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ABSTRACT

Multi-agent collaboration is required by numerous real-world problems. Although
distributed setting is usually adopted by practical systems, local range communi-
cation and information aggregation still matter in fulfilling complex tasks. For
multi-agent reinforcement learning, many previous studies have been dedicated to
design an effective communication architecture. However, existing models usu-
ally suffer from an ossified communication structure, e.g., most of them prede-
fine a particular communication mode by specifying a fixed time frequency and
spatial scope for agents to communicate regardless of necessity. Such design is
incapable of dealing with multi-agent scenarios that are capricious and compli-
cated, especially when only partial information is available. Motivated by this,
we argue that the solution is to build a spontaneous and self-organizing commu-
nication (SSoC) learning scheme. By treating the communication behaviour as
an explicit action, SSoC learns to organize communication in an effective and
efficient way. Particularly, it enables each agent to spontaneously decide when
and who to send messages based on its observed states. In this way, a dynamic
inter-agent communication channel is established in an online and self-organizing
manner. The agents also learn how to adaptively aggregate the received messages
and its own hidden states to execute actions. Various experiments have been con-
ducted to demonstrate that SSoC really learns intelligent message passing among
agents located far apart. With such agile communications, we observe that effec-
tive collaboration tactics emerge which have not been mastered by the compared
baselines.

1 INTRODUCTION

Many real-world applications involve participation of multiple agents, for example, multi-robot
control[13], network packet delivery[21] and autonomous vehicles planning [1], etc.. Learning such
systems is ideally required to be autonomous (e.g., using reinforcement learning). Recently, with the
rise of deep learning, deep reinforcement learning (RL) has demonstrated many exciting results in
several challenging scenarios e.g. robotic manipulation [4][10], visual navigation [23][11], as well
as the well-known application in game playing [14][17] etc.. However, unlike its success in solving
single-agent tasks, deep RL still faces many challenges in solving multi-agent learning scenarios.

Modeling multiple agents has two extreme solutions: one is treating all agents as an unity to apply a
single centralized framework, the other is modelling the agents as completely independent learners.
Studies following the former design are often known as “centralized approach”, for example [19][15]
etc. The obvious advantage of this class of approaches is a good guarantee of optimality since it is
equivalent to the single agent Markov decision process (MDP) essentially. However, it is usually
unfeasible to assume a global controller that knows everything about the environment in practice.
The other class of methods can be marked as “independent multi-agent reinforcement learning”.
These approaches assumes a totally independent setting in which the agents treat all others as a part
of the observed environment. [3] has pointed out that such a setup will suffer from the problem of
non-stationarity, which renders it hard to learn an optimal joint policy.
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Figure 1: An example to demonstrate the message flow of spontaneous and self-organizing commu-
nication (SSoC) architecture on a multi-agent system. The communication path is not predestined.
Instead, it is established by a ”Speak” action learned by the agents. Each agent can either start a
communication or transfer its received messages to remote agents.

Therefore, an intermediate setting of the above two scenarios is adopted by many researches in
this field. Specifically, each agent is constrained to a local view of the whole observation, but it
can exploit the information from neighbor agents within a local range around it. This paradigm
of MARL fits practical cases much better. Several recent efforts make a good progress under such
a distributed setup. One group of studies exploit a “centralized/communicated training + decen-
tralized/independent execution” mode. These works include [6][12] etc.. The information sharing
is fulfilled by learning a joint value function which exploits all agents’ information. Hence their
goal is to train each agent’s model better via a centralized training. However, this may miss the
benefit from an explicit local communication at execution time, which we believe is vital for better
collaborations.

The other class of methods move forward along a communication route. Among them, Meanfield
[20] proposes to learn collaborations between each agent with a “mean” agent of its neighbors.
This encourages information sharing within a local range, however, may still be limited since the
communication is through a plain mean action-value function without any information processing or
weighting mechanism. Hence the importance of each agent is treated equally by mean-field MARL.
This simplification may greatly limit the richness of communication and thus hinder the learning of
complex collaborations. Like Meanfield, Commnet [18] also assumes an average message for inter-
agent communications. It computes a mean value of the collected information from local teammates,
then broadcasts it as a message input to all nearby agents.

