Under review as a conference paper at ICLR 2018

HYPEREDGE2VEC: DISTRIBUTED REPRESENTATIONS
FOR HYPEREDGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Data structured in form of overlapping or non-overlapping sets is found in a variety
of domains, sometimes explicitly but often subtly. For example, teams, which are
of prime importance in social science studies are “sets of individuals”; “item sets”
in pattern mining are sets; and for various types of analysis in language studies a
sentence can be considered as a “set or bag of words”. Although building mod-
els and inference algorithms for structured data has been an important task in the
fields of machine learning and statistics, research on “set-like” data still remains
less explored. Relationships between pairs of elements can be modeled as edges
in a graph. However, modeling relationships that involve all members of a set, a
hyperedge is a more natural representation for the set. In this work, we focus on
the problem of embedding hyperedges in a hypergraph (a network of overlapping
sets) to a low dimensional vector space. We propose a probabilistic deep-learning
based method as well as a tensor-based algebraic model, both of which capture
the hypergraph structure in a principled manner without loosing set-level infor-
mation. Our central focus is to highlight the connection between hypergraphs
(topology), tensors (algebra) and probabilistic models. We present a number of
interesting baselines, some of which adapt existing node-level embedding models
to the hyperedge-level, as well as sequence based language techniques which are
adapted for set structured hypergraph topology. The performance is evaluated with
a network of social groups and a network of word phrases. Our experiments show
that accuracy wise our methods perform similar to those of baselines which are not
designed for hypergraphs. Moreover, our tensor based method is quiet efficient as
compared to deep-learning based auto-encoder method. We therefore, argue that
we have proposed more general methods which are suited for hypergraphs (and
therefore also for graphs) while maintaining accuracy and efficiency.

1 INTRODUCTION

In group structured data we have multiple entities related by some form of group relationships. In
fact, such data is more abundantly found in the real world than has been usually studied (Estrada
& Rodriguez-Velazquez, 2005). There are increasing number of fields where such data is being
found more than ever before. In social networks domain: team data from massive online multi-
player games (Ahmed et al.l 2011) such as World of Warcraft, group communication tools such as
Skype and Google Docs and research collaborations (Subbian et al 2013} jpub). There are other
fields in which structural relationships between entities is important as well, and large datasets
capturing them exist. Examples include Natural Language Processing (Bengio & Bengiol [2000),
Biology (Hwang et al.,[2008; Klamt et al.,|2009), e-commerce (Deshpande & Karypis|, |2004; |Chris-
takopoulou & Karypis| 2014) and Chemistry (Bartholomayl, [1960). Figure[I]shows such examples
for networks of groups, sentences, and item sets.

Hypergraph (Berge, 1984), which is a generalization of graphs, is a popular model to naturally cap-
ture higher-order relationships between sets of objects (Figure[2) (Estrada & Rodriguez-Velazquez|
2005). Within machine learning, algorithms guided by the structure of such higher order networks
(Zhou et al., 2006) have found applications in a variety of domains (Tian et al., 2009} |Gao et al.,
2013; L1 & L1, [2013;[Sharma et al., 20155 2017).

Under review as a conference paper at ICLR 2018

Past Collaboration History Text Corpus Transaction Database
1.{1,2} X 2 times 1. he is a good boy 1. {A,B}X 2 occurrences
2.{3,4} X 10 times 2. she is a good girl 2. {B,C,G} X 5 occurrences
3.{2,3,4} X 5 times 3.{A,D, F, G} X 1 occurrences
“Who all Frequent Item
worked Sets with min
L together?”

Network of Small Social Network of Item-sets
Groups (Hypergraph) Network of Sentences (Hypergraph)
(Hypergraph)

Figure 1: Example illustrating “set-like” structures from various domains.

More recently, the interest of representation learning in NLP (Mikolov et al.| |2013a) has stimulated
its application in graph embedding (learning low dimensional representation for graph nodes) (Per-
ozzi et al., [2014; Tang et al., |2015b; (Grover & Leskovec, 2016; |Cai et al.l 2017). However, this
new line of research is limited to simple graphs and we are unaware of any work that considers
hyperedge embeddings (learning representations for hyperedges). In this paper we aim to develop
methods which (1) learn hypergraph embeddings directly, (2) leverage the hypergraph topology and
(3) not loose the hyperedge-level joint information. These learned embeddings can then be em-
ployed by a supervised or semi-supervised algorithm to perform various predictive tasks pertaining
to hyperedges. For example performance prediction of a team (set of individuals) engaged in a
collaborative task or sentiment analysis of a sentence (set of words).

Although, there have been a variety of attempts to learn node embeddings for hypergraphs by ex-
tending traditional graph embedding methods for hypergraph setting. These approaches differ in the
extent they address the aims (2) and (3) as pointed previously. In first category, there are a number
of methods that incorporate the hypergraph topology using proxy graphs (Zhou et al., [2006; [Hwang
et al., 2008), therefore, incur loss of information. Also, |Agarwal et al.| (2006)) squarely criticize
that such representations can be learned by constructing graphs, which are proxies for the hyper-
graph structure. Second, are methods which actually, take into account the hyperedge-level infor-
mation, like the classical Neural Language Model which maintains the higher order sequence infor-
mation (Bengio & Bengio, 2000). But their model is designed for sequences and also simply ignores
the topology (sequences are linked by common words forming a network of sequences). However
recently, there has been interest in modeling “set-like” structures within deep-learning community
(Vinyals et al.} 2016} Rezatofighi et al.,[2016). But they do not consider the hypergraph structure be-
tween the sets and therefore, not model hypergraphs in a principled manner. Third category are those
methods that do not ignore the topology completely and also retain the hyperedge-level information.
Among this are k-way tensor based methods that explicitly do not work on hypergraph (Shashua
et al.,2006; Bulo & Pelillo,[2009), but the connection exists in the form that k-way tensor represents
a k-uniform hypergraph (Q1, 2005). But they are restricted to uniform hypergraphs.

We therefore, propose two methods, both of which directly learn hyperedge embeddings for general
hypergraphs and capture the hypergraph structure in a principled manner. First, is an auto-encoder
based deep-learning method and second, is a tensor-based algebraic method. We also highlight the
connection between hypergraphs (topology), tensors (algebra) and probabilistic models. A num-
ber of interesting baselines are also developed, some of which adapt existing node-level embedding
models to hypergraph setting and also sequence based NLP techniques are adapted for set structured
hypergraphs. We have experimented with social group dataset (network of teams as a hypergraph)
from an online game for team (hyperedge) performance prediction as well as language networks
(sentence/phrase hypergraphs) for phrase-level sentiment analysis. Our experiments show that ac-
curacy wise our methods perform similar to those of baselines which are not designed for hyper-
graphs. Moreover, our tensor based method is quiet efficient as compared to deep-learning based
auto-encoder method. We therefore, argue that we have proposed more general methods which are
suited for hypergraphs (and therefore also for graphs) while maintaining accuracy and efficiency. In
summary the main contributions of our paper are:

Under review as a conference paper at ICLR 2018

Cyolg2)
{1,2,3,4}

/C/ \C\cn Cis(83)

14 5 16
(1,23} {234 {341} {124} {345}

4 83
PRI AR
Cle) ¢, € G ©C5 c C\u\ Cis

(1,2} {23} {2,4} {13} {34} {14} 3,5} {4,5}

N —
NOG as Hypergraph C, {1} G o) C.{3) {4} C5{5) NOG as Simplicial Complex

Hasse Diagram for Simplicial Complex of NOG

C
Bangy

Figure 2: Example illustrating network of groups (NOG) which is the hypergraph (HG) (top left),
the corresponding simplicial complex (SC) (top right) and the hasse diagram (HD) (bottom) corre-
sponding to the simplicial complex, for a scenario where the actors {1,2,3,4,5} have collaberated in
past as groups: g1 = {1,2}, 9o = {1,2,3,4} and g3 = {3,4,5}.

e We propose the novel concept of a dual tensor corresponding to the hypergraph dual and
allows us to get hyperedge embedding directly.

e We propose a general hypergraph tensor decomposition method designed for general hy-
pergraphs (containing different cardinality hyperedges) unlike simple uniform hypergraph
tensor decomposition which is restricted to fixed cardinality hyperedges (i.e. uniform hy-
pergraph). We are unaware of any such works or applications employing this approach.

e We propose the novel idea to use of de-noising auto-encoder in a hypergraph setting. More-
over, we also develop techniques of creating noise using random-walks over hasse diagram
topology, which is original and unique.

e We highlight and argue that embeddings from tensor based methods have a natural hyper-
graph theoretic interpretation unlike the deep learning based black-box approaches.

e Our proposed methods learn hypergraph embeddings based on the unique approach of
leveraging the existing structure present in network data as context, in contrast to context
generation based existing graph embedding techniques.

Following is the outline for the rest of the paper. In section [2] we describe the problem definition
and statement followed by Section [3] where we describe in detail the various methods proposed in
this paper. Section] describes the datasets, experimental tasks & settings for the models. Section 3]
provides an overview of the related literature followed by conclusion and appendix.

