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Abstract

Parameter-efficient fine-tuning (PEFT) is essential for adapting large foundation
models without excessive storage cost. However, current approaches such as LoRA
treat each layer’s adaptation independently, overlooking correlations across layers.
This independence causes the number of trainable parameters to grow linearly
with model depth. We provide theoretical and empirical evidence that skip con-
nections in transformers create smooth gradient propagation across layers. This
smoothness leads to weight adaptations that concentrate most of their energy in
low-frequency spectral components, especially along the layer dimension. Em-
pirical analysis confirms this effect, showing that most of adaptation energy lies
in low frequencies. Building on this insight, we propose CrossSpectra, which
parameterizes all attention-weight adaptations (Q,K,V ) across layers as a single
3D tensor and represents them with sparse spectral coefficients (κ1, κ2). Using
κ1 non-zero coefficients within each layer’s frequency space and truncating to κ2

frequencies across layers, CrossSpectra requires O(κ1κ2) parameters instead
of LoRA’s O(Lrd), where L is the number of layers and r is the rank. Across
natural language and vision benchmarks, CrossSpectra matches or surpasses
baseline performance while using fewer parameters than LoRA, achieving only
0.36% of LoRA’s parameter count when fine-tuning LLaMA-7B on instruction-
following tasks. These results show that exploiting the architectural smoothness
of transformers through spectral analysis yields major efficiency gains in PEFT.

1 Introduction

Large Language models (LLMs) have demonstrated exceptional capabilities across domains ranging
from natural language processing [Liu et al., 2019, He et al., 2020, Radford et al., 2019, Brown
et al., 2020] to computer vision [Liu et al., 2023b,a, Singh et al., 2022, Zhang et al., 2024c] to multi-
modal problems [Radford et al., 2021, Dong et al., 2025a,b,c,d, Zhang et al., 2025a,b]) and other
domains [Fan et al., 2025, Zhang et al., 2024a, Guo et al., 2024]. However, with model parameters
now reaching hundreds of billions or even trillions, adapting these models to specific downstream
tasks through conventional fine-tuning has become increasingly impractical. Each customized model
typically requires storing as many parameters as the original model [Qiu et al., 2020, Raffel et al.,
2020a], leading to substantial storage and deployment challenges as customization needs expand.

Parameter-efficient fine-tuning (PEFT) methods have emerged as promising solutions to this chal-
lenge Yang et al. [2024]. These approaches adapt pre-trained models using only a small subset of
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trainable parameters, significantly reducing storage requirements while maintaining performance.
Among these methods, Low-Rank Adaptation (LoRA) Hu et al. [2021a] and its variants [Liu et al.,
2024, Meng et al., 2024, Wang et al., 2024b, Kalajdzievski, 2023, Si et al., 2024, Zhong et al., 2024,
Wang et al., 2024a, Ni et al., 2024]) have gained widespread adoption by representing weight changes
through low-rank matrices, achieving impressive results with a fraction of the parameters required
for full fine-tuning. Despite these advances, current PEFT methods face a fundamental limitation:
they treat each layer’s adaptation independently, overlooking potential structural relationships across
layers. This independence assumption results in parameter counts that scale linearly with model
depth, limiting efficiency gains for increasingly deeper architectures.

A fundamental insight from transformer architecture analysis illuminates a path toward more efficient
adaptation. Skip connections, widely used in architectures including ResNets [He et al., 2016] and
Transformers [Vaswani et al., 2017], facilitate stable and smooth gradient propagation through depth.
This architectural property, combined with the natural spectral bias of neural networks [Rahaman et al.,
2019], suggests that weight adaptations during fine-tuning should exhibit exploitable smoothness
patterns, particularly across the layer dimension. Empirical analysis confirms this intuition. Figure 1
demonstrates that attention weight adaptations exhibit dramatic spectral concentration across layers,
with nearly 70% of adaptation energy concentrated in low-frequency components. This observation
motivates a spectral approach to parameter-efficient fine-tuning.

