscuring their true shapes. Conversely, excessive
dimensions expand the structure excessively, amplifying noise effects. The threshold typically equals
twice the latent dynamics, and exceeding this threshold results in spurious structures. Based on this,
we propose the following conjectures, which are empirically validated in Section 5.1.
Conjecture 4.5 (Dim Scaling Law). For parameterized embedding, as the hidden dimensions
increase, the model loss will generally decrease initially and then increase, as shown in Figure 6.
Conjecture 4.6 (Spurious Dynamics). Bidirectional modeling, whether through a transformer or
SSM backbone, helps eliminate spurious dynamical structures that are sensitive to the positional
inductive bias, consequently enhancing performance as empirically demonstrated in Table 2.
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5 EXPERIMENTS

In this section, we focus on addressing the following research questions: RQ1: Does the Embedding
Duality theory empirically exist? RQ2: How do physics-guided embeddings perform in expert tasks,
how do they achieve this, and do they have the potential to become a new embedding paradigm? RQ3:
How do physics-guided embeddings perform in foundation tasks, and do they have the potential to be
transferred to large-scale time series foundational models? All Experiments are based on the Time
Series Library (Wang et al., 2024), details regarding model backbones, experimental settings, full
results, technical backgrounds, and further inspirations are reported in Appendix C.

5.1 EMPIRICAL EVIDENCE FOR EMBEDDING DUALITY

Figure 5: Embedding Visualizations.

Visualization. As illustrated in Figure 5, we present the vi-
sual representations of previous parameterized embeddings
(left) and our proposed physics-guided embeddings (right:
TD-Emb) when utilizing PatchTST as the model backbone.
It is evident that the patterns exhibited by these two types of
embeddings bear a remarkable resemblance. For instance, in
Figure 5(a), the periodic patterns captured by the parameter-
ized embeddings align with the consistent stripes present in
dynamical structures, whereas in Figure 5(b), the smooth re-
gions depicted in the parameterized embeddings correspond
to the band-like dark regions in the dynamical structure.
Notably, the data patterns captured by the physics-guided
embedding have been significantly enhanced, highlighting
their superior performance in various downstream tasks.

Dim Scaling Law. In Figure 6, we present the correlation between average model performance
and hidden layer dimensions based on PatchTST backbone across three datasets (ETTm2, ETTh2,
Weather). Consistent with the proposition 4.5, we observe a decrease followed by an increase in the
MSE loss. Moreover, the optimal performance occurs within a specific range, typically 1-2 times the
underlying dynamical dimension associated with the dataset. For example, considering a physical
prior dimension of 4 for the ETTm2 dataset, where the patch length is 16, yielding a total dimension
of 64, the optimal interval lies in 64-128. This remarkable discovery shows that parameterized
embeddings have effectively encapsulated the intrinsic dynamical characteristics of the data.

Figure 6: Dim scaling laws: The shaded region represents the ideal dimension interval of the system dynamics.

Causal-directional Modeling. In Table 2, we explore the effects of unidirectional and bidirectional
modeling, termed causal-directional modeling, on the performance of the Time-SSM and PatchTST
models. Specifically, we adapt the attention mechanism with a causal mask and combine the SSM
outcomes bidirectionally using a linear layer, respectively. Our results reveal the following insights:
(a) Bidirectional modeling typically outperforms unidirectional modeling by a consistent margin, as
supported by Proposition 4.6. (b) The performance gap is more pronounced in the PatchTST model,
possibly attributed to SSM’s adeptness in capturing dynamical structures, hence mitigating the impact
of incidental dynamics. (c) Model variations incorporating physics-guided embeddings contribute to
mitigating performance differentials between unidirectional and bidirectional modeling approaches.

Table 2: Average performance comparison for causal-directional modeling validation. The improved results are
highlighted in . M1: Time-SSM; M2: PatchTST; -U: Unidirectional; -B: Bidirectional.

M1-U M1-B M1-TD-U M1-TD-B M1-HD-U M1-HD-B M2-U M2-B M2-TD-U M2-TD-B M2-HD-U M2-HD-B

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.439 0.438 0.436 0.437 0.436 0.436 0.434 0.433 0.432 0.435 0.435 0.437 0.456 0.453 0.450 0.449 0.446 0.448 0.438 0.440 0.447 0.450 0.437 0.437
ETTh2 0.379 0.401 0.371 0.394 0.376 0.399 0.371 0.393 0.374 0.398 0.369 0.391 0.389 0.416 0.382 0.411 0.383 0.407 0.376 0.401 0.381 0.404 0.374 0.398
ETTm1 0.389 0.403 0.388 0.404 0.387 0.402 0.388 0.404 0.384 0.400 0.386 0.402 0.392 0.405 0.388 0.402 0.387 0.399 0.385 0.396 0.379 0.392 0.378 0.393
ETTm2 0.284 0.330 0.281 0.297 0.285 0.330 0.282 0.329 0.282 0.328 0.285 0.331 0.287 0.331 0.291 0.334 0.279 0.325 0.281 0.328 0.285 0.331 0.283 0.330

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 PERFORMANCE FOR EXPERT MODELS.

Forecasting. We maintain the model hyper-parameters (detailed in Appendix C.3) to conduct a
fair comparison for previous parameterized and our proposed physics-guided embeddings across
diverse model architectures. As depicted in Table 3, the following observations can be made: (a)
Generally, the incorporation of physical priors significantly boosts forecasting performance, with the
most substantial gain being 11% on the Exchange dataset. (b) The HD-Emb typically delivers top
performance and, due to its efficiency, is expected to become the standard embedding technology for
expert models. (c) The PatchTST model shows the most significant performance improvement among
the three architectures, followed by Time-SSM and ModernTCN. This could be attributed to Theorem
4.3, suggesting that the standard dot-product attention lacks Lipschitz continuity and struggles to
adaptively capture the underlying dynamics, while the physical priors effectively resolve this issue.
(d) Recently, community efforts have primarily focused on developing more advanced encoder
architectures; however, the improvements achieved are minimal (Qiu et al., 2024). In contrast, our
proposed plug-and-play module demonstrates a significant enhancement in performance.
Table 3: Average Performance for long-term forecasting task with input length is 96 and CI modeling strategy.
The first and second results are highlighted in and . Full results are reported in Table 13.