2 PRELIMINARIES

In this paper we consider the scenario where we have a collection of elements. These elements
can represent individual actors in case of social groups or words in sentences or items in item-
sets within a transaction database. In other words a social group or a sentence or an item-set are
sets which contain these elements. Let V' = {v1,va,...,v,} represents n elements and we have
m sets defined over these elements, denoted by G = {g1, g2, ..., gm },» Where g; C V represents
the i'" set. The cardinality |g;| represents the number of elements in the set. Also each set g; €
G has an occurrence number R(g;), which denotes the number of times it has occurred. Such
overlapping or non-overlapping sets can be modeled as a hypergraph Berge|(1984), where the nodes
and hyperedges, represent the elements and sets, respectively. This hypergraph is represented as
N, = (V,G) with G as the collection of hyperedges over the nodes V. The incidence matrix H
{0, 1}‘G|X|V‘ for N, represents the presence of nodes in different hyperedges with H(g;,v) = 1 if
v € g; else 0. We also define degree d(v) of a vertex v as the number of hyperedges incident on this
vertex i.e. d(v) = >° 5 H(gi,v). A specialization of hypergraph model is the simplicial complex
(Munkres| [1984) (Figure [2), in which additionally each hyperedge has the subset closure property,
i.e., each subset of hyperedge is also a valid hyperedge.

Problem Statement: Given this setting, our goal is to learn the mapping ¢ : G — R? from
hyperedges to feature representations (i.e., embeddings) that can be used to build predictive models

Under review as a conference paper at ICLR 2018

involving sets. Here d is a parameter specifying the number of dimensions of the embedding vector.
Equivalently, ¢ can be thought of as a look-up matrix of size |G| x d, where |G/ is the total number
of sets or hyperedges.

3 METHODOLOGY

As we had mentioned before there are several methods to learn representation of nodes in a graph.
Given that a hyperedge is a set of nodes, a natural question arises is that, can we combine the node
level embeddings (learned using existing methods) within a given hyperedge to find a suitable repre-
sentation of that hyperedge? However, there are large number of possible ways one can combine the
node embeddings. Therefore, in the following two subsections, we develop two methods that learn
the embeddings for hyperedges directly in a more principled manner. Our tensor based method is
focused on retaining the set-level information intact while harnessing the hypergraph network struc-
ture. Where the auto-encoder based method harnesses the non-linearity of representation offered by
deep learning to generate crisp and powerful embeddings. Tensor based method has a natural hasse
diagram based topological interpretation and can generate both node and hyperedge embeddings.
Whereas deep learning model is more black-box based approach and can only generate hyperedge
embeddings.

3.1 HYPEREDGE2VEC USING HYPERGRAPH TENSOR DECOMPOSITION

In this section, we develop tensor (higher-order matrices) based linear algebraic methods that learn
node as well as hyperedge embedding by taking into account the joint probability over a hyperedge.
The idea behind using tensors is that they retain the set-level information contained in a hypergraph,
unlike the proxy graphs (corresponding to hypergraphs) based techniques (used as baselines in our
experiments), which approximate hyperedge or set-level information with dyadic edge-level infor-
mation. Therefore, we design an algorithm which is principally suited for hypergraph structured
data. For a given hypergraph we can extract a sub-hypergraph that only consists of the hyperedges
with cardinality k. This sub-hypergraph is a k-uniform hypergraph or k-graph (Cooper & Dutle,
2012). Corresponding to this k-uniform hypergraph, we can define a k" order n-dimensional sym-
metric tensor (Qi, [2005) Alﬁyp = (apy,pa,.pn) € RIF7) whose elements are initialized as follows:

Apy,pa,...pr = R(gl) (1
where {vp,, Vp,, ..., Up, } € g; and |g;| = k,Vi € {1,...,m}. Note that symmetry here implies that
value of element ay,, ;... p, i invariable under any permutation of its indices (p1,p2, .., px). Rest
all the elements in the tensor are zeros.

In a similar manner we can also define a dual tensor, corresponding to hypergraph dual where the
roles of nodes and hyperedges are interchanged. We consider all the hyperedges in the hypergraph
dual that are of cardinality k. This basically corresponds to all the vertices in the original hypergraph
which have a degree of k, i.e., they are part of exactly k hyperedges in the original hypergraph. Cor-
responding to this k-uniform hypergraph dual, we can define a k£*" order m-dimensional symmetric
dual tensor AX | = (a41.0....q.) € RIF™ whose elements are initialized as follows:

gy ,g2,qx = 1 2
where {gq,, 9gs, - 9, t O v and d(v;) = k,Vj € {1, ..., n}. Note that this tensor is also symmet-
ric and rest all the elements in the tensor are zeros. Moreover, we can also have other meaningful
initialization schemes, for that we refer to Appendix [B.1I] To realize our aim of learning node and
hyperedge embeddings we perform joint CP Tensor Decomposition (Kolda & Bader, [2009) (of the
tensors we just described) across different cardinality hyperedges simultaneously. Specifically, for
the node embeddings we solve the following optimization problem:

Cmax

min > Ak, — Ak 3)
k=cmin
where,
—_— d
A=Y Nzpoze.oz, =(\ZZ,..,2) 4)
r=1 k times k times

Under review as a conference paper at ICLR 2018

with z, € R", A\, € R,, Z € R"™? and Z(:,r) = z,. Notice, that equation E] is the stan-
dard symmetric CP decomposition but equation l is summation of reconstruction errors in differ-
ent tensor decomposmons for different cardinality hyperedges. Each error term learns a common
latent factor matrix Z using the empirical observed k-uniform sub-hypergraph stored in Ahyp en-
sor. We perform this joint decomposition by augmenting the standard CP Decomposition into the
Hypergraph-CP-ALS algorithm[I] Lines (4-8) is the standard (non-symmetric) CP Decomposition
(see reference Kolda & Bader| (2009) for details), which solves the following optimization:

d
Aﬁyp > auM o u® o u® = (A UM U Ut (5)
r=1
with zul?) € R™,)\, € R,, U0 ¢ R™*4 UG, r) = ul?) and j € {1,..,k}. As we want to

learn common representations (Z) for all the nodes, we add addltlonal constraint that enforce that
UG are same for all j € {1,..,k} and for all k& € [¢min, Cmaz]- Lines (9-15) is where we force
all representations for all cardinalities to be average of the , U achieved by the last decomposi-
tion iteration that occurred in lines (4-8). Averaging can be interpreted as equal contribution from
the latent factors learned from different cardinality (uniform) sub-hypergraphs. We make repeated
pass through the entire hypergraph (by learning via different k-uniform sub-hypergraph (line 3))
until the objective (equation [3)) converges. In our implementation we empirically observe that us-
ing the above mentioned unbiased averaging heuristic, our algorithm converges successfully. The
same algorithm is used to get the hyperedge embeddings, by just passing Agual instead of Apnyp.
We shall jointly refer to the embeddings achieved for nodes and hyperedges via the above tensor
decomposition techniques as t2v.

Algorithm 1 Hypergraph-CP-ALS (Anyp, Crmin; Cmagz)

1: randomly initialize UY, Vk € [cimin, Cmaz), Vi € {1, ..., k}
2: repeat
3. for k = ¢pin 10 Cruar do

4 for j = 1to k do

5 V — kU(l)Tk,U(l) % ..ox, UGDT gl-1 4 gl+DT gl 4 5, U, uW®
6: LU (Alﬁy)()(kU(k) ®..0 kU(Hl) ® kU(J Vo.. .o kU(l))VT
7: normalize columns of ;, U (and store norms as \)

8: end for

9: Z+ tyh uw

10: for p = cpin 1O Crge do

11: forj=1topdo

12: L,U0) 7

13: end for

14: end for

15: end for

16: until fit criteria achieved or maximum number of iterations exceeded
17: return Z

We would like to highlight a few points regarding the tensor methods. The tensors that we have
employed are super-symmetric and hence able to capture distribution over sets rather than sequence.
But in general we can employ a k-way tensor which is not symmetric to even capture sequence. In
this sense tensors are more general purpose. Another point one can observe that when we initialize
the hypergraph tensor Alﬁyp, we have initialized all the permutations of vertices corresponding to a
given hyperedge (Eq. 26). Moreover, we initialize it by the repetition counts.

3.2 HYPEREDGE2VEC USING HASSE DE-NOISING AUTOENCODER

An autoencoder (Bengio et al., 2009), takes an input vector x € [0,1]™ and maps it to a latent
representation y € [0,1]%. This is typically done using an affine mapping followed by a non-
linearity (more so when the input, like in our case, is binary (Vincent et al.l [2010)): fen(x) =
s(Wx + b), with parameters § = {W,b}. Here, W is a n x d weight matrix and b is the offset.

