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ABSTRACT

We develop a probabilistic extension of state-of-the-art embedding models for link
prediction in relational knowledge graphs. Knowledge graphs are collections of
relational facts, where each fact states that a certain relation holds between two en-
tities, such as people, places, or objects. We argue that knowledge graphs should
be treated within a Bayesian framework because even large knowledge graphs typ-
ically contain only few facts per entity, leading effectively to a small data problem
where parameter uncertainty matters. We introduce a probabilistic reinterpretation
of the DistMult (Yang et al., 2015) and ComplEx (Trouillon et al., 2016) models
and employ variational inference to estimate a lower bound on the marginal like-
lihood of the data. We find that the main benefit of the Bayesian approach is that
it allows for efficient, gradient based optimization over hyperparameters, which
would lead to divergences in a non-Bayesian treatment. Models with such learned
hyperparameters improve over the state-of-the-art by a significant margin, as we
demonstrate on several benchmarks.

1 INTRODUCTION

In 2012, Google announced that it improved the quality of its search engines significantly by utilizing
knowledge graphs (Eder, 2012). A knowledge graph is a dataset of facts represented in terms of
triplets (head, relation, tail), where head and tail represent entities in the world, and a relation is
a property that describes the relationship between the two entities. As an example, when the head
entity is ’Paris’, and the relation is ’is in’, then the tail entity could be ’France’ or ’Europe’.

While the number of possible relations among entities is enormous, the amount of edges in empirical
knowledge graphs is often rather small. It is therefore desirable to complete the missing edges
in a knowledge graph algorithmically based on patterns detected in the observed part of he graph
(Nickel et al., 2016a). Such link prediction has become an important subfield of artificial intelligence
(Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015; Nickel et al., 2016c; Trouillon et al., 2016;
Wang & Li, 2016; Ji et al., 2016; Shen et al., 2016; Xiao et al., 2017; Shi & Weninger, 2017; Lacroix
et al., 2018).

In statistical relational learning, link prediction is done by inferring/learning explicit rules about rela-
tionships and then applying these inferred rules in order to reason about unobserved facts (Friedman
et al., 1999; Kersting et al., 2011; Niu et al., 2012; Pujara et al., 2015). A complementary, highly
scalable approach relies on embedding models (Kadlec et al., 2017; Nguyen, 2017). These mod-
els represent entities and relationships in terms of low-dimensional semantic vectors and implicitly
encode the relationships in the knowledge graphs in terms of three-way mathematical operations
among these vector triplets (Yang et al., 2015; Trouillon et al., 2016). In the early works, different
embeddings were used for the two tasks of head and tail prediction. Lacroix et al. (2018) proposed
to map these two tasks to just the tail prediction task by augmenting the data by reciprocal facts
with inversed relations. In the present work, we also use this data augmentation technique to pave
the way for a probabilistic interpretation of knowledge graph embedding models. The probabilistic
formulation allows us to keep track of parameter uncertainty by applying Bayesian methods.

We argue that the parameter uncertainty in knowledge graph embedding models can be significant,
calling for a Bayesian approach. As the number of parameters grows linearly with the number of
entities, and every entity is only connected to a small number of other entities by observed links, this
effectively leads to a small data problem, even if the knowledge graph as a whole may be huge. For
example, Figure 1 shows that for a popular large-scale knowledge base, about 80% of entities have
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(a) FB15K data set. (b) WN18 data set.

Figure 1: Histograms of the number of facts per entity in the training set of two data sets. Note the
log scale of the horizontal axis. The plots show that the distributions are left-skewed. For example,
in the FB15K dataset, a third of the entities have less than 25 facts in the whole training set, justifying
the claim that even large knowledge bases involve small-data problems.

less than 80 observed facts. Similar observation have been made for recommender systems, where
most users interact only with a small subset of the items (Gopalan et al., 2014; 2015; Liang et al.,
2018). As in recommender systems, we show that a Bayesian approach can be highly beneficial
in knowledge graph embeddings. This paper presents such a Bayesian formulation and presents an
interpretation of popular embedding models as generative models of relational facts.

The benefits of a Bayesian formulation of knowledge graph embeddings are two-fold. First, this
formulation allows us to infer posterior distributions of embedding vectors, giving us uncertainty es-
timates. An arguably more important aspect is that of hyperparameter tuning, as the state-of-the-art
embedding models employ a large number of hyperparameters (regularizers), one for every entity
(Lacroix et al., 2018). Kadlec et al. (2017) showed that careful hyperparameter tuning can dramati-
cally increase predictive performance. While there is no classical way to scalably tune hyperparam-
eters on a per-entity level without some heuristic, our Bayesian approach allows for gradient-based
hyperparameter optimization on the marginal likelihood of the data (Bishop, 2006). This approach,
termed variational expectation maximization (variational EM (Bernardo et al., 2003)), still works if
variational approximations are used (Jordan et al., 1999; Blei et al., 2017; Zhang et al., 2017).