Time-SSM +TD +HD PatchTST +TD +HD ModernTCN +TD +HD

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.439 0.438 0.436 0.436 0.432 0.435 0.450 0.449 0.438 0.440 0.437 0.437 0.445 0.432 0.441 0.423 0.440 0.429
ETTh2 0.379 0.401 0.375 0.399 0.374 0.398 0.382 0.411 0.376 0.401 0.374 0.398 0.382 0.404 0.378 0.400 0.376 0.400
ETTm1 0.389 0.403 0.387 0.402 0.384 0.400 0.388 0.402 0.385 0.396 0.378 0.393 0.386 0.401 0.387 0.402 0.382 0.398
ETTm2 0.284 0.330 0.285 0.330 0.282 0.328 0.291 0.334 0.281 0.328 0.283 0.330 0.285 0.327 0.290 0.330 0.286 0.326
ECL 0.203 0.289 0.203 0.288 0.201 0.289 0.204 0.294 0.214 0.308 0.204 0.299 0.215 0.293 0.217 0.297 0.213 0.291
Exchange 0.367 0.407 0.357 0.402 0.355 0.400 0.393 0.419 0.358 0.403 0.361 0.404 0.393 0.425 0.373 0.412 0.377 0.415
Weather 0.254 0.279 0.251 0.276 0.254 0.278 0.258 0.280 0.253 0.278 0.258 0.282 0.243 0.273 0.242 0.275 0.238 0.268

Figure 7: Efficiency analysis in ETTh1.

Forecasting w.r.t. Efficiency. As depicted in Figure 7, we
present an efficiency visualization of various model archi-
tectures in the ETTh1 dataset. Key observations include:
(a) Physics-guided embeddings bypass embedding matri-
ces and reduce model dimensions, leading to a significant
reduction in parameter count across various architectures
(e.g., the PatchTST model exhibits a 10× reduction), along-
side performance improvements. (b) The necessity of deep
neural networks in time series analysis tasks has long been
debated, as some linear models have achieved strong results
with greater efficiency (Zeng et al., 2023; Xu et al., 2023;
Lin et al., 2024). Our proposed method directly aligns the parameter count of existing deep time
series models to that of linear models with superior performance, which marks physics-guided Embs,
especially HD-Emb, to potentially become the standard embedding method for expert models.

Forecasting w.r.t. Input Length. In accordance with Table 4, we investigate the impact of input
length on performance. It is observed that: (a) Across various lengths, the physics-guided embeddings
consistently enhance performance, with HD-Emb exhibiting the best performance. Moreover, as
the input length increases, the enhancement becomes more pronounced. This phenomenon is
attributed to the fact that in embedding theory, longer input time series can better reconstruct the
underlying dynamical structure, with a length of 1000 typically considered sufficient for ideal
structural reconstruction. (b) The limitation of the Transformer architecture in modeling long-range
dependencies has long been challenged (Nie et al., 2022), as model performance tends to degrade
with input length over 336. However, our physics-guided embeddings offer a solution to this issue.
Table 4: Average forecasting performance w.r.t. input lengths. The improved and decreased results are highlighted
in and ; improvements exceeding 10% are highlighted in . Full results are reported in Table 11.

Original-96 +TD +HD Original-336 +TD +HD Original-720 +TD +HD

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.450 0.449 0.438 0.440 0.437 0.437 0.420 0.441 0.417 0.432 0.413 0.422 0.481 0.483 0.428 0.449 0.495 0.482
Improve – – 2.67% 2.00% 2.89% 2.67% – – 0.71% 2.04% 1.67% 4.31% – – 11.02% 7.04% -2.91% 0.21%
ETTh2 0.382 0.411 0.375 0.399 0.374 0.398 0.358 0.415 0.354 0.397 0.363 0.400 0.439 0.447 0.357 0.405 0.361 0.408
Improve – – 1.83% 2.92% 2.09% 3.16% – – 1.12% 4.34% -1.40% 3.61% – – 18.68% 9.40% 17.77% 8.72%
ETTm2 0.284 0.330 0.285 0.330 0.282 0.328 0.263 0.323 0.262 0.321 0.259 0.319 0.280 0.339 0.275 0.337 0.273 0.331
Improve – – 0.35% – 0.70% 0.61% – – 0.38% 0.62% 1.52% 1.24% – – 1.79% 0.59% 2.50% 2.36%
Weather 0.254 0.279 0.251 0.276 0.254 0.278 0.233 0.270 0.231 0.267 0.230 0.265 0.231 0.273 0.227 0.267 0.222 0.260
Improve – – 1.18% 1.08% – 0.36% – – 0.86% 1.11% 1.29% 1.85% – – 1.73% 2.20% 3.90% 4.76%
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Forecasting w.r.t. Various Embedding Techniques. As shown in Figure 8, we evaluate the
performance of 10 embedding methods across 7 datasets. The striped bars represent the CD modeling
strategy, which combines dynamical structures from multiple variables into a unified system. Key
observations include: (a) Physics-guided embeddings (blue) generally outperform parameterized
embeddings (red), with the HD-Emb performing the best overall, followed by the TD-Emb and
ID-Emb methods. (b) Significant improvements are observed in datasets with fewer variables, like
ETT, and those with strong physical characteristics, like sunspots. (c) CD strategy yields substantial
improvements in datasets such as ETT#2, Weather, and ECL, but has adverse effects in ETT#1. This
is attributed to data characteristics; for instance, Weather variables show similar Lyapunov and mutual
information indices, indicating a shared underlying dynamical system, unlike the diverse indices in
ETT#1, which favors channel-independent modeling. (d) Grid embedding performs poorly, likely
due to the need to concatenate multivariate data in dynamical space, hindering the capture of system
dynamics in the temporal domain. (e) Spectral embedding is also suboptimal, as time-series data is
less dense than audio and spectral transformations like STFT may disrupt temporal sequencing.

Figure 8: Average forecasting performance comparison for various embedding methods.

Figure 9: Visualization of testing loss & epochs.

Forecasting w.r.t. Testing Curve. As depicted in
Figure 9, we depict the fluctuations in test loss for the
original PatchTST model and its variant integrating
physics-guided embeddings (TD-test and HD-test).
Noteworthy observations include: (a) Generally, data
representations originating from physics-guided em-
beddings exhibit more consistent gradients and attain
superior fitting accuracy due to the physical prior.
Conversely, parameterized embeddings often grap-
ple with overfitting issues, thereby illuminating the
heightened efficacy of physics-guided embeddings.
(b) High-order derivatives embedding manifests the most stable gradients and the slowest conver-
gence rate throughout the dataset, enabling a gradual advancement toward the optimal solution.

Figure 10: Robustness of PatchTST backbone.