Under review as a conference paper at ICLR 2018

¢ (ABCDJI ABCDL

TN

-

® (mec (ﬂ\ 8,0} /((B, CD}/ CAAC_y {AB,C ((B,E,D)\I
Wy ; IR
’«‘ D) (8,0} OREP= WP N) S
Hypergraph “A 8} «A cl /‘ et i 4 =) (A'B},‘ Wi’c)
\

~ ~ ~ ~
] \] 1 ({D}
o o L4 A (|)

Occurred Subset / Superset Complete Hasse Lattice Hasse Lattice of distance = 2 for hyperedge = {B, C}
Not Occurred

inal
= 3 epresentations
Aol 1] [
.
c ncoder Encoder | | pecoder
Layar1 Layer2 Ly r2 I.ayer:l
o o] e
{B,C}
onginal _'_l
Input
Sampled 3 Corrupted Inputs for Output
Hyperedge = {B,C} Two Layer AutoEncoder

Figure 3: For the given hypergraph between four nodes (A,B,C,D) we consider the complete hasse
lattice. For a given hyperedge {B,C} (square box) we then construct the sub-lattice made of hyper-
edges with distance h = 2 from {B,C}. We perform random walk (with 7 = 0.2) starting from
the node corresponding to hyperedge {B,C} and sample p = 3 hyperedges (nodes visited by the
random walk; shown with a check-mark v'). Finally, we train the autoencoder to reconstruct the
original hyperedge from these p noisy hyperedges.

This latent representation is reconstructed into a vector z = f4.(y) = s(W'y + b’), in the input
space, z € [0,1]" and parameters 8 = {W’ b’}. The mappings f., and f;. are referred as the
encoder and decoder, respectively. The representation y is learned by minimizing the following
reconstruction error:

0'.0" = arg f;mf > Lixim) - e fg}mf ZL xi, 9o (fo(x:)) ©
=1

where L is a loss function, which in case of binary or bit probabilities is often chosen as the cross-

entropy loss:
n

L(x,2) = 3 [x(j) log z(j) + (1 — x(j)) log(1 - 2())] ™)
j=1

In their paper, Vincent et al. (2010) have shown that minimizing reconstruction amounts to max-
imizing the lower bound on the mutual information between input (x) and the representation y.
However, they have further argued (Vincent et al.| (2008)) that y retaining information about input
x is insufficient. They further, propose the idea that the learned representation should be able to
recover (denoising) the original input even after being trained with corrupted input (adding noise).
They generate the corrupted input (X), using a stochastic mapping ¢(X|x). Choice of noise is usually
either Gaussian for real inputs and Salt-and-pepper noise for discrete inputs. The denoising autoen-

coder then learns the representation for each input, x, same as Equation 6] but with the following
modified loss function: L(x(%), gor (fo(X(7)))).

We leverage the denoising autoencoder for learning representation for ;" hyperedge, by treating
each hyperedge as an input, x = H(j,:). The size of this input vector for each hyperedge is n,
which is the number of vertices in the hypergraph. In most natural hypergraphs, specially social
networks, n can be quiet high ranging from thousands to millions or even billions (like Facebook
for example). Therefore, randomly using a discrete noise like salt-and-pepper, might not be reason-
able, as there are large number of possible permutations (as size n is large) and not all of them are
related. Random addition of 1s or deletion of existing 1s from x, amounts to randomly adding or
deleting vertices to the hyperedge corresponding to x. This might end up in new hyperedges that
are completely unrelated to the given hyperedge (x). For example, users (nodes) in a social network

Under review as a conference paper at ICLR 2018

from completely different regions of the network suddenly form a group (hyperedge). Such anoma-
lous scenarios rarely happen in practice and social groups evolve in a gradual fashion via simple
processes (Sharma et al., 2017;2015).

Rather, we take advantage of the hypergraph structure to systematically guide us in generating this
noise. A hypergraph can be defined by its corresponding hasse lattice (Sharma et al., [2017). For
a given hyperedge (x), we consider the sub-lattice consisting of only those hyperedges that are a
distance h from it in the complete lattice. On this sub-lattice we sample p hyperedges (nodes in sub-
lattice) by performing random walk starting at the given hyperedge’s node (see Figure[3). We assume
that all the nodes in the sub-lattice which correspond to previously occurred hyperedge g; have
weight R(g;) and rest all nodes have a constant weight 7. During random walk from a given node
we choose a neighboring node (as the next node) in proportion to this neighboring node’s weight
as compared to the other neighboring nodes. Our stochastic mapping ¢(X|x) is therefore, a random
walk on the sub-lattice of hyperdge (x) containing hyperedges at distance i from it. Intuitively,
the hyperedges coming within a reasonable distance will affect each others representations and will
have more similar representations. We will refer to the hyperedge representations learned by the
above autoencoder technique, as h2v-auto.

4 EXPERIMENTS

4.1 DATASET DESCRIPTION

As the first dataset, we use group interaction log-data of the Sony’s Online multi-player game Ev-
erQuest II (EQ II) (www.everquest2.com) for a time period of nine months. In this game, several
players work together as a team to perform various tasks. Each team earn points after completion of
each task, and as the teams progress by earning points, they are escalated to different levels of game
play. The interestingness of the game increases with each level. The points earned by the teams
are treated as a measure of group performance. Each set of players who played together is treated
as a hyperedge. We treat the number of times same set of players play together again as hyperedge
occurrence number (R(g;)). Players can participate in several teams over time, therefore, resulting
in a hypergraph with overlapping hyperedges. We consider hyperedges of cardinality € [2, 6] as
almost 90% of our hyperedges lie within this range. The resulting dataset contains a total of 5964
hyperedges (teams) among 6536 nodes (players).

Second dataset, is the fully labeled and publicly available sentiment analysis corpus of Stanford
Sentiment Treebank (LangNet) (Socher et al., [2013)). This dataset is based on the reviews from
a movie review website (www.rottentomatoes.com) and contains 215,154 unique phrases. Each
of the phrases are labeled with a sentiment score (a real number € [0, 1], larger value indicates
positive sentiment) by human annotators. Each phrase is a set or hyperedge of words. As there is
no occurrence information for a phrase hyperedge we consider R(g;) = 1,Vi € {1,...,m}. Given
that words are shared across various phrases, these common words connect the phrase hyperedges,
resulting in a phrase hypergraph with overlapping phrase hyperedges. Again, we only consider
hyperedges of cardinality € [2,6]. After applying this cardinality filter we are left with 141,410
hyperedges (phrases) and 21,122 nodes (words).

4.2 EVALUATION METHODOLOGY AND EXPERIMENTAL SETUP
4.2.1 METHODS COMPARED

As mentioned before we refer to our proposed methods: tensor based hypergraph tensor decom-
position and deep auto-encoder based hypergraph auto-encoder, as t2v and h2v-auto, respectively.
We compare our proposed methods against six baselines which are listed below. Methods (1-2) are
adapted from sequence based language models for set structured hypergraph data. Methods (3-6)
are various kind of dyadic graph based embedding methods adapted for hypergraph setting.

1. h2v-DM: Hyperedge and node embeddings obtained using sentence embedding using dis-
tributed memory (DM) model (refer section[A.T)

2. h2v-DBOW: Hyperedge and node embeddings obtained using sentence embedding using
distributed memory (DBOW) model (refer section|[A.I))

Under review as a conference paper at ICLR 2018

3. h2v-inv: Hyperedge and node embeddings obtained using node2vec on inverted hyper-
graph and simple graph, respectively (refer section [A.2)

4. h2v-dual: Hyperedge and node embeddings obtained using node2vec on hypergraph dual
and the proxy graph for hypergraph, respectively (refer section[A.2)

5. e2v: Hyperedge and node spectral embeddings obtained using eigen decomposition of
inverted hypergraph laplacian and graph laplacian, respectively (refer section [A.3)

6. e2v-hyp: Hyperedge and node spectral embeddings obtained using eigen decomposition
of dual laplacian and hypergraph laplacian, respectively (refer section[A.3)

The details of these baseline can be found in Appendix [A] Except for h2v-auto, each of the base-
lines as well as t2v outputs both node as well as hyperedge embeddings of dimension d = 128.
We further combine the node and hyperedge embedding using five different strategies: (i) node
embedding summation (dimension d = 128), (ii) node embedding summation and concatenation
with hyperedge embedding (dimension 2 x d = 256), (iii) node embedding averaging (dimension
d = 128), (iv) node embedding averaging and concatenation with hyperedge embedding (dimension
2 x d = 256), and (v) only hyperedge embedding (dimension d = 128). h2v-auto only produces
hyperedge embeddings of dimension d = 128. But it builds the embeddings using three different
scenarios as mentioned in next section. Therefore, in total we have 38 (= 35 + 3) different scenarios
each resulting in a different hyperedge embedding.

4.2.2 EVALUATION TASKS AND SETUP

We perform two regression based tasks for the two datasets. In EQII dataset each team (hyperedge)
has a team performance score associated with it. This team performance score is a real number,
equal to the number of points earned by the team while performing one or more tasks within a
gaming session. We treat the embedding learned for a given team (hyperedge) as its feature vector
which is associated with a real number (team performance). We therefore, perform on regression
over all the hyperedges (teams) with team performance as the dependent variable.