We propose a simple, principled, and efficient way to tune hyperparameters using variational EM.
This approach lower-bounds the marginal likelihood of the data and allows this bound to be opti-
mized for hyperparameters without running into degenerate solutions (Bernardo et al., 2003; Mandt
et al., 2017). This is in contrast to point estimation, which results in degeneracies when jointly opti-
mizing over model parameters and hyperparameters. As a result, our approach learns a macroscopic
number of hyperparameters, resulting in a new state-of-the-art performance on link prediction.

Our contribution in this work can be summarized as follows:
• We present a probabilistic interpretation of existing knowledge graph embedding models such as

ComplEx and DistMult. We reformulate these models as generative models for relational facts,
which paves the way for Bayesian inference in these models.

• We apply stochastic variational inference to scalably estimate an approximate posterior for each
entity and relation embedding in the knowledge graph. This approach not only allows us to
estimate uncertainty, but more importantly allows for gradient-based hyperparameter optimization
by stochastic gradient descent on the optimized variational bound (variational EM). Implementing
our methodology in existing models requires only a few lines of additional code, and it does not
increase the computational complexity compared to a non-Bayesian training approach.

• We show experimentally that our method reaches new state-of-the-art results in link prediction.
We present results on several large data sets using two popular models which we trained using
variational EM. We observe that our improvements are most notable for entites with few training
points, as we show by introducing a new, balanced evaluation metric.

The paper is structured as follows. In Section 2, we review the related work about knowledge graph
embeddings and variational inference. In Section 3, we present the generative model for relational
facts and reinterpret existing loss functions as the maximum a posterior estimator of the generative
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model. In Section 4, we propose our approximate Bayesian expectation maximization algorithm for
finding the hyperparameters. Finally, in Section 5 we test the hyperparameter learning algorithm for
the link prediction task on two different embedding algorithms using standard performance metrics.

2 RELATED WORK

Related work to this paper can be grouped into link prediction algorithms and variational inference.

Link Prediction. Knowledge graphs and link prediction gained a lot of attention; for a review see
(Nickel et al., 2016b). Most link prediction algorithms use latent features of entities or relationships,
also termed embeddings. TransE proposed by Bordes et al. (2013) is one example, where each entity
and relation are embedded in a K-dimensional space. The embeddings are found such that for a
given fact (h, r, t), the sum of embeddings of h plus r be close to t, and far from other entities.

Many models are based on tensor factorization, where an adjacency tensor is built from the triplet
facts, and entities and relations are embedded to a K-dimensional space. Different methods differ
in the structure of the embedded vectors. Hitchcock (1927) assume that an entity’s embedding
depends on whether the entity appears as the head or tail of a fact. DistMult simplified the model
by assuming that tails and heads have the same embeddings (Yang et al., 2015; Toutanova & Chen,
2015). ComplEx extended DistMult by embedding the entities and relations to a complex space to
allow for nonsymmetric relations. Lacroix et al. (2018) introduced reciprocal relations and trained
with the full log-loss instead of binary loss with negative sampling, which improved the results.

Link prediction algorithms are susceptible to overfitting, and the importance of hyperparameter
choices has been pointed out by several authors, e.g., (Kadlec et al., 2017; Lacroix et al., 2018).
Different reguralizers have been proposed, the most standard one being the 2-norm (Yang et al.,
2015). A heuristic that often produces the best results (e.g., in (Lacroix et al., 2018)) is to choose
the strength of the regularizer proportional to the frequency of the entities (see e.g., (Srebro &
Salakhutdinov, 2010)). In contrast, our approach learns entity-dependend hyperparameters without
relying on heuristics. Also, Lacroix et al. (2018) showed that the 2-norm is not a valid tensor norm,
and that the 3-norm is more appropriate for triplet data.

Variational Inference. Variational inference (VI) is a powerful technique to approximate a
Bayesian posterior over latent variables given observations (Jordan et al., 1999; Blei et al., 2017;
Zhang et al., 2017). Besides approximating the posterior, VI also estimates the marginal likelihood
of the data. This allows for gradient-based hyperparameter tuning, a technique called variational
EM (Bernardo et al., 2003), which is the main benefit of the Bayesian approach used in this paper.

Our paper builds on recent probabilistic extensions of embedding models to Bayesian models, such
as word (Barkan, 2017) or paragraph (Ji et al., 2017) embeddings. In these works, the words are
embedded into a K-dimensional space. It has been shown that using a probabilistic approach leads
to better performance on smaller data, and allows these models to be combined with powerful priors,
such as for time series modeling (Bamler & Mandt, 2017; Jähnichen et al., 2018). Yet, the underlying
probabilistic models in these papers are very different from the ones considered in our work.