Forecasting w.r.t. Robustness Analysis. As illus-
trated in Figure 10, we conduct robustness analyses
using five experimental hyper-parameters across four
datasets and three input lengths. The key observations
include: (a) Compared to parameterized embeddings,
physics-guided methods have significantly improved
robustness, with this advantage further amplifying
as the input length increases. (b) The parameter-
ized embedding struggles to leverage longer time se-
ries context. Conversely, physics-guided embeddings
demonstrate a more consistently increasing perfor-
mance with longer input length. (c) Parameterized
embeddings exhibit significant variability. Although
recent models assert state-of-the-art (SOTA) results,
they rely heavily on precise hyper-parameters, whereas our proposed physics-guided embeddings
consistently maintain a good performance without meticulous hyper-parameter searching.
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Classification. As shown in Table 5, we conduct an investigation in the realm of classification
tasks. Our findings reveal that: (a) Akin to discoveries in the field of neuroscience (Chen et al.,
2021), dynamical structures play a significant facilitative role in classification tasks, leading to an
enhancement in performance compared to parameterized embedding across various architectures,
especially for the Time Delay embedding. b) The High-order Derivatives embedding is suboptimal,
and we suspect this lackluster performance may stem from the inherent smoothing nature of derivative
operations, potentially leading to the loss of information beneficial for classification tasks.
Table 5: Performance comparison for the classification task based on the hyper-parameters provided in the
original paper. The first and second results are highlighted in and ; OOM means out of memory.

Datasets / Models Time-SSM TD-Emb HD-Emb PatchTST TD-Emb HD-Emb M-TCN TD-Emb HD-Emb

EthanolConcentration 0.311 0.321 (3.22%) 0.311(0.00%) 0.307 0.324 (5.54%) 0.311 (1.30%) 0.319 0.333 (4.39%) 0.312

FaceDetection 0.673 0.681 (1.19%) 0.655 0.681 0.659 0.638 0.687 0.694 (1.02%) 0.665

Handwriting 0.279 0.289 (3.58%) 0.261 0.286 0.295 (3.15%) 0.245 0.284 0.292 (2.82%) 0.263

Heartbeat 0.714 0.737 (3.22%) 0.702 0.736 0.749 (1.77%) 0.707 0.771 0.778 (0.91%) 0.727

JapaneseVowels 0.974 0.981 (0.72%) 0.922 0.957 0.977 (2.09%) 0.955 0.981 0.986 (0.51%) 0.967

PEMS-SF OOM OOM OOM 0.861 0.879 (2.09%) 0.818 0.832 0.857 (3.00%) 0.822

SelfRegulationSCP1 0.870 0.893 (2.64%) 0.872 (0.23%) 0.896 0.903 (0.78%) 0.913 (1.90%) 0.928 0.934 (0.65%) 0.905

SelfRegulationSCP2 0.589 0.572 0.607 (3.06%) 0.577 0.565 0.595 (3.12%) 0.617 0.622 (0.81%) 0.620 (0.49%)

SpokenArabicDigits 0.980 0.994 (1.43%) 0.983 (0.31%) 0.959 0.983 (2.50%) 0.978 (1.98%) 0.981 0.979 0.966

UWaveGestureLibrary 0.834 0.853 (2.28%) 0.805 0.853 0.838 0.859 0.859 (0.70%) 0.866 (0.81%) 0.844

Imputation & Anomaly Detection. As shown in Figure 11, we present the performance analysis of
Imputation and Anomaly Detection tasks. Overall, physics-guided embeddings consistently improve
performance on the Imputation task, with particularly notable enhancements for the SSM-based
backbone (14.7% in ETTh2 dataset). However, for the Anomaly Detection task, the impact of
physics-guided embeddings on performance is minimal, except for the SWAT dataset.

Figure 11: Average performance comparison for Imputation (left) and Anomaly Detection (right) tasks.

Tasks Summary. For information-intensive tasks such as forecasting and imputation, physics-
guided embeddings can better comprehend the underlying dynamical characteristics and exhibit
robustness, leading to significant performance improvements. For non-information-intensive tasks like
classification, the dynamical structures constructed by TD-Emb methods can provide physics-related
features that deep learning might overlook, thereby enhancing performance, while the HD-Emb
method may lose some crucial information. In anomaly detection tasks, which may rely more on
periodicity and data distribution, the impact of physics-guided embeddings is less pronounced.

5.3 PERFORMANCE FOR FOUNDATION MODELS

Few-shot Learning. As illustrated in Table 6, it can be observed that physics-guided embeddings
yield stable and significant performance improvements, with a maximum performance boost of 21%
on the Time-SSM architecture. Consistent with the forecasting task, the HD method demonstrates
the best performance, closely followed by the TD method. We attribute this to the more pronounced
physical characteristics of the dynamical system compared to temporal data features, as depicted
in Figure 5. Therefore, in the few-shot learning, physics-guided embeddings have the capacity to
encapsulate richer and more essential information, consequently amplifying the performance.
Table 6: Average Few-shot results on 10% training data with input 336. The improved and decreased results are
highlighted in and ; improvements over 10% are highlighted in . Full results are reported in Table 12.

Time-SSM +TD +HD PatchTST +TD +HD ModernTCN +TD +HD

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.763 0.617 0.695 0.550 0.603 0.523 0.664 0.567 0.585 0.524 0.567 0.515 0.582 0.525 0.542 0.504 0.533 0.497
Improve – – 8.91% 10.86% 20.97% 15.24% – – 11.90% 7.58% 14.61% 9.17% – – 6.87% 4.00% 8.42% 5.33%
ETTh2 0.515 0.485 0.498 0.479 0.496 0.481 0.449 0.448 0.412 0.431 0.398 0.426 0.390 0.414 0.397 0.413 0.384 0.412
Improve – 3.30% 0.12% 3.69% 0.82% – – 8.24% 3.79% 11.36% 4.91% – – -1.79% 0.24% 1.54% 0.48%
ETTm2 0.342 0.370 0.322 0.360 0.299 0.346 0.300 0.340 0.284 0.332 0.284 0.334 0.314 0.348 0.283 0.321 0.275 0.326
Improve – – 5.85% 2.70% 12.57% 6.49% – – 5.33% 2.35% 13.94% 1.76% – – 9.87% 7.76% 12.42% 6.32%
Weather 0.305 0.311 0.243 0.280 0.238 0.276 0.240 0.273 0.243 0.280 0.238 0.276 0.293 0.300 0.272 0.288 0.266 0.279
Improve – – 20.33% 9.97% 21.97% 11.25% – – -0.13% -2.56% 0.83% -1.10% – – 7.17% 4.00% 9.22% 7.00%
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Zero-shot Learning. In Table 7, we delve into the performance of zero-shot learning tasks. Gener-
ally, the phenomenon of HD dominance, with TD consistently ranking second, remains evident across
both intra-domain (e.g., ECL→ETTh1) and cross-domain (Traffic→ETTh1) tasks. As highlighted in
Attraos Hu et al. (2024a), the underlying dynamical structures of time series display stable patterns,
capturing the system’s long-term evolutionary behaviors. Unlike numerical statistical information,
which depends on specific datasets, the dynamical topological structures provide more fundamental
insights with stronger generalization, leading to significant performance improvements.