Similarly, in LangNet dataset each phrase (hyperedge) has a sentiment score associated with it,
which again is a real number. Similar to the team dataset above, we treat the embedding learned for
a given phrase (hyperedge) as its feature vector which is associated with a real number (sentiment
score). We therefore, treat this as a regression task with sentiment score as the dependent variable
and perform regression using the feature matrix containing embeddings of all the phrases.

For both the tasks we just described, we perform several evaluation runs. In each run we randomly
choose 30% of hyperedges (teams or phrases) as the test set and learn ridge regression parameters
using the remaining 70% training hyperedges for each of the 38 different embedding scenarios. Root
mean squared error (RMSE) was chosen as the evaluation metric (the lower, the better). RMSE
was calculated for each of the 38 scenarios and for each run. Final RMSE score was taken as the
average RMSE score across five runs. Ridge regression’s hyper-parameter was chosen by 5-fold
cross-validation.

For the auto-encoder method (h2v-auto) we consider three scenarios: (1) single hidden layer (L1)
of d = 128; (2) two hidden layers (L1 & L2) with size of L1 : d = 96 and of L2 : d = 32. We
concatenate these embedding to get a single d = 128 size embedding; and (3) two hidden layers
(L1 & L2) with size of L1 : d = 512 and of L2 : d = 128. We use the output of L2, which
is of dimension d = 128, as the embedding. For sampling, we use the distance parameter h = 2
for generating the sub-lattice and 7 = 0.2 for both datasets. Also, p = 10 & p = 5 number of
hyperedges are sampled (corresponding to each hyperedge) from EQII and LangNet, respectively.

4.3 RESULTS AND DISCUSSION

Tables [I| & 2] show the RMSE scores of t2v (as compared with baselines) for the tasks of team per-
formance prediction and sentiment score prediction, respectively. These tables contain scores for
all the 35 different scenarios: columns represent 7 (6 baselines and the proposed hypergraph ten-
sor decomposition (t2v)) different models while rows represent combination strategies. The scores
for hypergraph auto-encoder (h2v-auto) are shown in the separate Table {4{ as auto-encoder only
generates hyperedge embeddings.

Under review as a conference paper at ICLR 2018

Accuracy & Run-times As we can observe that for our datasets and for both the regression tasks,
almost all the embeddings (baselines and proposed) are performing very similarly in terms of accu-
racy. However, we can observer in Table 3] that tensor based method (t2v) have significant less time
than the expensive auto-encoder technique (h2v-auto) (Table). Among the baselines e2v-hyp
is the fastest. We also observer that sentence based techniques run faster on text-based LangNet
dataset as compared to node2vec based methods which are not designed for text data and vice-versa.

Interpretability All the matrix or tensor based algebraic techniques: e2v, e2v-hyp and t2v, have
a natural graph theoretic interpretation. e2v and e2v-hyp are both well studied spectral techniques
with several eigen-value based interpretations. t2v has a hierarchical hasse diagram based interpre-
tation. In contrast the sentence and node2vec based techniques can be understood only intuitively
in terms of the cost function. Apart from the noise which has a random walk based interpretation,
h2v-auto is a deep-learning based method which exploits multiple level of non-linearity and is over
all a black-box approach.

Information Loss To reiterate one of the primary aims of this study is to design methods that
retain the hyperedge-level joint information. The proposed tensor-based t2v principally capture the
joint distribution over various cardinality hyperedges unlike conditional distribution like sentence
embedding (h2v-dm) (which are more appropriate for sequences). In comparison the other method
proposed h2v-auto, although are not directly designed to retain hyperedge-level joint distribution,
but we hypothesize that the deep layered neural network should output highly informative non-
linear representations. Several other baselines only retain pair-wise information. For example, the
methods developed using Node2Vec in Section[A.2]are based on the skip-gram model, which learns
embedding of nodes while maximizing the conditional probability of a node given another node in
a context (Eq. [T7). Similarly, the spectral methods (Section[A.3) are inherently two dimensional as
they are based on matrix. Same is the case with skip-gram based sentence embedding (h2v-dbow).
However, sentence embedding based on the DM architecture (h2v-dm) maximizes the conditional
probability of a word given the previous set of words (context) without breaking this context (by
concatenating or averaging the embedding of the previous words).

Leveraging Hypergraph Topology is another feature that we stress as a desirable property in a
method which aims to build hyperedge embedding. Hypergraph topology is an important auxiliary
information, if left unused is wastage of resources at hand. We observe that except the sentence-
based baselines, both proposed methods as well as other baselines, which are adapted for the hy-
pergraph setting, leverage hypergraph topology using various hypergraph representations. Proposed
h2v-auto generated noise using the hasse lattice and t2v directly models the hasse lattice by stor-
ing hyperedge level joint distribution using super-symmetric tensors. Node2vec based and spectral
baselines use various kinds of matrices (that capture hypergraph topology up to varying degrees) as
enlisted in (3-6) in Section[d.2.1]

Ability to generate hyperedge embeddings directly is another critical aim as was highlighted in
the introduction. We emphasize that none of the baselines are designed to give hyperedge embed-
dings in a principled manner. However, both tensor based (t2v using A _) as well as auto-encoder
(h2v-auto) methods proposed in this paper are specifically designed to give hyperedge representa-
tions directly.

Choice of Method Both tensor based (t2v using AX) as well as auto-encoder (h2v-auto) methods
proposed in this paper are able to generate embeddings for all hyperedges of various cardinalities
present in data. However, the auto-encoder method cannot generate node embeddings unlike tensor
method (using Alﬁyp). On contrary, in auto-encoder technique we don’t need to figure out a and (8
parameters (as discussed in the next subsection[d.4). Another, thing to note is that tensors are inher-
ently capable of retaining joint information because of their higher-order structure. Auto-encoder
method implicitly (possibly lossy manner) leverage the higher order information embedded in net-
work in form of node weights (R(g;)) while performing the random walk sampling. Main advantage
of auto-encoders is the crisp embedding achieved via multiple levels of non-linearity offered by deep
neural networks. Although this non-linearity improves the accuracy of auto-encoder methods very
slightly (Table) as compared to tensor method (bottom right corner of (Table [T] & [2), the compu-
tation cost of tensor is far less than the auto-encoder method (TableE] & E[) Intuitively, it seems that
depending upon the task at hand, in some tasks the retention of joint hyperedge-level information
is more important while modeling and data has lesser non-linear structure; or vice versa. But the
low computational cost (as reflected in our tasks) makes tensor method definitely more lucrative.

Under review as a conference paper at ICLR 2018

Table 1: RMSE Scores of (t2v) compared to baselines for EQ II Team Performance Analysis

Baselines | Hypergraph
Sentence Embed based Node2Vec based Spectral methods | Tensor Decomp.
Embed Combination h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)
Node Embed Sum 0.79308 0.79567 0.80418 0.79956 0.81183 0.81405 0.81341
Node Embed Sum + Hyperedge Embed 0.79651 0.80241 0.81362 0.80636 0.8113 0.81652 0.81299
Node Embed Average 0.81584 0.81733 0.82407 0.82281 0.81234 0.81369 0.81303
Node Embed Avg + Hyperedge Embed 0.8182 0.82077 0.83378 0.82896 0.81223 0.81608 0.8127
Only Hyperedge Embed 0.81203 0.81522 0.82189 0.81984 0.81233 0.81608 0.81341

Table 2: RMSE Scores of (t2v) compared to baselines for LangNet Sentiment Analysis

Baselines \ Hypergraph
Sentence Embed based Node2Vec based Spectral methods \ Tensor Decomp.
Embed Combination h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (12v)
Node Embed Sum 0.14081 0.14029 N/A N/A 0.14633 0.14854 0.14194
Node Embed Sum + Hyperedge Embed 0.14028 0.13883 N/A N/A 0.14627 0.14845 0.14144
Node Embed Average 0.14245 0.14115 N/A N/A 0.14665 0.14852 0.14381
Node Embed Avg + Hyperedge Embed 0.14178 0.14007 N/A N/A 0.14661 0.14845 0.14333
Only Hyperedge Embed 0.14194 0.14147 N/A N/A 0.14744 0.14844 0.1482

Table 3: Average Runtime (seconds) of (t2v) compared to baselines across datasets

Baselines | Hypergraph
Sentence Embed based Node2Vec based Spectral methods \ Tensor Decomp.
Dataset h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)
EQ2 455.84 103.47 90.05 9341 128.03 12.01 213.37
LangNet 80.61 62.31 211.97* 207.86* 22146 47.12 483.81

* these are average time taken for learning vertex embeddings only

Table 4: RMSE Scores & Run-times for EQ II (Team Performance) & LangNet (Sentiment Anal-
ysis) using Hypergraph Auto-encoder (h2v-auto)

H EQII \ LangNet
Layer Sizes | L1:128 L1:96/1.2:32 L1:512/1.2:128 L1:128 L1:96/1.2:32 L1:512/1.2:128
RMSE 0.81104 0.81512 0.81635 0.14568 0.14529 0.14784
Run Time 52 min 40 min 1 hr 20 min 2hr 10 min 3 hr 20 min 6 hr

10

Under review as a conference paper at ICLR 2018

Together with the natural graph theoretic interpretation, tensor methods in comparison to black-box
approach of deep learning based auto-encoder, makes them even more viable.