3 KNOWLEDGE GRAPH EMBEDDINGS AS GENERATIVE MODELS OF FACTS
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Rr

r 2 [Nr]

e 2 [Ne]

(hi, ri)
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ti

Figure 2: The generative pro-
cess of the triples (h, r, t).

In this section, we describe a generative model for relational facts.
Then, we show that existing tensor factorization models can be in-
terpreted as a maximum a posteriori (MAP) estimation of the pa-
rameters of the generative model (Bishop, 2006). In Section 4, we
move to our main contribution. We use our generative model to de-
rive an approximate Bayesian inference algorithm to optimize over
hyperparameters (regularizers) in a principled way.

Let S = {(hi, ri, ti)}i=1,...,n be the set of n triplet facts, with heads
hi ∈ [Ne], tails ti ∈ [Ne], and relations ri ∈ [Nr]. Here, Ne and
Nr are the number of distinct entities and relations that we model.
From now on, we use the data augmentation technique used in (Lacroix et al., 2018) (see Remark 2 in
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the appendix). It reduces the task of performing both head and tail predictions to that of performing
only tail predictions by introducing reciprocal relations. Thus, given a head h and relation r, the link
prediction boils down to finding the tail t in the fact (h, r, t).

For simplicity, we present the generative process at the example of the DistMult model (Yang et al.,
2015). Generalization to other models, such as ComplEx (Trouillon et al., 2016) or CP (Hitchcock,
1927) is straight-forward. In DistMult, each entity and relation is embedded in the latent vector
space RK . Let E ∈ RNe×K (similarly R ∈ RNr×K) be the embedding matrix for entities (rela-
tions), where Ee ∈ RK (Rr ∈ RK) is the embedding vector for entity e ∈ [Ne] (relation r ∈ [Nr]).

The Score. Embedding models such as DistMult rely on a score Xh,r,t which plays a role both in
the probabilistic and classical formulation of the model. This score assigns a scalar value to each
combination of the embeddings Eh, Rr, and Et. In DistMult, the score is Xh,r,t =

∑K
i=1 EhiRriEti.

In the conventional approach, the embedding vectors are trained in such a way that observed triplets
have high scores. As we show below, the score also enters the probabilistic extension of the model.

Generative Process. We can now present our perspective of knowledge graph embeddings as
generative models. Figure 2 shows a graphical model. The generative process is as follows:

• For each entity e ∈ [Ne], draw an embedding Ee ∈ RK from a prior p(Ee|λe), e.g., a normal
distribution. Similarly, for each relation r ∈ [Nr], draw an embedding Rr ∈ RK from a prior
p(Rr|λr). Here, λe and λr are hyperparameters.

• Repeat for each triplet index i ∈ {1, . . . , n}:
– Draw a head hi and a relation ri from a discrete joint distribution P (hi, ri).
– Draw a tail ti ∼ Multinomial(softmaxt(Xhi,ri,t)).

Above, the softmax normalizes the scores over the tail index, softmaxt(Xh,r,t) =
exp Xh,r,t∑
t′ exp Xh,r,t′

. We
see that the resulting generative model produces fact triplets conditioned on semantic embeddings
of entities and relations. This concludes the generative process perspective.

MAP Estimation Recovers Original Model. The cost function used for learning E and R in
the existing works can be seen as maximum a posteriori (MAP) estimation of the generative model
above, where we optimize the log joint distribution over the embeddings E and R:

E?,R? = arg max
E,R

log p(E,R,S|λ) = arg max
E,R

{
log p(S|E,R) + log p(E,R|λ)

}
. (1)

In the DistMult model, the loss function with a Gaussian prior with precision λ becomes

L(E,R, λ) = − log p(S|E,R)− log p(E,R|λ), (2)

where the negative log likelihood is just the cross entropy,

− log p(S|E,R) =
∑

(h,r,t)∈S

(
−Xh,r,t + log

∑
t′

exp Xh,r,t′

)
+ c, (3)

and the negative log prior leads to the regularizer

− log p(E,R|λ) =
1

2

∑
e∈[Ne]

(
λe‖Ee‖2 −K log(λe)

)
+

1

2

∑
r∈[Nr]

(
λr‖Rr‖2 −K log(λr)

)
+ c. (4)

Up to the terms K log(λe/r) in Eq. 4, which do not affect the minimization over E and R, Eqs. 2-4
recover precisely the loss function used in (Lacroix et al., 2018).