Table 7: Performance comparison for zero-shot forecasting with input 96 and forecasting length 96. The first
and second results are highlighted in and . Experiments are based on SimMTM (Dong et al., 2024).

Time-SSM +TD +HD PatchTST +TD +HD ModernTCN +TD +HD

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2→ETTh1 0.548 0.488 0.517 0.467 0.524 0.477 0.527 0.482 0.532 0.489 0.509 0.465 0.488 0.461 0.511 0.488 0.476 0.460
ETTm1→ETTh1 0.694 0.557 0.681 0.552 0.596 0.497 0.712 0.572 0.697 0.562 0.686 0.559 0.641 0.535 0.634 0.531 0.627 0.521
ETTm2→ETTm1 0.610 0.484 0.607 0.494 0.564 0.486 0.626 0.474 0.575 0.470 0.520 0.456 0.650 0.516 0.624 0.497 0.616 0.485
Weather→ETTh1 0.798 0.599 0.780 0.586 0.836 0.594 0.784 0.599 0.727 0.566 0.728 0.563 0.732 0.570 0.749 0.588 0.725 0.556
ECL→ETTh1 0.412 0.410 0.400 0.405 0.396 0.400 0.439 0.437 0.401 0.405 0.398 0.401 0.481 0.466 0.439 0.437 0.448 0.434
ECL→ETTm1 0.936 0.611 0.858 0.585 0.826 0.577 0.971 0.633 0.944 0.603 0.827 0.578 0.944 0.619 0.913 0.598 0.905 0.587
Traffic→ETTh1 0.447 0.435 0.429 0.428 0.426 0.423 0.453 0.441 0.454 0.440 0.419 0.415 0.470 0.464 0.491 0.479 0.458 0.441

Zero-shot Learning w.r.t. Input Length. Table 8 provides an analysis of the impact of varying
input lengths, highlighting key trends: (a) Overall, the HD method consistently maintains superior
performance, with the TD method closely following. The occasional decline in TD performance
may result from its sensitivity to the hyper-parameter in noisy real-world datasets, which can distort
the dynamical structures. (b) Physics-guided embeddings exhibit more substantial improvements in
the MAE metric, suggesting greater sensitivity to large outliers during forecasting. (c) Except for
the ETTh2 dataset, both parameterized and physics-guided embeddings effectively leverage longer
contextual information for cross-dataset prediction. Notably, the physics-guided embeddings show a
more substantial performance enhancement, achieving an impressive improvement of over 50% at an
input length of 720, which indicates their potential to become a new embedding paradigm.

Table 8: Zero-shot learning results with various input lengths. The improved results are highlighted in , and
the decreased results are highlighted in ; improvements over 10% are highlighted in .

Original-96 +TD +HD Original-336 +TD +HD Original-720 +TD +HD

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2→ETTh1 0.527 0.482 0.532 0.489 0.509 0.465 0.711 0.574 0.507 0.480 0.482 0.453 0.959 0.660 0.471 0.468 0.449 0.446
Improve – – -0.96% -1.46% 3.37% 3.36% – – 28.66% 16.48% 32.23% 21.18% – – 50.91% 29.06% 53.17% 32.40%
ETTm1→ETTh1 0.712 0.572 0.697 0.562 0.686 0.559 0.573 0.500 0.552 0.500 0.500 0.475 0.604 0.542 0.541 0.503 0.467 0.467
Improve – – 2.05% 1.76% 3.54% 2.30% – – 3.62% -0.01% 12.75% 4.86% – – 10.40% 7.19% 22.63% 13.91%
ETTm2→ETTm1 0.626 0.474 0.575 0.470 0.520 0.456 0.460 0.435 0.386 0.406 0.424 0.409 0.412 0.427 0.409 0.419 0.398 0.400
Improve – – 8.07% 1.04% 16.83% 3.97% – – 16.08% 6.67% 7.95% 5.98% – – 0.70% 1.84% 3.46% 6.22%
Weather→ETTh1 0.784 0.599 0.727 0.566 0.728 0.563 0.703 0.553 0.679 0.523 0.668 0.515 0.688 0.547 0.704 0.564 0.682 0.539
Improve – – 7.29% 5.44% 7.16% 5.93% – – 3.47% 5.40% 5.04% 6.86% – – -2.22% -3.21% 0.87% -1.46%
ECL→ETTh1 0.439 0.437 0.401 0.405 0.398 0.401 0.409 0.418 0.387 0.404 0.386 0.403 0.371 0.405 0.371 0.403 0.364 0.397
Improve – – 8.52% 7.40% 9.34% 8.30% – – 5.42% 3.46% 5.57% 3.77% – – -0.02% 0.49% 1.98% 2.14%
ECL→ETTm1 0.971 0.633 0.944 0.603 0.827 0.578 0.927 0.619 0.932 0.627 0.880 0.567 0.737 0.544 0.695 0.514 0.655 0.497
Improve – – 2.75% 4.78% 14.79% 8.73% – – -0.54% -1.24% 5.07% 8.40% – – 5.71% 5.59% 11.13% 8.71%
Traffic→ETTh1 0.453 0.441 0.454 0.440 0.419 0.415 0.396 0.411 0.404 0.414 0.395 0.408 0.370 0.401 0.373 0.405 0.371 0.403
Improve – – -0.25% 0.17% 7.60% 5.89% – – -2.03% -0.90% 0.12% 0.64% – – 1.76% 0.25% 3.47% 3.01%

Discussion About Scalability. The remarkable improvements achieved by physics-guided embed-
dings in few-shot and zero-shot scenarios suggest their potential application in large-scale time series
foundation models (LTSFM) (Jin et al., 2023). A crucial aspect of advancing towards physics-guided
LTSFM is the necessity of the scaling laws. However, while physics-guided embeddings are available
in model depth (layers) expansion, they are constrained by physical priors in model width (hidden
dimensions), leading to significant constraints on memory capacity as the dataset size increases. One
potential solution is to integrate physics-guided embeddings with a Mixture of Expert techniques
(Cai et al., 2024). Diverse dynamical dimensions are established to enhance model representation
and memory storage during the training stage, with an adaptive selection during the inference stage.