Highlight Another distinguishing feature of our work is that we leverage the existing structure
(group structure) within the data. Recent attempts along these lines in network literature (Grover &
Leskovec, 2016} [Tang et al., |2015b; |Perozzi et al., |2014)) argue that language models have ready-
made context in the form of sentences or paragraphs to train the model, which are not available in
networks, and therefore, they propose different ways to generate this context. In contrast, we focus
on networks where the context is already present, e.g. collaboration networks where collaborative
teams are hyperedges, or language hyper-networks where sentences are hyperedges.

4.4 SCALABILITY

Both tensor based (t2v using Agual) as well as auto-encoder (h2v-auto) methods proposed in this
paper are able to generate embeddings for all hyperedges of various cardinalities present in data.

Scalability for t2v The scalability issue in tensor based approach arise on two fronts: (1) the increase
in number of hyperedges (m) or number of vertices (n) and (2) increase in parameter o (maximum
cardinality hyperedge considered in the cost function) or 4 (maximum degree vertex considered in
the cost function). Also there are two kinds of cost: (1) enumeration cost associated associated while
building hypergraph and dual tensors and (2) cost for hypergraph tensor decomposition.

In case of hyperedge embeddings, for each vertex v of degree (i.e. number of hyperedges it is part of)
d(v) there are d(v)! entries (permutations of hyperedges incident on v) to be enumerated to fill the
tensor Agl(l‘gl. This amounts to a worst case enumeration cost of) 5, d(v)!. However, d(v)! can
grow prohibitively large for vertices with large vertex degree d(v). We therefore, propose to restrict
ourselves to vertices of degree d(v) < . In fact we propose the following augmented initialization
scheme for the dual tensors. For degree k (< «) vertex, v; € {gq,, Yqs» - 9qi } a0d d(v;) = k <
a,Vj € {1,...,n}, we initialize the following elements of AX ., = (a4,.00...q) € RF™ same
as Bquation 29] For degree k (> o) vertex, v; € {gq,:9qos - 9q, }-VJ € {1,...,n}, we initialize

elements of Ag,,,; as,
Qq1,q2,-,90 =
AGeat1)q(at2)r 20 —
....... 8)
Qg Qo ke | oo ogeeens q =1
(£]-va+n | £ | -nat (| £ Do
andif 6 = (k — (| £ |a)) # 0, then we also initialize the following element of AJ,,,, as:
=1 9

The above initialization basically partitions the k hyperedges incident on a vertex into (ng +1) (or

(LgJ), if v is a divisor of k) partitions. There are several techniques to obtain such a partition, but
in this paper we simply sort the incident hyperedges by their cardinality and then sequentially make
sets of a elements each (except the last partition which is of size (k — (| £ |a)) is not an integer)

as shown in Equations(E]) This augmentation shall decrease the enumeration cost to: Agyal =

ey, A0+ Yoers V?Ja! + (d(v) — ({%J a))!), where V, = {v|v € V,d(v) < a}
and V, = (V — V). Depending upon the availability of resources (single machine or a distributed
computing resources) we can choose the cut-off degree («) accordingly. Notice that although we
perform this degree thresholding we still get embedding for all the hyperedges. However, what we
sacrifice is the higher order information that a given vertex connects a set of incident hyperedges
jointly. But for higher order vertices we argue that as the vertex degree get too high our belief
in the inference that hyperedges incident are related diminishes. These high degree vertices can
be interpreted as highly popular person participating in a huge number of teams, but should the
embeddings of these teams be related to each other is difficult to infer. In text data these high
degree nodes correspond to words occurring in a large number of phrases, but this doesn’t mean the
sentences are related, rather its just that this word is quiet common.

11

Under review as a conference paper at ICLR 2018

In case of vertex embeddings, for each hyperedge g; € G, we need to initialize |g;|! elements of

ALg;‘p, with a worst case enumeration cost of > [gi|!. Given this cost can be prohibitive as
the hyperedge cardinalities increase, we propose an augmented initialization scheme for hypergraph
tensors where we shall restrict ourselves to hyperedges of cardinality < . For hyperedges g; with

lg:| = k < B we initialize AX = (ap, p,. p.) € RET same as Equation For hyperedge with

hyp —
cardinality |g;| > $, we initialize the elements of ‘Af}yp € RIB7 as follows:
R(g:)
Aplph,.ply = ~ (10)

where (p}, pb, .., pls) is the I-th permutation among | = {1,2, ..., v}, where y = (‘%i‘). Enumeration

costnow decreases t0: Anyp =3, g, |9:['+>°,.cq, (‘gﬁ"")ﬁ!,where Ga ={9ilg: € G, |g:| = B}
and G, = (G — G,). The choice of cut-off (3) is therefore, dictated by the computation resources
available. Notice that although we perform this cardinality thresholding we still get embedding for
all the vertices. However, what we sacrifice is the higher order information that a given hyperedge
connects a set of incident vertices jointly. Now, as the k increases, the number of k cardinality hy-
peredge decrease as well as the Aﬁyp tensor grows exponentially making it increasingly sparse and
less informative (in information theoretic sense). Therefore, restricting to 3 cardinality hyperedges
is a trade-off between enumeration cost and hyperedge level joint information loss. We observer that
enumeration involved in both hyperedge and vertex embeddings, Equations([8} [I0), are either vertex
or hyperedge centric computations and can be performed in a scalable manner using the generic
hyperedge-centric distributed computation libraries like MESH (Heintz & Chandral [2015} Heintz
et al.,[2017) and HyperX (Huang et al., 2015).

Now we consider the tensor decomposition complexity and its scalability. For hyperedge
embeddings, the per iteration complexity of the algorithm is O(>5_, nnz(A9,,;)). Notice,

(35 nnz(A%yua)) < Adual. Similarly, in case of vertex embeddings the per iteration com-
plexity of the algorithm is O(Zfzcmm nnz(A¥__)). Notice, (Zﬁ nnz(fllﬁyp)) < Anyp.

h; k:Cmin

Hypergraph Tensor Decomposition basically invobi\ljes learning vertex or hyperedge embeddings, i.e.
parameters which are vertex or hyperedge centric. We can therefore, convert the tensor decompo-
sitions into equivalent hyperedge or vertex centric message passing algorithm and use the generic
hyperedge or vertex centric distributed computation libraries like MESH or HyperX, as mentioned
previously. Although, we highlight the possible directions for scalability, but we propose them as a

future work.

Scalability without partitioning for t2v As discussed previously, as we are performing hyperedge
cardinality as well as vertex degree thresholding and for that reason we developed augmented enu-
meration schemes in Equation ([8} [I0). The partitioning involved in this augmentation ensures that
all the hyperedges and all the vertices are linked by some vertex of degree < « and some hyperedge
of cardinality < (. If this augmentation was not performed, and we simply use the enumeration of
Equations ([26} [29), it was possible for example, that some hyperedge which has no vertex whose
degree is < «, and therefore, would be left out and no embedding would be learned for this hyper-
edge (because of cold start in tensor decomposition). Rather than performing the augmentation we
can use semi-supervised learning to learn the embeddings for critical hyperedges (hyperedges with
all vertices with degree > «) using the embeddings of the non-critical hyperedges ((hyperedges
with at least one vertex with degree < «)). As all the hyperedges (critical or not) are linked using
the hypergraph topology, we can perform semi-supervised learning using topology based regular-
ization while performing tensor decomposition. This can be done using a graph regularization term

((kU(j)T)L(» UU))) in our tensor decomposition objective function Here, L is the graph laplacian
of our choice. For example we can use Lyyp or Lgrapn When we perform tensor decomposition for
vertex embeddings and use Liny 0r Layal for hyperedge embeddings. Appendix [A.3] mentions the
details about these laplacians.

Scalability for h2v-auto In case of auto-encoder method the main scalability challenge lies in gen-
erating the noisy hyperedges. For a given hyperedge the intermediate sub-lattice from which p
samples are drawn is of size O(n"), where h is max distance from the hyperedge considered. Once
this sampling is performed we have total mp hyperedges as input for the auto-encoder, which is
linear in the number of hyperedge as p will be a constant. The main challenge therefore, is to gen-
erate the noisy samples where we have to tackle exponential size sub-lattice per hyperedge. Again,

12

Under review as a conference paper at ICLR 2018

as this sampling is done for each hyperedge separately (hyperedge-centric), we can therefore, use
distributed computing for hypergraphs using MESH and HyperX, as mentioned before.

Issues with aggregating vertex embedding Furthermore, we also observe that even simple
element-wise summation or averaging of node embeddings for the nodes (in a given hyperedge)
also perform comparably when compared to hyperedge embedding alone. From this we can infer
that depending upon the dataset, if we have less hyperedges and more nodes, than we would rather
prefer to simply learn the hyperedge embedding directly rather than learning node embeddings and
then performing aggregating operation over them. Aggregation might turn out be costly specially if
average hyperedge size is large and the choice of aggregation function is an issue. Therefore, learn-
ing hyperedge embeddings directly seems to be escape the problem of choosing the aggregation
function all together.