We formalize this intuition through theoretical analysis showing that attention weight adaptations
in transformers naturally concentrate in low-frequency components. Our key theoretical find-
ings are: (1) skip connections create Lipschitz-continuous gradient fields across layers, ensuring
similar gradients in adjacent layers; (2) these smooth gradients accumulate into smooth weight
adaptations during fine-tuning; and (3) the resulting spectral structure shows strongest decay in
the cross-layer dimension, enabling aggressive frequency truncation. In this paper, we propose
CrossSpectra, a novel PEFT method that exploits these cross-layer spectral properties. Instead
of parameterizing each layer’s adaptations independently, we construct a unified 3D tensor repre-
sentation of all attention (Query, Key, Value) weight changes and decompose it in the frequency
domain. By working directly with spectral coefficients and leveraging 3D inverse FFT for effi-
cient computation, we achieve parameter reductions that scale sub-linearly with model dimensions.
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Figure 1: Distribution of spectral en-
ergy. Most of adaptation energy concen-
trates in low frequencies, confirming that
skip connections induce smooth, low-
frequency dominated weight changes
across layer.

Our key contributions are:

i. We establish a theoretical framework connecting skip
connection-induced gradient smoothness to spectral
properties of weight adaptations, providing a princi-
pled foundation for cross-layer parameter sharing in
attention mechanisms.

ii. We introduce CrossSpectra, a unified tensor formu-
lation that represents all QKV adaptations across layers
using sparse spectral decomposition with κ1 coeffi-
cients per layer and κ2 cross-layer frequencies, achiev-
ing O(κ1κ2) parameter complexity.

iii. We demonstrate that our approach achieves 275× pa-
rameter reduction compared to LoRA and 5,250× com-
pared to full fine-tuning, requiring only 8 KB of mem-
ory versus LoRA’s 2.2 MB for typical transformer
configurations.

iv. Through extensive experiments across natural language
understanding, instruction tuning, and image classifi-
cation tasks, we show that CrossSpectra matches or
exceeds baseline performance while using a fraction
of the parameters.

2 Related Work

Parameter-efficient Fine-tuning (PEFT) Methods. As foundation models have grown in size and
computational requirements, efficiently adapting them has become essential. PEFT methods fall
into two primary categories: non-weight-based [He et al., 2021, Rebuffi et al., 2017, Lester et al.,
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2021, Gao et al., 2020, Li and Liang, 2021] and weight-based approaches [Zhu et al., 2025, Hu et al.,
2021b, Zhang et al., 2025c, 2024b]. Weight-based methods directly learn modifications to pre-trained
weights. LoRA [Hu et al., 2021b] represents weight changes through low-rank matrix decomposition.
LoRA has gained widespread adoption due to its simplicity, effectiveness, and ability to merge
adapted weights during inference to avoid latency increases. Several extensions have been proposed,
including AdaLoRA [Zhang et al., 2023], which adaptively allocates parameter budgets across weight
matrices, and FourierFT [Gao et al., 2024] and BiLoRA [Zhu et al., 2025] learn in frequency domain.
PACE [Ni et al., 2024] uses noise modulation for generalization guarantees. Despite these advances,
all existing methods treat each layer’s adaptation independently, failing to exploit potential structural
relationships across layers. This independent treatment results in parameter counts that scale linearly
with model depth, limiting efficiency gains for increasingly deeper architectures.

Skip Connections in Deep Learning. Skip connections, first popularized in ResNet [He et al.,
2016] and now fundamental to modern architectures like Transformers [Vaswani et al., 2017],
allow information to bypass one or more layers by adding the input of a layer block to its output.
Their empirical success in enabling training of very deep networks has been well-documented,
but the theoretical understanding of their properties continues to evolve. A pivotal insight came
from Chen et al. [2018], who established connections between networks with skip connections
and ordinary differential equations (ODEs). This perspective views ResNets as discretizations of
continuous dynamic systems, where each layer represents a step in a numerical ODE solver. The key
implication is that skip connections induce smoothness in representations between consecutive layers,
constraining how drastically the network can transform its inputs at each step. Further work has
explored the spectral properties of networks with skip connections. Fourier-based analyses [Rahaman
et al., 2019, Tancik et al., 2020] have shown that these networks tend to prioritize low-frequency
components, which correspond to smoother transformations. This frequency-domain perspective
provides additional evidence for the smoothness-inducing nature of skip connections. Several studies
have also investigated the optimization advantages provided by skip connections. The gradient
stability properties of these architectures [Miyato et al., 2018] explain their trainability at extreme
depths, where traditional networks struggle with vanishing or exploding gradients. However, despite
these theoretical advances, the implications of skip connection-induced smoothness for parameter-
efficient adaptation remain unexplored. Our work bridges this gap by connecting the smoothness
properties of representations to the structure of weight adaptations, enabling more efficient parameter
sharing across layers.