4 GRADIENT-BASED HYPERPARAMETER TUNING VIA VARIATIONAL EM

In this section, we describe an efficient method to learn optimized hyperparameters λe and λr for
each entity and each relation embedding in the model. We stress that such optimization could not be
achieved via classical grid search due to the sheer number of hyperparameters; this number would
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have to be reduced by some heuristic (Srebro & Salakhutdinov, 2010). Our method is based on
optimizing the marginal likelihood over λe and λr using variational inference.

Recall that in a knowledge graph, the number of triplets per entity is typically small (see Figure 1).
Therefore, the cross entropy (log likelihood, Eq. 3) contains only few terms per entity, and thus the
regularizer (log prior, Eq. 4) has a strong influence on the optimization.

Finding good hyperparameters λe and λr for each entity e and relation r would usually involve
expensive cross validations and grid search over many parameters. Simply minimizing the loss L in
Eqs. 2-4 over both hyperparameters λe/r and model parameters E and R does not work because L
is not bounded from below. Setting E and R to zero and λe, λr → ∞ would send L → −∞ due
to the terms −K2 log(λe/r) in Eq. 4. Note that ignoring these terms would not solve the problem, as
the optimization would then set λe and λr to zero and the model would become unregularized.

Algorithm 1 Gradient Based Tuning of Hyperparameters λ

1: Input: Number of training steps T ; number of initialization steps T0
2: Initialize: λ and γ = (µ, σ)
3: Pre-train the model using SGD: µE , µR = arg minE,R L(E,R, λ)
4: for t = 0 : T do . Variational EM update for T iterations
5: draw mini-batch B ∈ S
6: draw uniform noise samples, εe ∼ N(0, I) and εr ∼ N(0, I)
7: γ ← γ −∇γ

[
L
(
µE + εEσE , µR + εRσR, λ

)
− log σE − log σR

]
. L = loss, see Eq. 2

8: if t ≥ T0 then λ← arg maxλ Eqγ [log p (E,R|λ)] . See appendix for analytic solution
9: else do not update hyperparameters λ

10: Re-train model with learned hyperparameters: E∗,R∗ = arg minE,R L(E,R, λ)

Variational Expectation Maximization. A well-known approach to avoid degenerate solu-
tions in gradient-based hyperparameter optimization is the expectation-maximization (EM) algo-
rithm (Dempster et al., 1977). This algorithm optimizes the marginal likelihood of a model with
hidden variables over hyperparameters by alternating between a gradient step on hyperparameters,
and a step in which the hidden variables are integrated out. We use a version of EM based on
variational inference, termed variational EM (Bernardo et al., 2003) that avoids the integration step.

The measure of how well a probabilistic model fits the data S is the marginal likelihood,

p(S|λ) =

∫
p(E,R,S|λ) dE dR. (5)

We want to find hyperparameters λ that maximize the marginal likelihood p(S|λ); however, since the
integral in Eq. 5 is intractable, the marginal likelihood is unavailable in closed form. To circumvent
this problem, we use variational inference (VI) (Jordan et al., 1999). In VI, one first chooses a family
of variational distributions qγ(E,R), which is parameterized by so-called variational parameters γ.
Evoking Jensen’s inequality, the marginal likelihood is then lower-bounded by the evidence lower
bound (Blei et al., 2017; Zhang et al., 2017), or ELBO, as

log p(S|λ) ≥ EE,R∼qγ [log p(E,R,S|λ)− log qγ(E,R)] =: ELBO(λ, γ). (6)

The bound is tight if the variational distribution qγ is the true posterior of the model for given λ.
Therefore, maximizing the ELBO over the variational parameters γ closes the gap between ELBO
and true marginal likelihood, and the ELBO can be taken as a proxy for the latter.

We use the ELBO as a proxy for the marginal likelihood p(S|λ), and we maximize it concurrently
over both γ and λ using Black Box Variational Inference with reparameterization gradients (Kingma
& Welling, 2014; Rezende et al., 2014). Since p(S|λ) is a discrete probability distribution, it is upper
bounded by 1, so the optimization over λ is well defined. As discussed above, this is in contrast to
the loss L, which is not bounded as a function of λ.

We choose a fully factorized variational distribution qγ(E,R). This is called the mean field approx-
imation. Specifically, we use a fully factorized Gaussian variational distribution with means µEei and
µRri, and standard deviations σEei and σRri for the parameters Eei and Rri, respectively. The collection
of all means and standard deviations comprises the variational parameters γ.
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Learning Optimal Hyperparameters. Algorithm 1 summarizes our method. It consists of three
steps: (i) Pre-train a point-estimated model using the MAP estimator L (Eqs. 2-4) with a reasonable
choice of hyperparameters λ (Line 3 in Algorithm 1). (ii) Use variational EM to maximize the
lower bound on the marginal likelihood over the hyperparameters (Lines 4-9); here, we use the
pretrained model to initialize the means of the variational distribution, see below. (iii) Plug the
learned hyperparameters λ into the MAP estimator and train the final model (Line 10).