Scalability issues for baselines Another thing we notice, is that in case of LangNet dataset, that
node2vec based h2v-inv and h2v-dual methods are simply unable to run (see N/A in Table [2). It
seems that in LangNet (and possibly in text data in general) the hypergraph dual, A4ya1, Which
contain phrase to phrase edges turns out be containing significantly more edges than the number of
node to node edges in Ayyp,. Therefore, performing context generation (using node2vec) over Ay,
and Agyua1 graphs turns out be very costly and we were unable to get hyperedge embeddings for
h2v-inv and h2v-dual methods. Note, we however do get vertex embedding (as mentioned with a
* mark below Table [3). But as you can see that even the time time taken for vertex embedding is
similar or more than the total time taken by spectral methods for learning both hyperedge as well
as vertex embedding, together. This indicates the robustness of the spectral methods, specially the
e2v-hyp for different kinds of hypergraph data and edge densities (sparsity).

5 RELATED WORKS

Hypergraphs were studied rigorously by [Berge| (1976;1984)) as a generalization of graphs and di-
rected hypergraphs have been introduced by [Bretto| (2013). Hypergraph were argued for the first
time as a model to naturally capture higher-order relationships between sets of objects across vari-
ety of domains by [Estrada & Rodriguez-Velazquez| (2005). Hypergraphs have been used to model
complex networks in different fields including biology (Klamt et al.,|2009), databases (Fagin, |1983)
and data mining (Han et al.l [1997;|Zhou et al.,|2007). Within machine learning, algorithms guided
by the structure of hypergraph were introduced by |Zhou et al.| (2006) and have found applications in
a variety of domains (Tian et al.,|2009; Gao et al.,|2013}; [Li & Li, 2013} [Sharma et al., 2015;2017).
Simplicial complex (Munkres| [1984) based view of hypergraph using hasse lattice (Skiena, [1990)
within machine learning has recently been proposed by [Sharma et al.|(2017).

Representation learning (RL) (Bengio et al.| 2013) focuses on learning features (geometry) of the
data (topology). Machine learning algorithms make use of these features for prediction. Tradition-
ally these features are readily available within the data-set or are engineered manually. However, this
is often a tedious and human labor-intensive process. RL addresses this issue by learning features
automatically in a task-dependent supervised or a task-independent unsupervised manner.

Node Representations in Graph: Traditionally unsupervised node embedding learning has been
dong using latent models like matrix factorization (Ahmed et al.l2013)) or by community detection
(Tang & Liul [2011)) based techniques for networks (Roweis & Saul| 2000} Belkin & Niyogi, 2001}
Tenenbaum et al., [2000; [Cox & Cox, |2000). In each case there is a vector of features learned for
a node, each of whose entries reflects node’s association with some latent dimension or a network
community. More recently, there has been a revived interest in graph embedding in form of context
oriented techniques (Perozzi et al., 2014} [Tang et al.| 2015b} (Grover & Leskovecl 2016). These
techniques are inspired by recent unsupervised RL methods in NLP (Mikolov et al., 2013b; [Le &
Mikolovl 2014) where word embeddings are learned that are similar to words in a given neighbor-
hood or context. These techniques differ in the manner they generate this context as well as in the
objective which they optimize. Also there are supervised algorithms learn embeddings which are
optimal for the specific task at hand. This results in high accuracy but incurs significant compu-
tational cost for training. Recently, several supervised learning algorithms have been proposed for
network analysis (Tian et al.||2014; Xiaoyi et al.l[2013)) and for text networks in a semi-supervised
setting (Tang et al., [2015a). Finally, we refer readers to a very recent and comprehensive survey on
graph embedding methods by |Cai et al.| (2017).

13

Under review as a conference paper at ICLR 2018

Node Representations in Hypergraph: Learning embeddings for nodes within a hypergraph while in-
corporating the hypergraph topology using proxy graphs is introduced by [Zhou et al.|(2006). Using
graph proxy destroys the hypredge-level joint information and thus, incur loss of information. Also,
Agarwal et al| (2006) squarely criticize that such representations can be learned by constructing
graphs, which are proxies for the hypergraph structure.

Set Representations: RL for sets using neural networks has been proposed recently (Vinyals et al.,
2016), where a memory network is used to compose features sequentially but in an order invariant
manner. In their very recent paper, Rezatofighi et al.| (2016)) have tried to answer this set ordering
issue by the use of random set theory. However, they do not consider embedding but focus on learn-
ing set-level probabilities. More importantly, both of these works, do not consider the hypergraph
structure of overlapping sets which is the main focus of this paper.

Tensors For comprehensive view of tensors, tensor decomposition as well as applications we refer
to the survey by |[Kolda & Bader| (2009). The connection between k-way tensor and k-uniform
hypergraph eigen values was established by |Qi/(2005). The use of k-way symmetric tensor and their
non-negative decomposition for uniform hypergraph partitioning was first introduced by |Shashua
et al.|(2006). But they are again restricted to uniform hypergraphs.

6 CONCLUSION

In this paper we have proposed two methods to generate higher-order representations for both hyper-
edges (representing sets of nodes) and hypergraph nodes (that also take into account the hypergraph
structure). First, is an auto-encoder based deep-learning method and second, is a tensor-based alge-
braic method. Both learning models are unique in the manner they leverage the existing structure
present in network data as context. While introducing a new idea of a dual tensors corresponding
to the hypergraph dual, we develop a novel approach of using factors from joint decomposition of
k-way tensors corresponding to k-uniform sub-hypergraphs, as generic node & hyperedge represen-
tations. We show that that both methods perform comparably with several other baselines in terms
of accuracy. We also observe that the proposed tensor based methods are more efficient and also
have a natural hypergraph theoretic interpretation; unlike deep learning based black-box approach.
We therefore, argue that we have proposed more general methods which are principally suited for
hypergraphs (and therefore also for graphs) while maintaining accuracy and efficiency.

14

Under review as a conference paper at ICLR 2018

REFERENCES

Pubmed data. https://www.ncbi.nlm.nih.gov/pubmed/.

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pp. 17-24. ACM, 2006.

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J
Smola. Distributed large-scale natural graph factorization. In Proceedings of the 22nd inter-
national conference on World Wide Web, pp. 37-48. ACM, 2013.

Iftekhar Ahmed, Channing Brown, Andrew Pilny, Dora Cai, Yannick Atouba Ada, and Mar-
shall Scott Poole. Identification of groups in online environments: The twist and turns of grouping
groups. In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Con-

ference on Social Computing (SocialCom), 2011 IEEE Third International Conference on, pp.
629-632. IEEE, 2011.

Anthony F Bartholomay. Molecular set theory: A mathematical representation for chemical reaction
mechanisms. Bulletin of Mathematical Biology, 22(3):285-307, 1960.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In NIPS, volume 14, pp. 585-591, 2001.

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer neural
networks. In Advances in Neural Information Processing Systems, pp. 400—406, 2000.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798—1828,
2013.

Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends@®) in Machine
Learning, 2(1):1-127, 2009.

C. Berge. Graphs and hypergraphs, volume 6. Elsevier, 1976.
Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.

Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer,
2013.

Samuel R Buld and Marcello Pelillo. A game-theoretic approach to hypergraph clustering. In
Advances in neural information processing systems, pp. 1571-1579, 2009.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques and applications. arXiv preprint arXiv:1709.07604, 2017.

Evangelia Christakopoulou and George Karypis. Hoslim: higher-order sparse linear method for top-
n recommender systems. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 38—49. Springer, 2014.

Joshua Cooper and Aaron Dutle. Spectra of uniform hypergraphs. Linear Algebra and its Applica-
tions, 436(9):3268-3292, 2012.

Trevor F Cox and Michael AA Cox. Multidimensional scaling. CRC press, 2000.

Mukund Deshpande and George Karypis. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1):143-177, 2004.

Ernesto Estrada and Juan A Rodriguez-Velazquez. Complex networks as hypergraphs. arXiv
preprint physics/0505137, 2005.

R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the
ACM (JACM), 30(3):514-550, 1983.

15

https://www.ncbi.nlm.nih.gov/pubmed/

Under review as a conference paper at ICLR 2018

Shenghua Gao, Ivor Wai-Hung Tsang, and Liang-Tien Chia. Laplacian sparse coding, hypergraph
laplacian sparse coding, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):92-104, 2013.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, USA, August 13-17, 2016, pp. 855-864, 2016. doi: 10.1145/2939672.
2939754.

E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on association rule hyper-
graphs. University of Minnesota, Department of Computer Science, 1997.

Benjamin Heintz and Abhishek Chandra. Enabling scalable social group analytics via hypergraph
analysis systems. In HotCloud, 2015.

Benjamin Heintz, Shivangi Singh, Rankyung Hong, Guarav Khandelwal, Corey Tesdahl, and Ab-
hishek Chandra. Mesh: A flexible distributed hypergraph processing system. 2017.

Jin Huang, Rui Zhang, and Jeffrey Xu Yu. Scalable hypergraph learning and processing. In Data
Mining (ICDM), 2015 IEEE International Conference on, pp. 775-780. IEEE, 2015.