6 CONCLUSION & FUTURE WORK
Inspired by embedding theory, this paper demonstrates that the embedding layer in a deep time
series model is an estimation of the underlying dynamics of the data. Based on this, we explore
replacing parameterized embedding with numerical reconstruction techniques. Experiments show that
physics-guided embeddings significantly improve performance across various tasks and backbones.
In the future, we aim to advance physics-guided embeddings as a standard embedding technique for
expert models and develop physics-guided time series foundation models (Liang et al., 2024).
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A TECHNICAL BACKGROUND

A.1 HOW TO DETERMINE THE PHYSICAL HYPER-PARAMETER

As mentioned earlier, the theoretical assurances of Takens’ theorem falter under finite precision and
noise, prompting the exploration of "optimal" embedding parameters. The notion of an "optimal"
set suggests that embeddings vary in quality. Yet, assessing this quality necessitates a metric for
comparison. Apart from the empirical selection methods mentioned in the paper, there are also
other mainstream approaches available. Generally, these methods can be summarized in two broad
categories or arguments: prediction-based and topological arguments.

• Prediction-based methods (Casdagli et al., 1991; Potapov, 1997) notions of embedding quality
can be seen to be inspired by the application of embeddings in the context of time-series prediction.
Fundamentally, good embeddings should enable better predictions. These methods generally try to
maximize the amount of new information incorporated in each delay dimension with the aim that it
will provide more information about the true system state and aid in time series prediction.

• Topological methods (Buzug & Pfister, 1992; Nichkawde, 2013) often concentrate on analyzing
the attractor structure and the distribution of the manifold within its ambient space. Essentially, a
well-structured embedding in terms of topology and geometry should aim to be adequately spread
out and unfolded within its ambient setting. This concept of quality aligns with Casdagli’s noise
amplification arguments. Geometrically-based methods may encompass metrics like the fill factor
and displacement from the diagonal. In essence, the considerations for determining the optimal
lag and embedding dimension for time delay embedding can be encapsulated by the notions of
irrelevance and redundancy.

A.2 DYNAMICAL ENCODER

In the field of machine learning, particularly in the realm of dynamical systems modeling, articles
on chaotic dynamical systems primarily focus on employing recurrent neural networks (RNNs)
(Mikhaeil et al., 2022; Hess et al., 2023) and state-space models (Hu et al., 2024a; Alonso et al.,
2024) for modeling, relying on the autoregressive nature of models to capture underlying dynamics.
Additionally, some studies are dedicated to reservoir computing (Yan et al., 2024), simulating the
problems sensitive to initial values of partial differential equations by maintaining a random vector
reservoir. Furthermore, Neural ODEs (Li et al., 2020; Gupta et al., 2021) and some Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2019) attempt to uncover underlying patterns in data through
a combination of data-driven and physics-constrained approaches. Increasingly, research indicates
that deep learning models, i,e., Transformers (Hang et al., 2024) can also achieve impressive results.

B PROOFS

Proposition B.1. The embedding, which uses a shared linear matrix, is an integral transformation
h(t) =

∫ t

−∞ x(s)ϕ(t, s)dµ(s) with limited time-invariant measure µ and polynomial basis ϕ.

Proof. This perspective has been extensively discussed in numerous relevant literature (Gu et al.,
2020; 2022; Hu et al., 2024c;b), where both patch operations and convolutional neural networks
are seen as a parameterized continuous convolution process under a uniform and finite measure
window, akin to a polynomial basis function projection. The Hippo theory (Gu et al., 2020) provides
a detailed theoretical framework for this. Various extensions can be derived based on different
basis functions and measure windows; for instance, trigonometric basis functions lead to Fourier
transforms, piecewise polynomial bases result in wavelet transforms, and exponential decay bases
yield the recent deep state space model S4 Gu et al. (2021).

Proposition B.2. For the full-rank embedding matrix, the embedding process is a similarity transfor-
mation that maintains the original dynamical properties (system eigenvalues).
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Proof. Let the underlying nonlinear time-variant dynamics is ẋ = g(x(t), t), the dynamics for the
(patched) hidden state h is:

hi+1 = W J̄W−1hi, J̄ =
1

P

P∑
i=1

J (x (ti)) , J(x) =
∂g(x)

∂x
, (4)

which can be regarded as a linearization for non-linear time series. The patch operation averages
the Jacobian matrix J that characterizes the system dynamics. As the patch length increases,
the embedding will discard more nonlinear features of the data. For a full-rank matrix W , the
transformation W J̄W−1, known as a Similarity Transformation, where W J̄W−1 is unitarily
equivalent to J̄ , preserves the underlying dynamical properties, serving as a mere space coordinate
transformation.

Lemma B.3. A continuous function f is K-Lipschitz when ∥f(x1)− f (x2) ∥ ≤ K∥x1 − x2∥, then:

(1) The state space model with the negative diagonal matrix A and normalization layers is 1-Lipschitz.

(2) The fully connected and convolution neural network with normalization layers is 1-Lipschitz.

(3) The standard dot-product attention is not Lipschitz. The L2 attention is bounded Lipschitz.

Proof. The first part can be found with detailed proof in Lemma 2.8 of Time-SSM (Hu et al., 2024b),
and matrices A with negative diagonal eigenvalues can also be explained using left half-plane control
theory. Descriptions of the second and third parts can be found in (Kim et al., 2021). According to
this theorem, SSMs, CNNs, and MLPs (although not suitable for our physics-guided embeddings)
can be used to stabilize the modeling of dynamical structures to preserve dynamical characteristics,
while the Transformer architecture may potentially disrupt underlying dynamics during modeling.
However, some recent articles have shown promising results using the Transformer architecture in
modeling PDE dynamical systems (Hang et al., 2024; Zhang & Gilpin, 2024), warranting further
exploration in the future.

Proposition B.4. The Lyapunov exponents λm = lim
t→∞

1
t lnσm(t) of the system attractors are the

mean logarithmic growth rates of the principal axes lengths of the ellipsoidal feature space.

Proof. This is a standard theory in nonlinear dynamical systems, with detailed explanations available
in Section 1.2 of the relevant literature (Skokos et al., 2016).