3 Theoretical Foundation for CrossSpectra

We develop a comprehensive theoretical framework explaining why neural network adaptations
exhibit exploitable spectral structure across layers. Our analysis focuses on attention mechanisms in
transformer architectures, revealing how skip connections induce smooth gradient fields that manifest
as low-frequency patterns in weight updates. This spectral structure enables dramatic parameter
reduction through frequency-domain methods. Our theoretical analysis yields three fundamental
insights that directly inform CrossSpectra’s design:

i. Cross-layer gradient smoothness: Skip connections create smooth gradient propagation across
transformer layers, with attention weights (Query, Key, Values) exhibiting particularly strong
cross-layer correlation.

ii. Dimension-specific spectral decay: The spectral energy of adaptation patterns decays at different
rates across dimensions; the decay is strongest along the layer axis, while spatial dimensions
within each layer show a slower attenuation of high-frequency components.

iii. Joint QKV structure: All attention matrices (Q, K, V ) can be efficiently represented in a
unified spectral framework due to their shared architectural context.

These insights motivate our unified spectral approach, where we exploit cross-layer patterns through
joint parameterization of all QKV matrices.

3.1 Gradient Structure in Transformers with Skip Connections

To understand the spectral properties of attention adaptations, we first analyze how skip connections
shape gradient flow through transformer architectures.
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Architecture Setup. Consider a transformer with L layers. Each layer l ∈ {1, . . . , L} contains
multi-head attention with weight matrices: Query WQ

l ∈ Rd×d, Key WK
l ∈ Rd×d, and Value

W V
l ∈ Rd×d. The attention mechanism computes:

Attentionl(Hl−1) = softmax

(
Hl−1W

Q
l (Hl−1W

K
l )⊤√

d

)
Hl−1W

V
l . (1)

Crucially, skip connections define the layer-wise evolution of hidden representations:

Hl = Hl−1 + MultiHeadAttentionl(Hl−1) + FFNl(Hl−1). (2)

This residual structure is key to understanding gradient smoothness—it ensures that gradient informa-
tion flows directly across layers while being modulated by local computations.

Cross-Layer Gradient Analysis. To quantify gradient behavior across layers, we examine the
gradient structure at each layer:
Definition 3.1 (Layer-wise Gradient). For a loss function L and attention matrices {WM

l }Ll=1 where
M ∈ {Q,K, V }, the gradient at layer l is:

GM
l =

∂L
∂WM

l

, (3)

where GM
l ∈ Rd×d has the same shape as WM

l .

Skip connections promote smooth gradient propagation across layers. Our first key result formalizes
this effect under the standard residual–ODE scaling:
Theorem 3.2 (Gradient Smoothness for Attention Weights). Under residual scaling Hl = Hl−1 +
1
LRl(Hl−1;Wl) and bounded Jacobians of Rl, the gradients of attention weights satisfy

∥GM
l+1 −GM

l ∥F ≤
CM

L
, (4)

where CM is a depth-independent constant.

Thus, adjacent layers exhibit gradually varying gradients, and skip connections ensure this variation
decays with depth, avoiding the abrupt changes typical of purely feed-forward architectures. Intu-
itively, the residual scaling 1

L constrains each layer’s transformation to be a small perturbation of its
predecessor, so gradient changes accumulate continuously along depth rather than discretely.

3.2 From Gradient Smoothness to Spectral Properties

The gradient smoothness directly translates to spectral properties of weight adaptations during
fine-tuning. When gradients vary smoothly across layers, the accumulated weight changes exhibit
low-frequency dominance in the layer dimension.

Adaptation Accumulation Process. During fine-tuning over T steps with learning rate η, attention
weights accumulate updates:

∆WM
l = −η

T∑
t=1

∇WM
l
L(t), M ∈ {Q,K, V }. (5)