TaeHyun Hwang, Ze Tian, Rui Kuangy, and Jean-Pierre Kocher. Learning on weighted hypergraphs
to integrate protein interactions and gene expressions for cancer outcome prediction. In Data
Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pp. 293-302. IEEE, 2008.

S. Klamt, U.U. Haus, and F. Theis. Hypergraphs and cellular networks. PLoS computational biology,
5(5):¢1000385, 2009.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455-500, 20009.

Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. In ICML,
volume 14, pp. 1188-1196, 2014.

Lei Li and Tao Li. News recommendation via hypergraph learning: encapsulation of user behavior
and news content. In Proceedings of the sixth ACM international conference on Web search and
data mining, pp. 305-314. ACM, 2013.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems, NIPS*13, pp. 3111-3119, 2013b.

James R Munkres. Elements of algebraic topology, volume 2. Addison-Wesley Menlo Park, 1984.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701-710. ACM, 2014.

Liqun Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation, 40(6):
1302-1324, 2005.

Seyed Hamid Rezatofighi, Anton Milan, Ehsan Abbasnejad, Anthony Dick, Ian Reid, et al. Deepset-
net: Predicting sets with deep neural networks. arXiv preprint arXiv:1611.08998, 2016.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323-2326, 2000.

Ankit Sharma, Rui Kuang, Jaideep Srivastava, Xiaodong Feng, and Kartik Singhal. Predicting small
group accretion in social networks: A topology based incremental approach. In 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
408-415. IEEE, 2015.

16

Under review as a conference paper at ICLR 2018

Ankit Sharma, Terrence J Moore, Ananthram Swami, and Jaideep Srivastava. Weighted simplicial
complex: A novel approach for predicting small group evolution. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 511-523. Springer, 2017.

Amnon Shashua, Ron Zass, and Tamir Hazan. Multi-way clustering using super-symmetric non-
negative tensor factorization. Computer Vision—ECCV 2006, pp. 595-608, 2006.

Steven Skiena. Hasse diagrams. Implementing Discrete Mathematics: Combinatorics and Graph
Theory With Mathematica, pp. 163, 1990.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. Parsing With Compositional Vector Grammars. In EMNLP. 2013.

Steven H Strogatz. Exploring complex networks. Nature, 410(6825):268-276, 2001.

Karthik Subbian, Charu Aggarwal, and Jaideep Srivastava. Content-centric flow mining for influ-
ence analysis in social streams. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management, pp. 841-846. ACM, 2013.

Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1165-1174. ACM, 2015a.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pp. 1067-1077. ACM, 2015b.

Lei Tang and Huan Liu. Leveraging social media networks for classification. Data Mining and
Knowledge Discovery, 23(3):447—478, 2011.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for
graph clustering. In AAAI pp. 1293-1299, 2014.

Ze Tian, TaeHyun Hwang, and Rui Kuang. A hypergraph-based learning algorithm for classifying
gene expression and arraycgh data with prior knowledge. Bioinformatics, 25(21):2831-2838,
2009.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096-1103. ACM, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(Dec):3371-3408, 2010.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
In ICLR, 2016.

Li Xiaoyi, Li Hui Du Nan, et al. A deep learning approach to link prediction in dynamic networks.
In Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA,
USA: SIAM, 2013.

D. Zhou, J. Huang, and B. Scholkopf. Learning with hypergraphs: Clustering, classification, and
embedding. Advances in Neural Information Processing Systems, 19:1601, 2007.

Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In Advances in neural information processing systems, pp. 1601—
1608, 2006.

17

Under review as a conference paper at ICLR 2018

soccer 1 love soccer
A
classifier —»

~+— classifier

Averaging
I ? | ; | ; |
Sen Id | love Sen Id

(a) DM (b) DBOW

Figure 4: Distributed memory (DM) and Distributed bag of words (DBOW) versions of Sen2Vec
for a sentence “I love soccer”.

A APPENDIX

A.1 HYPEREDGE2VEC USING SENTENCE EMBEDDINGS

As mentioned before, the most commonly used model for studying complex interactions in networks
is graphs, where each edge represents a dyadic interaction between nodes [Strogatz| (2001). There-
fore, even if the original interaction is not dyadic like a set of researchers (3 or more) collaborating
on a publication, we shall break down this joint interaction into dyadic interactions. Even though
a large number of complex network data naturally occurs as hypergraphs [Estrada & Rodriguez-
Velazquez| (2005), the popularity of “think like dyadic edges” and not like sets seems to us as a
hindrance, specifically when the end aim is to model the joint distribution at the level of sets. In this
paper, as it is obvious, we go by “think like set” paradigm, specifically, when the data is naturally
occurring as network of sets (i.e., a hypergraph). Therefore, if we think of hyperedge as a set, a
natural question arises is that are there any existing techniques that learn embeddings at set level?
We, henceforth, explore the most popular discrete data on which representation learning has been
applied is text data.

Recently, [Le & Mikolov| (2014) proposed two representation learning methods for sentences as
shown in Figure a) a distributed memory (DM) model, and b) a distributed bag of words (DBOW)
model. In the DM model, every sentence in the dataset G is represented by a d dimensional vector
in a shared lookup matrix S € RI¢I*¢ Similarly, every word in the vocabulary € is represented
by a d dimensional vector in another shared lookup matrix L € RI2/*¢_ Given an input sentence
v = (v1,v2 - Uy), the corresponding sentence vector from S and the word vectors from L are
averaged to predict the next word in a context. More formally, let ¢ denote the mapping from
sentence and word ids to their respective vectors in S and L, the DM model minimizes the following
objective:

m—k
J() = - Z log P(v¢|V;ve—kt1,++ 5 0i-1) (11)
=k
m—k T
Y g ") -
218 S exp(w(vi)2)
where z is the average of ¢(v), ¢(vi_k11), -+ , @(ve—1) input vectors, and w(v;) is the output vector

representation of word vy €). The sentence vector ¢(v) is shared across all (sliding window)
contexts extracted from the same sentence, thus acts as a distributed memory.

Instead of predicting the next word in the context, the DBOW model predicts the words in the con-
text independently given the sentence id as input. More formally, DBOW minimizes the following
objective:

18

Under review as a conference paper at ICLR 2018

J(¢) = Z log P(v;|v) (13)

B ol)9(v)) .

2 exp(w(vi)To(v))

Both the methods take sentences as input and return embeddings for words as well as the sentence.
To apply the sentence embedding models directly to hyperedges, as our first method we generate a
proxy sentence for each hyperedge by leveraging the contextual information in the hyperedge.

A proxy sentence v; is formed for each hyperedge g; € G as a sequence made by con-
catenating all the permutations of the nodes (as words) in the hyperedge and further repeat-
ing this sequence as many time this hyperedge occurred. For example, for a three node hy-
peredge g; = {1,4,7} which has occurred two times we make the following sentence v;:
{1,4,7,1,7,4,7,1,414,1,4,1,7,4,7,1,1,4,7,1,7,4,7,1,4,7,4,1,

4,1,7,4,7,1} of length 12 (6 permutations times 2 occurrence). In this scheme we have permutations
and repetitions. We take all the permutations hoping that it should fool the sequence based model
to get a sequence independent embedding. On the other hand, repetition of the permutations acts
similarly to observing the same sequence of words several times in the text corpus. Of course one
can think of other alternative schemes, but the point we are trying to make is that naturally observed
hyperedges captures important contextual information that can be leveraged to achieve better repre-
sentations. We refer to the node-hyperedge embedding pairs resulting from DM, DBOW models as
h2v-dm and h2v-dbow, respectively.

A.2 HYPEREDGE2VEC USING NODE2VEC

Grover & Leskovec| (2016) propose a representation method for nodes in a graph called node2vec,
which uses the skip-gram model Mikolov et al.| (2013b) with the intuition that neighborhood nodes
within a graph should have similar representations. The objective of the skip-gram model for graphs
can be defined as:

J(@) = =) log P(N(v)|¢(v)) (15)
veV

= =) > logP(nle(v)) (16)

vEV n;EN(v)

L exp(w(ni) "¢
3 |

veV n;eN(v) xGV eXp((

(v))
To(0)) a7

where as before, ¢ and w denote the input and the output vector representations of the nodes. The
neighboring nodes N (v) form the context for node v. node2vec uses a biased random walk which
adaptively combines breadth first search (BFS) and depth first search (DFS) to find the neighborhood
of a node. The walk attempts to capture two properties of a graph often used for prediction tasks
in networks: (i) homophily and (ii) structural equivalence. According to homophily, nodes in the
same group or community should have similar representations. Structural equivalence suggests that
nodes with similar structural roles (hub, bridge) should have similar representations. In a real-world
network, nodes exhibit mixed properties.