In essence, there are three key factors that determine a communication. That is when, where and
how the participants initiate the communication. Most of existing approaches, including the above-
mentioned Meanfield and Commnet, try to predefine each ingredient and thus lead to an inflexible
communication architecture. Recently, VAIN[5] and ATOC[7] incorporate attentional communica-
tion for collaborative multi-agent reinforcement learning. Compared with Meanfield and Commnet,
VAIN and ATOC have made one step further towards more flexible communication. However, the
step is still limited. Take ATOC as an example, although it learns a dynamic attention to diversify
agent messages, the message flow is only limited to the local range. This is unfavorable for learning
complex and long range communications. The communication time is also specified manually (ev-
ery ten steps). Hence it is requisite to find a new method that allows more flexible communication
on both learnable time and scopes.

In this regard, we propose a new solution with learnable spontaneous communication behaviours and
self-organizing message flow among agents. The proposed architecture is named as “Spontaneous
and Self-Organizing Communication” (SSoC) network. The key to such a spontaneous communica-
tion lies in the design that the communication is treated as an action to be learned in a reinforcement
manner. The corresponding action is called “Speak”. Each agent is eligible to take such an action
based on its current observation. Once an agent decides to “Speak”, it sends a message to partners
within the communication scope. In the next step, agents receiving this message will decide whether
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to pass the message forward to more distant agents or keep silence. This is exactly how SSoC dis-
tinguishes itself from existing approaches. Instead of predestining when and who will participate
in the communication, SSoC agents start communication only when necessary and stop transferring
received messages if they are useless. A self-organizing communication policy is learned via max-
imizing the total collaborative reward. The communication process of SSoC is depicted in Fig.1.
It shows an example of the message flow among four communicating agents. Specifically, agent 3
sends a message to ask for help for remote partners. Due to agent 3’s communication range, the
message can be seen only by agent 1. Then agent 1 decides to transfer the collected message to its
neighbors. Finally agent 2 and agent 4 read the messages from agent 3. These two agents are directly
unreachable from agent 3. In this way, each agent learns to send or transfer messages spontaneously
and finally form a communication route. Compared with the communication channels predefined
in previous works, the communication here is dynamically changing according to real needs of the
participating agents. Hence the communication manner forms a self-organizing mechanism.

We instantiate SSoC with a policy network with four functional units as shown in Fig.2. Besides
the agent’s original action, an extra “Speak” action is output based on the current observation and
hidden states. Here we simply design “Speak” as a binary {0, 1} output. Hence it works as a
“switch” to control whether to send or transfer a message. The “Speak” action determines when
and who to communicate in a fully spontaneous manner. A communication structure will naturally
emerge after several steps of message propagation. Here in our SSoC method, the “Speak” policy
is learned by a reward-driven reinforcement learning algorithm. The assumption is that a better
message propagation strategy should also lead to a higher accumulated reward.

We evaluate SSoC on several representative benchmarks. As we have observed, the learned policy
does demonstrate novel clear message propagation patterns which enable complex collaborative
strategies, for example, remote partners can be requested to help the current agent to get over hard
times. We also show the high efficiency of communication by visualizing a heat map showing how
often the agents “speak”. The communication turns out to be much sparser than existing predefined
communication channels which produce excessive messages. With such emerged collaborations
enabled by SSoC’s intelligent communication manner, it is also expected to see clear performance
gains compared with existing methods on the tested tasks.

2 RELATED WORK

Recently, several studies have concentrated on learning multiple agent communication for deep RL
networks. Among them, one class of work tries to build pairwise structure for multi-agent commu-
nication. [2] and [9] are among the first to propose learnable communications via back-propagation
between individual deep Q-networks. However, due to their motivating tasks, both works rely on
a peer-to-peer (P2P) communication strategy and usually apply to only a limited number of agents.
VAIN[5] also builds a pair-wise communication structure whose interaction weights are learned.
[16] proposes a pair-wise MARL approach for multi-object tracking task. In such models, the es-
sential state-action space of multiple agents grows geometrically with the number of agents, and so
is the communication load. Hence the pair-wise models suffer from scale issues.