Implementing these three steps requires only few changes compared to a MAP estimated model.
Steps (i) and (iii) are just the existing MAP estimation of the latent parameters. The implementation
of step 2 is also very similar. To optimize the ELBO with the reparameterization gradient trick, one
injects parameter noise into the loss L of the MAP estimator (see Lines 6-7). One then optimizes
over the optimal amplitude σE/R of the noise using stochastic gradient descent. The additional
entropy term − log σE − log σR in Line 7 prevents mode collapse of the variational distribution.

Lines 6-7 in Algorithm 1 describe the most generic way to estimate the gradient of the ELBO using
reparameterization gradients. For specific models, parts of the ELBO can be evaluated analytically,
which typically reduces the gradient noise. In the appendix, we derive an analytic expression for
the contribution of the regularizer (log prior) to the ELBO. We find a solution in closed form for
regularization with both the 2-norm and the 3-norm. The expected log prior prevents degenerate
solutions of the kind discussed above because it penalizes sending λe/r to infinity.

After maximizing ELBO over λ and γ, we plug the learned λ into the original MAP estimator and
improve the performance of the model, see Line 10 in Algorithm 1. We also experimented with using
the learned variational distribution qγ(E,R) directly for link prediction using a Bayesian inference
approach. In this setup, we evaluate the predictive probability of, e.g., a tail t given head h and re-
lation r by taking the expectation of the conditional probability p(t|h, r,E,R) under the variational
distribution. We find that, when the embedding dimensions K is small, these Bayesian predictions
outperform point estimates. However, for a large embedding dimensionK, MAP estimators perform
better. We speculate that this may be because the match between variational distribution and true
posterior may be worse in high dimensions, where the true posterior can have a more complicated
structure that the mean field variational distribution cannot capture. We find that the main advan-
tage of the variational treatment of the models that we considered is the efficient optimization over
hyperparameters.

5 EXPERIMENTAL RESULTS

We test the performance of DistMult and ComplEx on four standard data sets, where we optimized
hyperparameters in two different ways. Our baseline is standard grid search, and our proposed
approach for hyperparameter tuning is variational EM (Algorithm 1). The latter relies on the prob-
abilistic formulation provided in this paper. We considered two types of metrics: mean reciprocal
rank, and hits at 10 (explained below). Our approach sets a new state-of-the-art in hits at 10 on all
four data sets, and in mean reciprocal rank on three out of four data sets.

Performance Metrics. We report the standard metrics used in the knowledge graph embedding
literature. We perform head and tail prediction and report all results in the ‘filtered’ setting intro-
duced in (Bordes et al., 2013). In tail prediction, one tries to find the correct tail t of a fact (h, r, t)
from the test set when given only head h and relation r. We do this by ranking all candidate tails
according to their probabilities under the model. The ‘filtered’ rank, denoted below by rank(t|h, r),
takes into account that more than one tail may be a correct answer. One removes from the ranking
all other tails t′ 6= t for which a fact (h, r, t′) exists in either the training, validation, or test set. We
evaluate the following metrics of the filtered ranks (for all metrics, higher is better):

• Mean Reciprocal Rank (MRR), see, e.g., (Yang et al., 2015). It is defined by

MRR =
100

# of facts in test set S′
∑

(h,r,t)∈S′

1

rank(t|h, r) . (7)

• Balanced Mean Reciprocal Rank (MRRb). As discussed in the introduction, standard data sets
for knowledge graphs are highly imbalanced, i.e., most facts involve only a small subset of all
entities. This biases the standard MRR metric. We therefore propose a new metric that is more
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balanced than the standard MRR by averaging over entities rather than relations,

MRRb =
100

Ne

∑
e∈[Ne]

1

# of test triplets with tail t

 ∑
triplets with tail t

1

rank(t|h, r)

 . (8)

• Hits at 10 (H@10), see, e.g., (Bordes et al., 2013). It is the percentage of test facts for which
the 10 highest ranked predictions contain the correct prediction, i.e., for which rank(t|h, r) ≤ 10.

Baselines. We study two models, ComplEx (Trouillon et al., 2016; Lacroix et al., 2018) and Dist-
Mult (Yang et al., 2015; Kadlec et al., 2017), with and without the variational EM algorithm. As in
(Lacroix et al., 2018), our baseline for ComplEx, uses the weighted 3-norm regularizer that reached
the previous state-of-the-art performance, i.e., λe/r are proportional to the frequency of entity e (re-
lation r) in the dataset. We implemented our own version of DistMult using reciprocal relations and
full log-loss with weighted 3-norm regularizer. The results were consistent with (and even slightly
improved) the best results reported in the literature (Yang et al., 2015; Kadlec et al., 2017).
Datasets. We used four standard datasets. The first two are FB15K from the Freebase project
(Bollacker et al., 2008) and WN18 from the WordNet database (Bordes et al., 2014). The other two
datasets, FB15K-237 and WN18RR, are modified versions of FB15K and WN18 due to (Toutanova
& Chen, 2015; Dettmers et al., 2018). The motivation for the modified datasets is that FB15K
and WN18 contain near duplicate relations that make link prediction trivial for some facts, thus
encouraging overfitting. In FB15K-237 and WN18RR these near duplicates were removed.