C EXPERIMENTS

C.1 ENCODER BACKBONE

In this paper, we have selected state-of-the-art models based on the CNN, Transformer, and SSM
architectures as the backbone encoders. The specific details are as follows.

• Modern-TCN (Luo & Wang, 2024) is a pure convolutional architecture that incorporates both
upsampling, downsampling techniques, and patching methods to stack models that separately
capture temporal and channel correlations.

• PatchTST (Nie et al., 2022) is the first transformer architecture to introduce chunking operations,
employing a channel-independent strategy to apply the same backbone model to each time variable.
It continues to maintain state-of-the-art performance in many tasks to this day.

• TimeSSM (Hu et al., 2024b) is a recent model architecture that applies the SSM kernel, typically
utilizing patching operation and channel-independent modeling strategies, particularly excelling in
prediction tasks with outstanding performance.

C.2 DATASETS

We perform experiments on 8 authentic datasets to assess our model’s performance, with detailed
information provided in Table 9. The Dimension signifies the variable count in each dataset. Dataset
Size indicates the total time points in the train, validation, and test splits. Forecasting Length specifies
the future time points for prediction, with four prediction settings per dataset. Frequency represents
the time point sampling interval. To elaborate:
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• ETT dataset (Zhou et al., 2021) encompasses 7 electricity transformer factors spanning from July
2016 to July 2018. We utilize four subsets: ETTh1 and ETTh2 are hourly recorded, while ETTm1
and ETTm2 are recorded every 15 minutes.

• Exchange (Wu et al., 2021) compiles daily exchange rate panel data from 8 countries between
1990 and 2016.

• Weather (Wu et al., 2021) integrates 21 meteorological factors recorded every 10 minutes from the
Weather Station of the Max Planck Bio-geochemistry Institute in 2020.

• Electricity (Wu et al., 2021) records the hourly electricity consumption data of 321 clients.
• Traffic (Wu et al., 2021) collects hourly road occupancy rates measured by 862 sensors of San

Francisco Bay area freeways from January 2015 to December 2016. The train, validation, and
test datasets are strictly divided according to chronological order to make sure there are no data
leakage.

Table 9: Detailed dataset descriptions.

Dataset Dimension Forecasting Length Dataset Size Information (Frequency)

ETTm1 7 {96, 192, 336, 720} (34369, 11425, 11425) Electricity (15 min)
ETTh1 7 {96, 192, 336, 720} (8445, 2785, 2785) Electricity (Hourly)
ETTm2 7 {96, 192, 336, 720} (34369, 11425, 11425) Electricity (15 min)
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (Hourly)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)
Weather 21 {96, 192, 336, 720} (36696, 5175, 10440) Weather (10 min)

Electricity 321 {96, 192, 336, 720} (18221, 2537, 5165) Electricity (Hourly)
Traffic 862 {96, 192, 336, 720} (12089, 1661, 3413) Transportation (Hourly)

C.3 EXPERIMENT SETTING

All experiments are conducted on the NVIDIA A6000-48G GPUs. The Adam optimizer is chosen. To
ensure a fair and comprehensive comparison of the superiority of our proposed method, we conduct a
complete set of experiments on the Time Series Library architecture. Throughout the experimental
process, we ensure consistency in the application of physics-guided embeddings and parameterized
embeddings, maintaining the same hyper-parameters in both the model architecture and experimental
procedures. Specifically, the number of model layers, patch length, and stride are set based on the
original paper’s configurations, with a learning rate of 0.0001 and a hidden dimension of 256.

C.4 MORE VISUALIZATION

In Figure 12, we present the spectral diagram of embeddings obtained through more parameterized
embeddings and physics-guided embeddings.

Parameterized Embeddings

Physics-guided Embeddings

Figure 12: More visualizations for parameterized embedding and physics-guided embedding

C.5 FULL RESULTS

We present the full experiment results in the following tables.
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Table 10: Full results for the anomaly detection task. The P, R, and F1 represent the precision, recall, and
F1-score (%), respectively. A higher value of P, R, and F1 indicates a better performance.

Datasets PSM MSL SMAP SMD SWAT Avg

Metrics R F1 P R F1 P R F1 P R F1 P R F1 P

Time-SSM 0.936 0.959 0.983 0.725 0.801 0.895 0.602 0.726 0.913 0.909 0.844 0.788 0.913 0.917 0.921 0.849
TD-Emb 0.943 0.962 0.989 0.727 0.805 0.902 0.603 0.725 0.915 0.908 0.842 0.787 0.919 0.925 0.926 0.852
HD-Emb 0.939 0.957 0.981 0.732 0.808 0.900 0.606 0.731 0.920 0.909 0.845 0.791 0.912 0.927 0.926 0.854

PatchTST 0.950 0.969 0.989 0.713 0.790 0.886 0.536 0.673 0.902 0.861 0.810 0.764 0.827 0.868 0.913 0.822
TD-Emb 0.936 0.959 0.983 0.714 0.784 0.881 0.532 0.670 0.902 0.845 0.802 0.764 0.930 0.926 0.923 0.828
HD-Emb 0.941 0.962 0.984 0.715 0.783 0.881 0.536 0.673 0.902 0.854 0.807 0.764 0.921 0.922 0.922 0.829

ModernTCN 0.945 0.965 0.986 0.749 0.816 0.896 0.558 0.691 0.908 0.816 0.844 0.874 0.903 0.930 0.958 0.849
TD-Emb 0.944 0.966 0.987 0.745 0.813 0.892 0.563 0.696 0.913 0.819 0.847 0.876 0.900 0.927 0.956 0.850
HD-Emb 0.947 0.965 0.988 0.754 0.822 0.891 0.560 0.693 0.909 0.812 0.841 0.872 0.914 0.944 0.969 0.853

Table 11: Multivariate long-term series forecasting results with input length are{96, 336, 720} on PatchTST.