Another branch of study attempts to establish a global communication channel for all agents. For
example, [15] proposes a bidirectional communication channel among all agents to facilitate effec-
tive communication. [19] applies a centralized method with zero-order optimization to control all
agents. [8] uses a master-slave architecture to control the communication of local agents by a mas-
ter. Commnet[18] builds a broadcasting communication channel among all agents and mean hidden
states are directly used as messages. Such architectures are practical communication ways but still
limited since 1) such a predefined structure forces every agent to send messages at every step. This
will produce lots of redundant information; 2) They all use a single net to model all agents, which
makes it difficult to extend to large-scale tasks.

To address the large-scale multi-agent problem in MARL, [20] proposes Meanfield algorithm. It
models a local communication between each agent and an approximating “mean-agent” of all its
neighbors. This encourages information sharing within a local range, however, its capability is still
limited since the average of action-value function may not be rich enough to induce complex collab-
orative policies for complicated tasks. Several recent studies exploit a “centralized/communicated
training + decentralized/independent execution” mode. For example, in COMA[6], a global critic
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was proposed, which could potentially work at a centralized level, however since critics are basi-
cally value networks, they do not provide explicit policy guidance. [12] also presents an adaptation
of actor-critic method which uses centralized action-value function that takes as input the states
and inferred actions of all agents. However, this mainly fosters a better training of each indepen-
dent model instead of establishing an explicit communication and information processing module at
testing time which is essential for effective collaborations

In order to learn more effective communication, [7] uses a recurrent attention model to help dynam-
ically perform communication and have better local communication. However, its message flow is
only limited to the local range. This is unfavorable for learning complex and long range communi-
cations. The communication time is also specified manually (every ten steps). Compared with their
work, SSoC learns both when and who to communicate with a spontaneous communication action.
It also allows long range communication via multi-step message propagation. These characteristics
are critical for learning better collaborative policies.

3 APPROACH

Here we introduce the details of the proposed SSoC network. We assume a distributed partially
observable MARL environment for SSoC. As illustrated by Fig.1, each agent can only see a neigh-
boring circular area. The goal is to achieve a certain winning state via taking a sequence of actions.
At each time t, an agent takes an action a

t

based on its own observed state s
t

as well as information
sent by partner agents within a local range around it. In this paper we call the shared information
mi

t

as “messages”. The messages flowing among agents determine which agents are sharing in-
formation with others at a certain time step. Unlike previous methods which usually predestine a
static communication structure, SSoC adopts a more flexible option. The key is to enable each agent
to learn an extra “Speak” action to determine whether to send the message to neighboring agents.
Hence only those agents “Speak” currently are able to be “heard” by its partners within its communi-
cation range. Then these partner agents are able to exploit the received messages to determine their
own actions. They are also eligible to pass the received messages forward to its neighbors if they
also take a “Speak” action. And their own “thought” can also be merged into the output message.
Like ordinary actions, “Speak” action also takes one time step. A communication path will form
naturally among all agents through multiple steps of communication. SSoC manages to establish
a “global” communication channel in such a self-organizing manner. Unlike previous communica-
tion architectures, this “global” communication channel of SSoC is also applicable for a distributed
MARL scenario.

3.1 THE SPONTANEOUS “SPEAK” ACTION

The “Speak” action is generated by an independent output of the network, which is parallel to the
original action output of each agent. We design “Speak” action as a binary signal to control whether
a message will be passed. Hence the action space of “Speak” contains 2 actions: ”1” represents
“Speak”, ”0” stands for “keep silent”. This binary “Speak” signal will be multiplied with the output
message of the agent. If the signal is ”1”, the output message is preserved and will be accessible by
the neighbor agents’ LWU module. Otherwise, it is hidden from other agents by a 0 signal.

Since the “Speak” action is determined by the agent itself based on its own observation, the sub-
sequent communication is started in a spontaneous way. It may happen anytime, anywhere which
only depends on the agents’ own policy. It is neither predetermined nor manually designed with
human intuitions. Therefore, we name such kind of communication as “self-organizing”. Here we
re-check the three key factors of multi-agent communication mentioned in section 1. Obviously,
such a “self-organizing” communication of SSoC is capable of learning when and who to commu-
nicate simultaneously. As for “how to communicate”, each agent is able to combine the received
message with its own “thought” to output actions. Furthermore, since SSoC implicitly builds a
“global” communication channel based on multi-step of “Speak” actions, the communication is not
only limited to the local area. Therefore, SSoC’s self-organizing communication really addresses
the key challenges of multi-agent communication in a new and more flexible way.
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Figure 2: Structure of SSoC network.