Our aim is to find both node and hyperedge level embeddings by taking into account the hypergraph
structure. For the former, we leverage the adjacency matrix associated with a hypergraph|Zhou et al.
(2006), which is defined as:

Apyp =H'"W.H - D, (18)
where Wy, is a diagonal matrix containing the weights of each hyperedge and D, is a diagonal
matrix containing the degree of each vertex. We take the weight of a hyperedge as its occurrence
number, i.e. W (i, i) = R(g;),V{i € {1,...,n}}. The adjacency matrix (Apy, € RIVI*IV) asso-
ciates a weight between a pair of nodes while taking into account the weights of all the hyperedges
that encompass a pair of nodes. The weighted graph associated with Ay, in some sense serves

19

Under review as a conference paper at ICLR 2018

as a proxy to the actual hypergraph structure. We can provide Apyp, as input to node2vec and hy-
pothesize that the random walk over this proxy hypergraph should allow the skip-gram model to
learn more meaningful node level embeddings which can be combined to construct hyperedge level
embeddings. We refer to these node level embeddings as N2V-hyp.

We still have not met our second objective to learn hyperedge embeddings directly. We again wish
to leverage node2vec for our purpose. However, node2vec only works for graphs by perform-
ing random walk over nodes. Therefore, we ask ourselves the question, that can we treat hyper-
edges as nodes? There can be other ways of doing so, but here we suggest two techniques. In the
first technique, we simply consider the hypergraph dual Berge| (1984), whose incidence matrix is
Hgua1 = H”. The adjacency matrix associated with the hypergraph dual is:

Adual = Haual’ WyHayal — Do = HW,H” — D, (19)

where Wy, is a diagonal matrix containing the weights of each node and Dy is a diagonal matrix
containing the degree of each hyperedge. We assume no weights on the nodes and take W, = 1.
The matrix A qual € RI€1*IG represents another hypergraph, but the roles of nodes and hyperedges
have now switched. For example, in case of words and sentences, the hyperedges were sentences,
but in the hypergraph dual the words become hyperedges and the nodes within a word’s hyperedge
represent all the sentences in which the word has appeared. We again give A gya; (i.€., a graph proxy
for the dual hypergraph) as input to node2vec, but this time we get output as the embeddings for the
hyperedges associated with the nodes in dual. We refer to these hyperedge embeddings as h2v-dual.

In the second technique, we consider the following adjacency matrix A, € RIG*IGI:
Ajny = HH” (20)

associated with what we refer to as the inverted hypergraph. This inverted hypergraph is a graph
(unlike the dual which is a hypergraph) and there is an edge between two nodes if the hyperedges
corresponding to the nodes in the original hypergraph have nodes in common. Weight of this edge
is the number of common nodes. We again give Aj,, as input to node2vec to get embeddings
for the hyperedges associated with the nodes in inverted hypergraph. We refer to these hyperedge
embeddings as h2v-inv.

A.3 HYPEREDGE2VEC USING SPECTRAL EMBEDDINGS

These set of methods extract embeddings as the eigenvectors associated with Laplacian matrices
corresponding to the various adjacency matrices discussed in the previous section. We consider the
following graph Laplacians:

Lgraph =1I- Dv_1/2‘AgraphDv_1/2 (21)

where Agraph = H”W_H is the weighted graph associated with the graph corresponding to adja-
cency matrix A,

Lhyp = I-D, ?A,,D, /2 (22)
Liny = I-Dg '?A;,,D. /2 (23)
Lawat = I-D¢ Y?AguaDe "2 (24)

We get the d eigenvectors associated with the smallest d eigenvalues of the above graph Laplacians
as the embeddings. We get vertex embeddings using Eq. and hyperedge embedding using Eq.
[24] and we refer to them together as e2v-hyp. Similarly, we get another pair of vertex embeddings
(using Egq. and hyperedge embedding (using Eq. [24). We refer to the later pair as e2v.

B APPENDIX

B.1 TENSOR INITIALIZATION SCHEMES

We can also have other initialization for hypergraph tensor, A% . = (ap, py...p,) € RF™, as
follows:
R(g:)

Apy1,p2,epr = k| (25)

20

Under review as a conference paper at ICLR 2018

where {vp,, Up,, ..., Up, } € g; and |g;| = k, Vi € {1,...,m}. This initialization normalizes the effect
of occurrence counts of hyperedge g; across all of its vertex permutations. It can be interpreted as
each vertex permutation marginally contributes to the total occurrence count of the hyperedge. Now
if a hyperedge is large intuitively they are less informative about a joint relationship between the
vertices part of it. For example the members of a large social group are less likely to be related as
compared to members of a small research collaboration who have published several papers together.
To incorporate this large hyperedge issue, we normalize the occurrence count with the hyperedge
cardinality, as follows:
R(gi)

aplypz,n,pk = k" X k (26)

In a similar manner we can also have different initialization schemes for dual tensor, Aﬁual =

(Ag1.42,..0x) € R as follows:
1
Aq1,q2,..,qx = E 27

where {gq,, 9g0+ -+, g } 2 vj and d(v;) = k,Vj € {1,...,n}. This initialization indicates that ver-
tex v; connects various permutations of the hyperedges {gq,, gg,, ---» 9qs 1» €ach contributing frac-
tionally. We can also have a weighted initialization like:

E
1w

Aq1,q2,-.q5 = w (28)
If the weight w1 (g4,) = R(gg,), then the numerator 25:1 w(g,,) would be high if the vertex v,
participated in its neighboring hyperedges at several occurrences, therefore, is a strongly informative
if we were to infer that the hyperedges {gq,, ggss ---> g, } are related jointly to each other. For
example, if an individual has participated a lot in a bunch of social groups then its reasonable to
assume that these groups are related. Same argument goes for a common word in several sentence.
However, if a word or a person is part of large sentences or big groups then this argument might not
be that strong. Reason being, for example a student can be part of a big university and a big company
where he works as a part time employee. This does not make the company and the university related.
Another issue is that if a word or a person is very common or popular i.e. the vertex v; has high
degree k(= d(v;)) then its doesn’t mean the sentences or groups they are part of are related. Its just
that they are common word or popular person that happen to be in a lot of sentence or groups. We
can mitigate the above two issues by the following augmented initialization:

Y wn(g)

a‘]lsQQw-:Qk - k' x k (29)

where ws(g,,)

= B qSl) is the occurrence counts normalized by the hyperedge size.

1945
B.2 INCIDENT HYPEREDGE PARTITIONING SCHEMES FOR HIGH DEGREE VERTICES

Here we briefly discuss various partitioning schemes capturing different intuitive objectives. As
mentioned in the Sectionwe wish to limit ourselves to vertices of degree d(v) < «. One straight
forward method is to simply ignore the vertices with d(v) > «. However, this would result in
loss of the information. In the sense that each vertex connects a set of incident hyperedges and
this connection implies that these set of hyperedges are related to each other and that too in a joint
fashion with this vertex acting as a common bridge. Therefore, we don’t wish to ignore vertices with
d(v) > « but rather partition the d(v) incident hyperedges into sets that have size < a. Here we
enlist a few possible ways:

1. Linear Partitioning In this we order the hyperedges in a certain order and then equally
partition them into {@J number of « size partitions (if « is a divisor of d(v)), else there

shall be one more partition of size {d(v) — ({%J)}. There can be various ways to order:

(a) Order by hyperedge cardinality (|g;|)
(b) Order by hyperedge occurrence count (R(g;))
(c) Order by hyperedge occurrence count normalized by cardinality (lez—i_’f))

21

Under review as a conference paper at ICLR 2018

(d) Segregate the crifical hyperedges for vertex v (i.e. the set {g;|g; € G,v € g;,d(z) >
a,Vz € g;}) followed by the remaining hyperedges.

2. Subset based partitioning In this we take subsets of the d(v) hyperedges incident on
vertex v. This can be done in couple of different ways:

(a) Take all the (d(;’)) subsets of d(v) hyperedges and initialize the various permutation
for each subset in the tensor AG,, ;-

(b) Take all the (“™), (®)),..., (*M")) subsets of d(v) hyperedges and initialize the vari-

«
N . « a—1 2 1
ous permutation for each subset in the tensors AgG,,.1-Aquals--Aadual T€SPectively.

3. Sampling subsets In this we do not exhaustively use the entire set of d(v) hyperedges but
rather sample subsets of size « from the d(v) hyperedges. This sampling is performed in
proportion to:

(a) Hyperedge cardinality (|g;|)

(b) Hyperedge occurrence count (R(g;))

(c) Hyperedge occurrence count normalized by cardinality (%)
Further, we can also perform the above sampling of subsets from only among the critical
hyperedges, or from only among the non-critical hyperedges or in a mixed manner.

22

	Introduction
	Preliminaries
	Methodology
	Hyperedge2vec using Hypergraph Tensor Decomposition
	Hyperedge2Vec Using Hasse De-noising Autoencoder

	Experiments
	Dataset Description
	Evaluation Methodology and Experimental Setup
	Methods Compared
	Evaluation Tasks and Setup

	Results and Discussion
	Scalability

	Related Works
	Conclusion
	Appendix
	Hyperedge2Vec Using Sentence Embeddings
	Hyperedge2vec Using Node2Vec
	Hyperedge2vec Using Spectral Embeddings

	Appendix
	Tensor Initialization Schemes
	Incident Hyperedge Partitioning Schemes for High Degree Vertices