Model PatchTST-336-ori PatchTST-336-TD PatchTST-336-HD PatchTST-720-ori PatchTST-720-TD PatchTST-720-HD

Efficiency MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.376 0.407 0.381 0.405 0.382 0.400 0.392 0.428 0.379 0.414 0.370 0.404
192 0.424 0.441 0.424 0.430 0.413 0.420 0.431 0.449 0.417 0.437 0.426 0.441
336 0.423 0.441 0.431 0.432 0.414 0.428 0.469 0.474 0.424 0.441 0.488 0.492
720 0.455 0.474 0.432 0.460 0.444 0.442 0.508 0.504 0.465 0.481 0.678 0.578

AVG 0.420 0.441 0.417 0.432 0.413 0.422 0.481 0.483 0.421 0.443 0.490 0.479

E
T

T
h2

96 0.295 0.354 0.286 0.351 0.298 0.354 0.313 0.372 0.293 0.358 0.293 0.354
192 0.351 0.424 0.347 0.390 0.363 0.391 0.393 0.418 0.348 0.396 0.347 0.390
336 0.375 0.414 0.373 0.407 0.374 0.405 0.502 0.471 0.378 0.413 0.376 0.424
720 0.410 0.469 0.410 0.441 0.416 0.450 0.548 0.527 0.412 0.454 0.428 0.463

AVG 0.358 0.415 0.354 0.397 0.363 0.400 0.439 0.447 0.357 0.405 0.361 0.408

E
T

T
m

2

96 0.167 0.256 0.173 0.264 0.170 0.258 0.178 0.274 0.185 0.277 0.172 0.262
192 0.225 0.299 0.232 0.302 0.221 0.292 0.240 0.312 0.256 0.321 0.241 0.310
336 0.281 0.337 0.276 0.332 0.282 0.338 0.293 0.347 0.287 0.347 0.292 0.345
720 0.380 0.402 0.368 0.388 0.365 0.388 0.407 0.421 0.370 0.401 0.386 0.408

AVG 0.263 0.323 0.262 0.321 0.259 0.319 0.280 0.339 0.275 0.337 0.273 0.331

W
ea

th
er

96 0.154 0.204 0.152 0.202 0.154 0.204 0.152 0.208 0.149 0.201 0.148 0.199
192 0.201 0.248 0.197 0.244 0.198 0.244 0.204 0.256 0.194 0.245 0.190 0.239
336 0.248 0.284 0.249 0.284 0.248 0.281 0.249 0.291 0.250 0.290 0.239 0.278
720 0.330 0.342 0.326 0.336 0.320 0.332 0.316 0.338 0.317 0.333 0.310 0.325

AVG 0.233 0.270 0.231 0.267 0.230 0.265 0.231 0.273 0.227 0.267 0.222 0.260
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Table 12: Few-shot results: input length is 336, prediction horizons {96, 192, 336, 720}.

Model Time-SSM PatchTST ModernTCN
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

Original

96 0.546 0.508 0.452 0.460 0.457 0.460
192 0.683 0.573 0.527 0.507 0.527 0.498
336 0.846 0.654 0.770 0.629 0.637 0.544
720 0.977 0.735 0.908 0.671 0.707 0.596

TD-Emb

96 0.535 0.500 0.477 0.470 0.421 0.442
192 0.677 0.567 0.516 0.486 0.481 0.469
336 0.840 0.643 0.539 0.505 0.600 0.531
720 1.527 0.892 0.809 0.634 0.667 0.575

HD-Emb

96 0.530 0.497 0.470 0.456 0.417 0.440
192 0.614 0.543 0.515 0.482 0.475 0.452
336 0.760 0.619 0.545 0.513 0.598 0.533
720 1.310 0.832 0.739 0.609 0.643 0.564

E
T

T
h2

Original

96 0.377 0.408 0.351 0.386 0.315 0.362
192 0.464 0.454 0.427 0.429 0.400 0.408
336 0.559 0.514 0.463 0.460 0.391 0.418
720 0.660 0.564 0.554 0.519 0.456 0.467

TD-Emb

96 0.370 0.406 0.332 0.377 0.319 0.365
192 0.461 0.454 0.392 0.411 0.422 0.401
336 0.509 0.493 0.416 0.438 0.388 0.437
720 0.652 0.562 0.510 0.498 0.459 0.447

HD-Emb

96 0.350 0.393 0.318 0.367 0.306 0.365
192 0.423 0.439 0.399 0.423 0.401 0.416
336 0.577 0.531 0.400 0.434 0.391 0.414
720 0.635 0.561 0.474 0.481 0.439 0.453

E
T

T
m

2

Original

96 0.224 0.300 0.196 0.275 0.233 0.297
192 0.285 0.342 0.257 0.314 0.291 0.333
336 0.361 0.386 0.308 0.349 0.325 0.357
720 0.496 0.453 0.440 0.423 0.406 0.405

TD-Emb

96 0.211 0.293 0.202 0.282 0.207 0.277
192 0.284 0.339 0.252 0.313 0.256 0.316
336 0.353 0.381 0.301 0.342 0.303 0.331
720 0.439 0.426 0.381 0.392 0.366 0.381

HD-Emb

96 0.208 0.292 0.197 0.279 0.201 0.280
192 0.259 0.322 0.248 0.312 0.249 0.312
336 0.315 0.360 0.298 0.343 0.283 0.327
720 0.412 0.412 0.395 0.400 0.368 0.385

W
ea

th
er

Original

96 0.197 0.229 0.161 0.208 0.187 0.228
192 0.257 0.285 0.206 0.251 0.281 0.289
336 0.323 0.328 0.259 0.290 0.335 0.325
720 0.444 0.402 0.334 0.345 0.369 0.360

TD-Emb

96 0.163 0.220 0.163 0.220 0.179 0.215
192 0.209 0.259 0.209 0.259 0.256 0.277
336 0.263 0.297 0.263 0.297 0.317 0.317
720 0.335 0.346 0.335 0.346 0.337 0.344

HD-Emb

96 0.160 0.216 0.160 0.216 0.172 0.211
192 0.203 0.252 0.203 0.252 0.252 0.263
336 0.258 0.293 0.258 0.293 0.310 0.308
720 0.332 0.345 0.332 0.345 0.330 0.334
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Table 13: Multivariate long-term series forecasting results: input 96, prediction horizons {96, 192, 336, 720}.
Model Time-SSM PatchTST ModernTCN
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

Original
96 0.378 0.397 0.378 0.398 0.389 0.397
192 0.431 0.432 0.425 0.432 0.437 0.426
336 0.472 0.450 0.470 0.458 0.477 0.442
720 0.475 0.473 0.525 0.507 0.478 0.464

AVG 0.439 0.438 0.450 0.449 0.445 0.432

TD-Emb
96 0.377 0.397 0.375 0.397 0.388 0.395
192 0.429 0.427 0.423 0.430 0.434 0.424
336 0.479 0.454 0.469 0.452 0.471 0.438
720 0.459 0.465 0.484 0.479 0.470 0.436

AVG 0.436 0.436 0.438 0.440 0.441 0.423

HD-Emb
96 0.377 0.399 0.372 0.395 0.383 0.394
192 0.424 0.424 0.420 0.427 0.431 0.423
336 0.470 0.457 0.472 0.448 0.475 0.461
720 0.458 0.460 0.485 0.479 0.472 0.437