3.2 NETWORK STRUCTURE

The whole structure of SSoC is displayed as Fig.2 (a). The network mainly consists of two streams.
The top “agent stream” of Fig.2 (a) shows the original policy network of each agent. By taking the
input observation, a policy network will generate a hidden state “thought” h

t

. Then the “thought”
h
t

will be merged via an ACU (action composition unit) module with messages mi

t

from the bottom
“message stream” to obtain the action a

t

. And an extra binary “Speak” action will also be generated
from h

t

to decide whether to send the agent’s message to others. The message stream works as a
message receiver & sender for the agent. At each time step, it aggregates messages from other agents
within the communication range via a LWU (learnable weighting unit). Only messages from agents
who “Speak” at last time step will get collected by LWU. To incorporate the agent’s own “thought”
and send it to other agents, the aggregated messages mi

t

will be combined with h
t

through a MCU
(message composition unit) module as the output message mo

t

. Finally, the binary “Speak” action
from agent stream will be applied to determine the sending of message mo

t

to other agents.

Fig.2 (b) gives detailed implementation of the four functional units of SSoC. Specifically, the policy
network consists of 3 fully-connected layers The LWU module works as a self-weighted aggregator
of the collected messages {mo1

t

,mo2
t

,mo3
t

, . . .} from neighbor agents. For each input message, it
will predict a weight which will be multiplied with the original signal before a sum operation with
other messages. MCU merges the agent’s own “thought” and input message as a new message that
will be spread to other agents. It adopts a learnable gating mechanism which enables the agent to
decide the proportion of its own “thought” and other agents’ information in its output message. Like
MCU, ACU also combines the input message with its own “thought”. However, its goal is to output
the agent’s action. It is implemented like a basic LSTM cell without temporal recurrence.

3.3 LEARNING

The agent’s own action will be updated by a regular policy gradient with baseline. And the “Speak”
action takes an additional ”speak” policy gradient as equation 1:
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where T is the total time step of the episode. These two gradients will be fed to SSoC network
respectively for back-propagation (as shown by the green arrows in Fig.2 (a)). Note that the output
messages will be re-used as the input of other agents in next time step. Hence we create a buffer
to store the messages mo

t

at each time step. During training, messages will be taken out by each
agent from this buffer for both feed-forward sampling and backward updates. The detailed training
procedure is given in the appendix.
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4 EXPERIMENTS

Experiments are conducted on multi-camera intelligent surveillance task which is firstly proposed
by this paper and the large-scale battle task (64 vs. 64) from the MAgent benchmark[22]. Both
tasks assume distributed collaborative MARL environments. Agents only have local observations
and take actions independently. A shared reward will be given to all agents for model training. For
comparison, we select two state-of-the-art methods [18][20] as well as the independent multi-agent
policy gradient algorithm (denoted as Independent) as our baselines.

4.1 MULTI-CAMERA INTELLIGENT SURVEILLANCE TASK

In real life there are many occasions that need multiple agents cooperation to achieve their common
goal. One interesting case is to make a set of intelligent cameras track target people in airport or
railway station by actively changing their pose. Each camera is manipulated by an agent. Nearby
agents can share their information with each other. Inspired by this scenario, we design a simulation
task which we name as multi-camera intelligent surveillance task (as illustrated in Fig.3). In this
task, each target person (simplified as the small red balls) has his/her own walking route. They
will appear in the entrance area randomly at the beginning and walk to the destination. There are
three self-controlling cameras (the blue sector represents the camera’s current visual field) trying
to actively capture the moving target balls as long as possible. The camera can choose to sway its
angle left, right (by 15 degree) or keep static. Each camera can share its own “thought” only with its
neighbor camera. Hence this is a distributed MARL setting.

targets

Camera 1 Camera 2 Camera 3

Figure 3: An illustration of the multi-camera intelligent surveillance task.