Results. Tables 1 and 2 summarize our results. We see that the balanced metric MRRb is generally
lower than its unbalanced counterpart MRR, confirming the intuition that MRR is biased towards
the easier predictions. Table 1 shows results for the ComplEx model. We see that variational EM
improves the performance of the ComplEx model on three out of the four datasets. On the fourth
dataset, FB15K, variational EM improves H@10 over the baseline, but MRR and MRRb are better
in the baseline model. The latter may be explained by the fact that the FB15K data set is known to
contain near duplicates in the test-training split, thus favoring models that tend to overfit the data.

For DistMult the improvements are more significant (Table 2). In WN18, variational EM improves
both MRR and MRRb by 2 percentage points, and in WN18RR all metrics are improved almost by 1
percent. MRRb is improved by 0.5 percent in FB15K237, and H@10 is improved by 0.5 percent
in FB15K. Although a more exhaustive hyper-parameter tuning using cross validation might further
improve the performance of DistMult, the goal of this work is to reach such performance without
a need to do an expensive grid search. Using variational EM hyperparameter learning algorithm,
we can learn good hyperparameters λ easily and reach the state-of-the-art results without spending
many resources on hyperparameter tuning.

Table 1: Performance of different variants of the ComplEx model (filtered ranks). † denotes our im-
plementation of ComplEx with reciprocal relations and weighted 3-norm regularizer, hyperparame-
ters taken from (Lacroix et al., 2018) (it reaches the same performance as (Lacroix et al., 2018)).

Variant of the WN18RR WN18 FB15K237 FB15K
ComplEx model MRR/MRRb/H@10 ”/”/” ”/”/” ”/”/”

(Trouillon et al., 2016) -/-/- 94.1/-/94.7 -/-/- 69.2/-/84.0
Our MAP† 48.2/47.0/57.2 95.2/95.8/96.2 36.4/19.9/55.6 85.8/82.0/90.9

Our EM 48.6/47.3/57.9 95.3/95.8/96.4 36.5/20.3/56.0 85.4/81.9/91.5

Table 2: Performance of different models for DistMult model (filtered). Bold numbers are the
best performance. †Our implementation of DistMult with reciprocal relations and weighted 3-norm
regularizer.

Variant of the WN18RR WN18 FB15K237 FB15K
DistMult model MRR/MRRb/H@10 ”/”/” ”/”/” ”/”/”

(Kadlec et al., 2017) -/-/- 79.0/-/95.0 -/-/- 83.7/-/90.4
Our MAP† 44.7/43.4/53.3 89.8/90.0/95.8 35.5/18.9/54.6 84.2/80.0/90.8

Our EM 45.5/44.1/54.4 92.1/92.3/95.9 35.7/19.4/54.8 84.1/80.2/91.4
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(a) Learned λ for entities vs. frequencies. (b) Evolution of average λ in each frequency bin.

Figure 3: The values of λ at the end of optimization for FB15K-237 dataset and over training epochs.
In Figure 3a, the red line is the weighted λ in the baseline. Also, in Figure 3b λ are initialized with
the baseline. The plots justifies the heuristic of using a λ proportional to the frequency of parameters.
Figure 3a also confirms that there is a power-law relation between λ and frequencies.

Finally, we study the influence of the frequency of entities in the training data on the hyperparame-
ters learned by the variational EM algorithm. Figure 3a shows the learned λe for all entities e as a
function of the entities’ frequencies. The red line compares this to the weighted regularizer proposed
in (Srebro & Salakhutdinov, 2010), which sets λe and λr proportional to the frequency. Qualita-
tively, our findings confirm the heuristic to use stronger regularization for entities with more training
data. Quantitatively, however, we find that a linear relation between frequency and regularization
strength is too strong. Our result might point to a better frequency based heuristics to choose λ.