AVG 0.432 0.435 0.437 0.437 0.440 0.429

E
T

T
h2

Original
96 0.291 0.342 0.291 0.346 0.292 0.340
192 0.374 0.383 0.378 0.404 0.378 0.394
336 0.421 0.431 0.425 0.440 0.427 0.433
720 0.430 0.448 0.436 0.454 0.433 0.448

AVG 0.379 0.401 0.382 0.411 0.382 0.404

TD-Emb
96 0.288 0.340 0.287 0.343 0.289 0.339
192 0.375 0.382 0.374 0.398 0.375 0.392
336 0.417 0.429 0.417 0.423 0.424 0.428
720 0.425 0.445 0.425 0.440 0.422 0.439

AVG 0.376 0.399 0.376 0.401 0.378 0.400

HD-Emb
96 0.289 0.342 0.287 0.338 0.288 0.340
192 0.372 0.382 0.374 0.393 0.373 0.391
336 0.419 0.427 0.416 0.427 0.419 0.426
720 0.416 0.439 0.418 0.435 0.425 0.441

AVG 0.374 0.398 0.374 0.398 0.376 0.400

E
T

T
m

1

Original
96 0.336 0.371 0.324 0.364 0.318 0.360
192 0.369 0.389 0.372 0.392 0.363 0.390
336 0.397 0.411 0.399 0.408 0.399 0.409
720 0.455 0.443 0.458 0.445 0.463 0.446

AVG 0.389 0.403 0.388 0.402 0.386 0.401

TD-Emb
96 0.336 0.372 0.322 0.363 0.319 0.361
192 0.367 0.388 0.365 0.381 0.365 0.392
336 0.394 0.408 0.397 0.404 0.397 0.407
720 0.451 0.439 0.456 0.435 0.467 0.449

AVG 0.387 0.402 0.385 0.396 0.387 0.402

HD-Emb
96 0.332 0.368 0.320 0.361 0.318 0.359
192 0.371 0.391 0.362 0.380 0.361 0.388
336 0.393 0.405 0.388 0.398 0.393 0.406
720 0.441 0.435 0.440 0.431 0.455 0.438

AVG 0.384 0.400 0.378 0.393 0.382 0.398

E
T

T
m

2

Original
96 0.176 0.260 0.177 0.263 0.172 0.255
192 0.247 0.309 0.250 0.310 0.243 0.303
336 0.305 0.344 0.311 0.349 0.310 0.345
720 0.408 0.407 0.423 0.415 0.415 0.405

AVG 0.284 0.330 0.291 0.334 0.285 0.327

TD-Emb
96 0.177 0.261 0.177 0.261 0.175 0.254
192 0.246 0.306 0.241 0.303 0.245 0.305
336 0.305 0.343 0.302 0.347 0.317 0.349
720 0.411 0.409 0.402 0.401 0.422 0.411

AVG 0.285 0.330 0.281 0.328 0.290 0.330

HD-Emb
96 0.177 0.261 0.175 0.262 0.174 0.252
192 0.243 0.305 0.241 0.306 0.237 0.299
336 0.301 0.341 0.305 0.348 0.314 0.348
720 0.406 0.406 0.412 0.404 0.417 0.404

AVG 0.282 0.328 0.283 0.330 0.286 0.326

W
ea

th
er

Original
96 0.171 0.213 0.175 0.218 0.158 0.204
192 0.217 0.256 0.221 0.256 0.207 0.251
336 0.276 0.297 0.280 0.298 0.265 0.292
720 0.353 0.348 0.356 0.349 0.341 0.344

AVG 0.254 0.279 0.258 0.280 0.243 0.273

TD-Emb
96 0.166 0.210 0.172 0.216 0.158 0.215
192 0.215 0.254 0.220 0.259 0.211 0.255
336 0.279 0.299 0.271 0.295 0.264 0.287
720 0.345 0.342 0.349 0.340 0.335 0.343

AVG 0.251 0.276 0.253 0.278 0.242 0.275

HD-Emb
96 0.167 0.211 0.176 0.221 0.153 0.200
192 0.218 0.256 0.226 0.263 0.204 0.247
336 0.274 0.295 0.281 0.297 0.261 0.285
720 0.355 0.350 0.348 0.345 0.332 0.340

AVG 0.254 0.278 0.258 0.282 0.238 0.268

E
le

ct
rc

ity

Original
96 0.177 0.266 0.180 0.273 0.198 0.275
192 0.185 0.274 0.187 0.280 0.198 0.278
336 0.202 0.291 0.204 0.296 0.212 0.293
720 0.249 0.326 0.246 0.328 0.254 0.326

AVG 0.203 0.289 0.204 0.294 0.215 0.293

TD-Emb
96 0.176 0.265 0.188 0.281 0.201 0.279
192 0.188 0.276 0.201 0.295 0.199 0.291
336 0.201 0.289 0.220 0.314 0.208 0.290
720 0.245 0.323 0.248 0.341 0.258 0.328

AVG 0.203 0.288 0.214 0.308 0.217 0.297

HD-Emb
96 0.178 0.266 0.185 0.276 0.197 0.274
192 0.183 0.273 0.182 0.283 0.199 0.276
336 0.201 0.294 0.201 0.303 0.205 0.288
720 0.242 0.322 0.249 0.333 0.251 0.324

AVG 0.201 0.289 0.204 0.299 0.213 0.291

E
xc

ha
ng

e

Original
96 0.087 0.205 0.097 0.216 0.102 0.227
192 0.181 0.304 0.182 0.304 0.202 0.322
336 0.340 0.422 0.342 0.426 0.354 0.431
720 0.861 0.698 0.951 0.731 0.915 0.723

AVG 0.367 0.407 0.393 0.419 0.393 0.425

TD-Emb
96 0.082 0.201 0.083 0.202 0.089 0.208
192 0.175 0.299 0.177 0.299 0.190 0.311
336 0.332 0.418 0.329 0.416 0.340 0.422
720 0.840 0.688 0.841 0.695 0.874 0.705

AVG 0.357 0.402 0.358 0.403 0.373 0.412

HD-Emb
96 0.082 0.202 0.087 0.207 0.091 0.210
192 0.172 0.296 0.180 0.301 0.194 0.316
336 0.334 0.417 0.330 0.416 0.344 0.426
720 0.833 0.685 0.847 0.692 0.880 0.709

AVG 0.355 0.400 0.361 0.404 0.377 0.415
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