The general objective of the cameras is to capture the moving balls as long as possible by changing
their angles cooperatively. We formulate the multi-camera intelligent surveillance task as a multi-
agent reinforcement learning problem:

• Overall objective: tracking the target red balls as long as it can during the whole episode;
• State: the sector visual field’s position and the ball’s position (given only if it is within the

visual field, otherwise is empty);
• Action: turning left by 15 degree, turning right by 15 degree or stay static;
• Reward: if the camera changes its angle and captures the target ball, it receives a positive

reward; if the ball is in the camera’s possible visual field but the camera doesn’t capture it,
the agent receives a negative reward; Otherwise, it receives a zero reward. (The details of
reward definition is given in appendix.)

Next we will show how our SSoC works in this environment. We argue that the camera agent knows
nothing about ball’s information, it needs to learn the useful information based its local observation
by itself. In our algorithm, the agent will adjust and optimize it’s policy with training and learn to
dynamically send necessary information to its local partners. As shown in Fig.4 (a), when the ball is
captured by the camera, it chooses to speak ”1” meaning that it has collected the ball’s information
and send the integrated message to the next camera to help the next camera learning better. When
the ball is outside of all the cameras’ field, the cameras choose to speak ”0” meaning that there is no
useful and necessary message to be delivered between cameras.

We compare SSoC on the multi-camera intelligent surveillance task with Meanfield, Commnet and
Independent MARL. In our environment setting, each episode contains 30 time steps And we train
every algorithm for 5000 episodes in total. We show the results of SSoC with baseline algorithms
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Figure 4: The experiment of multi-camera intelligent surveillance task

in Fig.4 (b). SSoC performs best by getting highest rewards on average, as in table 1. We find that
the agents learn a smart strategy that once the agent captures the ball, it can capture the ball all
the time until the ball moves outside its visual field. In addition, once an agent captures a ball, its
neighbor agent will search around by turning back and forth to capture the coming ball earlier. This
collaborative strategy is enabled by useful messages passing among the agents. When necessary, the
agent learns to speak ”1” meaning that it decides to transfer the useful message to next agent. When
there is no effective message, the agent chooses to be silent. For better illustration, we visualize
SSoC’s learned policy in the video against other algorithms. The video is in demo. We recommend
readers to have a look at the video for better understanding of the policy learned by SSoC.

The comparison of mean rewards is given by table 1.

Commnet Meanfield Independent SSoC
Mean rewards 12.77 8.35 12.17 14.18

Table 1: mean rewards on multi-camera intelligent surveillance task

4.2 LARGE-SCALE BATTLE TASK

The large-scale battle task is one MARL scenario included in the MAgent environment[22]. In the
task our algorithm controls a group of agents to eliminate the opponents. Each agent can move by
one cell or attack one nearby enemy at one time step. This task is challenging due to a large number
of participating agents (here 64 in our experiments). The difficulty is even larger considering the
environment’s distributed setting and agents’ partial visibility. We adopt a self-play training for all
the methods following [22]. All methods are trained for 2000 episodes. Each episode contains 400
steps. Learning rate is set to 0.0001 for all.

SSoC outperforms the compared baselines on mean rewards and mean kill (average number of killed
enemies in an episode) with a clear margin as shown by table 2. We also let SSoC play against
Commnet, Meanfield and Independent in this task. The results are shown in 6 (b). As we can see,
SSoC obtains a higher win rate compared with the baselines. The results demonstrate SSoC is an
competitive architecture for distributed MARL tasks.

To verify if it is SSoC’s spontaneous and self-organizing communication that brings such a big
improvement, we draw the heatmap of communication in Fig.5. The heat value here is computed
as an accumulation of the “Speak” signal (1 for “Speak” and 0 for silence) of each cell in recent
5 frames. In this way, we discover several cases with meaningful message flow which help our
agents win the battle. One such case is shown in Fig.5. Here we display both the heatmap and
corresponding situation in 10

th, 15th and 20

th frame here to show the learned agent policies and
message flow. In this case, frontier agents (marked as group a) encounter enemies first and needs
support of the agents of group b. Hence they start communication by taking “Speak” actions at
10