To study the evolution of regularizations over the training time, we divide the entities into three
bins [L,M,H] of low, medium, and high frequency. Each bin contains one third of the entities.
In Figure 3b shows the evolution of the average λ within each bin as a function of the training
epoch. The λ are initialized with the baseline (i.e., λ proportional to their frequency). We hold
the hyperparameters fixed for the first 15 epochs of the EM algorithm to allow for the variational
distribution qγ to come close to the actual posterior before we start updating λ. We see that on
average, the hyperparameters learned by our approach converge to a different optimal value than
the heuristic suggested by Srebro & Salakhutdinov (2010). In our experiments, we also see that,
as expected, the inferred uncertainties σEe and σRr are higher for entities and relations with fewer
training facts (see appendix for more details).

6 CONCLUSIONS

We showed that two of the most popular knowledge graph embedding models—DistMult and
ComplEx—have an interpretation as probabilistic generative models of facts. Drawing on this view,
we presented a scalable variational inference algorithm to learn a lower bound of the marginal like-
lihood of the data. We used this bound to optimize the many hyperparameters of these models by
gradient descent (variational EM); an approach that would not be possible when point estimating
model parameters. Using this methodology of optimizing hyperparameters, we outperformed the
state of the art in link prediction on several popular benchmark data sets. The approach enjoys the
same scalability properties as conventional maximum likelihood learning.

Our approach amounted to training the model twice: once in a Bayesian fashion to optimize hy-
perparameters, and then by point-estimating model parameters, using the hyperparameters obtained
from the previous optimization. One may wonder why the approximate posterior was not used for
link prediction. Our experiments revealed that using the posterior for link prediction worked well in
low dimensions, but underperformed in high dimensions (not shown). We interpret this as a failure
of the variational approximation in high dimension where the true posterior may locally not look
Gaussian, pushing the variational Gaussian means away from the posterior maximum. For learning
hyperparameters via variational EM, however, the variational approach works in all considered em-
bedding dimensions. In the future, it would be interesting to explore more sophisticated posterior
approximations that avoid this double-training procedure. However, a fully-Bayesian prediction task
would be expensive to evaluate, making the proposed approach the most relevant one in practice.
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A APPENDIX

A.1 COMPUTING THE TERMS IN ELBO

In this section , we compute the expectations appear in the ELBO in Eq. 6. For simplicity, we
choose DistMult as the embedding model, but the computations are similar for the other models
such as ComplEx (Trouillon et al., 2016) or CP (Hitchcock, 1927). The term −Eqγ [log qγ(E,R)] is
the entropy of the Gaussian distribution, and it is

− Eqγ [log qγ(E,R)] =
∑
e∈[Ne]

∑
i∈[K]

log σEei +
∑
r∈[Nr]

∑
i∈[K]

log σRri + c, (9)

where c is a constant and can be ignored in the optimization process. Now, let us focus on the eval-
uation of the expected prior. We derive the equations for Eqγ [log p(E|λe)] and Eqγ [log p(R|λr))]
can be computed in a similar way.

Gaussian prior. First, let us focus on the Gaussian prior

p(Ee|λe) =

√
(
λe
2π

)K exp(−λe‖Ee‖2/2).

The log of Gaussian prior is

log p(Ee|λe) = −λe
2
‖Ee‖2 +

K

2
log λe + c. (10)

The expectation of Eq. 10 with respect to the variational distribution qγ is

Eqγ [log p(Ee|λe)] = −λe
2

(
‖µEe ‖2 + ‖σEe ‖2

)
+
K

2
log λe + c., (11)

where ‖σEe ‖2 =
∑
i∈[K](σ

E
ei)

2, (details can be found in Appendix B of (Kingma & Welling, 2014)).
Notice that λe only appears in p(Ee|λe), so for a given µEe and σEe we can easily find its optimal
value by maximizing Eqγ [log p(Ee|λe)] over λ as follows,

λe =
K

‖µEe ‖2 + ‖σEe ‖2
, (12)

Nuclear 3-norm prior. Now, let us consider the prior

p(Ee|λe) =
1

Z
exp(−λe

3
‖Ee‖33),

where Z is the normalization factor. The normalization factor Z is only a function of λe and not
the variational parameters γ, hence Eqγ [logZ] = logZ. We start the analysis by computing the
normalization factor Z,

Z =

∫
Ee∈RK

exp(−λe
3
‖Ee‖33) dEe, (13)

we compute the integral with the change of the variables ζ = λ
1/3
e Ee

Z =
1

λ
K/3
e

∫
ζ∈RK

exp(−1

3
‖ζ‖33) dζ =

c

λ
K/3
e

, (14)

where c =
∫
ζ∈RK exp(− 1

3‖ζ‖33) dζ. Therefore,

Eqγ [logZ] = logZ = −K
3

log λe + c (15)

Now, let us focus on computing

Eqγ [
λe
3
‖Ee‖33] = Eqγ [

λe
3

∑
i∈[K]

|Eei|3].

12



Under review as a conference paper at ICLR 2019

Given the Gaussian variational distribution N(µEei, (σ
E
ei)

2), the samples of N(µEei, (σ
E
ei)

2) can be
written as

Eei ∼ µEei + σEeiε, (16)
where ε ∈ R is the noise sampled from the Gaussian distribution N(0, 1). Using this reparametriza-
tion, we get

Eqγ
[
‖Eei‖33

]
=

1√
2π

∫ ∞
−∞
|µEei + σeix|3e−

1
2x

2

dx

µ0=
µEei
σei=

σ3
ei√
2π

∫ ∞
−∞
|µ0 + x|3e− 1

2x
2

dx

=
σ3
ei√
2π

[
−
∫ ∞
µ0

(−µ0 + x)3e−
1
2x

2

dx+

∫ ∞
−µ0

(µ0 + x)3e−
1
2x

2

dx

]
=

σ3
ei√
2π

[
2

∫ ∞
µ0

(3µ2
0x+ x3)e−

1
2x

2

dx+

∫ µ0

−µ0

(3µ0x
2 + µ3

0)e−
1
2x

2

dx

]
=

σ3
ei√
2π

[
2(µ2

0 + 2)e−
1
2µ

2
0 +

√
π

2

(
6µ0 + 2µ3

0

)
erf(

µ0√
2

)

]
=

√
2

π

(
(µEei)

2σei + 2(σei)
3
)
e
− 1

2

(
µEei
σei

)2

+
(
3|µEei|(σei)2 + |µEei|3

)
erf
( |µEei|√

2σei

)
,

(17)

where erf(·) is the error function. Given Eqγ
[
‖Ee‖33

]
we can compute the optimal λ for a given γ

by maximizing ELBO as

λe =
K

Eqγ [‖Ee‖33]
. (18)

Arbitrary prior. For an arbitrary prior, we can always use the reparameterization trick to compute
a stochastic estimate of log prior and its gradient (check Lines 4-6 in Algorithm 1).

A.2 FURTHER REMARKS

Remark 1. DistMult is further improved by Trouillon et al. (2016). The improved algorithm (Com-
plEx) embeds the entities and relations to a K dimensional complex space CK rather than RK , and
Xh,r,t = Re

(∑K
i=1 EhiRriĒti

)
. Using complex numbers increases the flexibility of the algorithm

and allows ComplEx to capture the non-symmetry in the triplet facts, meaning that Xh,r,t 6= Xt,r,h.
This happens when the imaginary parts of the entries of the Rr are non-zero, while if the imag-
inary parts of the entries of the Rr are zero, the model can learn the symmetric relations, i.e.,
Xh,r,t = Xt,r,h. This is in contrast to DistMult, where always Xh,r,t = Xt,r,h.
Remark 2. Lacroix et al. (2018) presented a data augmentation technique, which simplifies the
presentation of the model. Given the set of the triplet facts {(hi, ri, ti)}i=1,...,n, one first augments
the data set by adding a new ‘reciprocal’ fact for each existing fact (hi, ri, ti). Then, for each fact
(hi, ri, ti) in the original data set, one adds a new fact by swapping head hi and tail ti and replacing
the relation with its reciprocal relation. The new dataset S = {(hi, ri, ti)}i=1,...,2n has 2n facts,
Ne entities and 2Nr relations (Nr relations plus Nr reciprocal relations). This augmentation of
the data maps the head and tail prediction task to just tail prediction. Two advantages are: (i) better
performance, this is because the relations are trained specifically for the task of tail predictions rather
than training a relation for both head and tail predictions (Lacroix et al., 2018); and (ii) it establishes
a consistent causal direction (h, r) → t that enables us to reuse the generative model for both head
and tail predictions.

A.3 UNCERTAINTY ANALYSIS

Figure 4 depicts the average standard deviation (i.e., σE and σR) of the embeddings inferred by
variational EM algorithm. As it is seen, on average, the frequent entities or relations have a lower
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Table 3: Dataset Statistics.

Dataset #entities #relations #training×103 #test×103 # validation×103

FB15K237 15k 237 272k 20k 18k
FB15K 15K 1k 500k 60k 50k

WN18RR 41k 11 87k 3k 3k
WN18 41k 18 141k 5k 5k

(a) Uncertainty of entities’ embeddings vs fre-
quencies.

(b) Uncertainty of relations’ embeddings vs fre-
quencies.

Figure 4: The average of standard deviations of Gaussian variational distribution for FB15K237 in
variational EM algorithm. We see that on average the entities with higher frequencies reach a lower
σ, that means a lower uncertainty.

uncertainty and variational EM algorithm learns more confident embeddings for the frequent entities
or relations. Also, on average, the relations’ embeddings have lower uncertainty compared to the
embeddings’ uncertainty. This is because there are fewer relations compared to entities, hence on
average, there are more facts for a relation compared to an entity.
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