th frame. The messages sent by these agents transfer to group b through several steps. At 15th
frame, group b agents receive the message and “Speak” to gather nearby agents to move right and
help agents on the right. At 20th step, group b agents begin to confront enemies and join the attack.
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After a while, two groups of agents join force together to eliminate most of the enemies. This
example shows that the learned self-organizing communication does help our agents to learn a better
collaborative policy. Since the proposed scheme enables multi-step message transferring, an agent’s
message can be spread to agents on a much further area. Hence such a long-range reinforcement
policy can be learned in this case. In addition, we can see for most agents, “Speak” action is
not taken. This shows that agents only start a communication when necessary, instead of keeping
sending messages all the time like in [18][15]. This phenomenon shows the high efficiency of SSoC
communication.

“Speak”

a
b

b

a a

b …

10th Frame 15th frame 20th frame 300th frame

“Speak”

Message Flow

Figure 5: Emerged collaboration eabled by self-organizing communication on one test running.
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Figure 6: Performance comparison on large-scale battle task

Commnet Meanfield Independent SSoC
Mean rewards 197.6 236.3 25.6 312.4

Mean Kill 49 52 36 57

Table 2: mean rewards on larget-scale battle task
5 CONCLUSION

In this paper, we propose a SSoC network for MARL tasks. Unlike previous methods which often
assume a predestined communication structure, the SSoC agent learns when to start a communi-
cation or transfer its received message via a novel “Speak” action. Similar to the agent’s original
action, this “Speak” can also be learned in a reinforcement manner. With such a spontaneous com-
munication action, SSoC is able to establish a dynamic self-organizing communication structure
according to the current state. Experiments have been performed to demonstrate better collaborative
policies and improved on communication efficiency brought by such a design. In future work, we
will continue to enhance the learning of “Speak” action e.g. encoding a temporal abstraction to
make the communication flow more stable or develop a specific reward for this “Speak” action.
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Appendix

1. Reward definition for multi-camera intelligent surveillance task

The reward of the task is designed as follows: if the ball is in area I, the cor-
responding camera receives a positive reward which is calculated by an constant
c subtracting the distance from the target ball to the median of the sector; if
the ball is in area II, the camera receives a negative reward which is calculated
by the negative of distance from the target ball to the boundary of sector;if the
ball is in area III, the camera receives reward of zero. The reward definition is
summarized as (1) shows:

Reward =

8
><

>:

c� d

in

, when the ball is in I

0, when the ball is in II

�d
out

, when the ball is in III

(1)

𝑑𝑖𝑛

𝑑𝑜𝑢𝑡

I

II

III

Figure 1: Illustrate the reward defined for multi-camera intelligent surveillance
task

2. Training details of SSoC on large-scale battle task

The following algorithm gives the process of one round training on the large-
scale battle task. The reward is provided by the MAgent[22] platform.

r
✓

J(✓) = r
✓

"
log ⇡

✓

(s
t

,a
t

)

 
TX

i=t

r

i

� b(s
t

, ✓)

!#
(2)

1



Algorithm 1: SSoC Multi-Agent Policy Gradient (One Round)

Randomly initialize ✓ = (✓1, . . . , ✓n);
Set R

i

= 0, t = 0, T = 400;
Set s1 =initial state;
Set M

buffer

=?
while s

t

6=terminal and t < T do

t = t+ 1;
for each agent i = 1 . . . n do

Observe local state of agent i: si
t

;
Take out messages from M

buffer

as M
t

= {mo1
t�1,m

o2
t�1,m

o3
t�1, . . .}

Feed-forward: (ai
t

,m

o

t

) = SSoC(si
t

,M

t

);
M

buffer

=?
Store message in M

buffer

;

Sample action using ✏-greedy
�
a

i

t

�

Execute action;
Observe reward r

i

t

;
Accumulate rewards R

i

= R

i

+ r

i

t

;

Observe the next state s

t+1;

Update network parameters ✓1, . . . , ✓n using Eqn.(4);

r
✓

J

speak

(✓) = r
✓

"
log ⇡

✓

⇣
s
t

,aspeak

t

⌘ TX

i=t

r

i

� b(s
t

, ✓)

!#
(3)

✓  ✓ + �

T�1X

t=1

[r
✓

J(✓) +r
✓

J
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(✓)] (4)
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