To analyze the spectral structure, we organize all weight adaptations into a 3D tensor and examine its
frequency characteristics.
Theorem 3.3 (Spectral Concentration for Attention Matrices). For attention adaptations
{∆WM

l }Ll=1 where M ∈ {Q,K, V }, define the 3D adaptation tensor WM ∈ Rd×d×L with
[WM ]:,:,l = ∆WM

l . Let ŴM (n1, n2, n3) denote its 3D discrete Fourier transform, where
n1 ∈ {0, ..., d − 1} is frequency index for input dimension, n2 ∈ {0, ..., d − 1} is frequency in-
dex for output dimension, and n3 ∈ {0, ..., L − 1} is frequency index across layers. The Fourier
coefficients exhibit dimension-specific decay with frequency:

|ŴM (n1, n2, n3)| ≤
CM

(n1 + 1)β1,M · (n2 + 1)β2,M · (n3 + 1)β3,M
, (6)

where the decay rates satisfy: β3,M > β1,M , β2,M for all M ∈ {Q,K, V }.
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Figure 2: The overall model: Skip connections create smooth gradient flow across transformer
layers , resulting in weight adaptations that are dominated by low-frequency patterns. CrossSpectra
exploits this by representing all layers’ adaptations as a 3D tensor and using sparse spectral coefficients
via 3D inverse FFT, with truncation in the cross-layer frequency dimension.

The stronger decay in the cross-layer dimension (β3,M > β1,M , β2,M ) implies that adaptations are
dominated by low-frequency patterns across layers. This is a direct consequence of the gradient
smoothness induced by skip connections—smooth gradients accumulate into smooth adaptations.

4 CrossSpectra: From Spectral Properties to Efficient Adaptation

Building on our theoretical analysis, we now present CrossSpectra, a parameter-efficient fine-
tuning method that directly exploits the cross-layer spectral structure in attention weight adaptations.
As illustrated in Figure 2, skip connections induce smooth gradient propagation, which leads to
low-frequency dominance in the learned adaptations.

From Theory to Design. Our theoretical findings directly inform three key design principles for
CrossSpectra:

i. Unified 3D representation: Since gradients vary smoothly across layers, we parameterize all
QKV matrices jointly rather than treating each layer independently.

ii. Fourier decomposition with selective truncation: The strongest spectral decay occurs in
the cross-layer dimension (β3 > β1, β2), so we aggressively truncate high frequencies in this
dimension while preserving more frequencies within layers.

iii. Implicit spectral regularization: Frequency-domain parameterization naturally enforces the
smoothness constraints revealed by our theoretical analysis.

These principles guide our implementation choices in the following subsections.

4.1 Unified QKV Tensor Representation

Traditional parameter-efficient methods decompose each layer’s adaptations independently. For
example, LoRA parameterizes:

∆WM
l = AM

l BM
l , AM

l ∈ Rd×r,BM
l ∈ Rr×d. (7)

This layer-wise approach cannot exploit the cross-layer patterns identified in our theoretical analysis.

CrossSpectra constructs a unified 3D tensor that stacks all QKV matrices across layers:

TQKV ∈ Rd×d×3L, (8)

where the dimensions represent d for both input and output dimensions (for simplicity), and 3L is the
extended layer dimension containing all Q, K, V matrices across L layers. This unified representation
enables us to capture cross-layer patterns in a single spectral decomposition, dramatically reducing
parameters compared to layer-wise methods.

5



4.2 Spectral Decomposition via 3D Fourier Transform

We decompose the unified QKV tensor using 3D inverse Fourier transform:

TQKV = iFFT3D(C). (9)

The coefficient tensor C ∈ Cd×d×3L is highly sparse, with non-zero entries denoted by the index
set Ω. We control this sparsity through two key parameters: κ1 = |Ω|/(3L) is number of non-zero
coefficients sampled within each d× d layer’s frequency space. κ2 is number of frequencies retained
in the cross-layer dimension (κ2 ≪ 3L). This parameterization yields a total parameter count of
|Ω| = κ1 · κ2, resulting in a sparsity ratio of |Ω|/(d2 · 3L). For typical transformer configurations,
we achieve dramatic parameter reduction by setting |Ω| ≈ 0.1% of the full tensor size. The key
insight from our theory is that cross-layer spectral decay is strongest (β3 > β1, β2). We exploit this
by aggressive truncation in the layer dimension (κ2 ≪ 3L) while employing sparse sampling within
each layer (κ1 ≪ d2), targeting the most important frequency components.

Complex Fourier Bases with Real-Valued Output. We use complex-valued inverse 3D Fourier trans-
forms for computational efficiency. To ensure that the reconstructed tensor TQKV = iFFT3D(C) is
real-valued, the sparse coefficient tensor C must satisfy discrete Hermitian symmetry:

[C]u,v,w = [C](−u) mod d, (−v) mod d, (−w) mod (3L), ∀(u, v, w) ∈ Ω. (10)

Here (u, v, w) are frequency indices along the input, output, and layer dimensions, and (·) denotes
complex conjugation. This condition guarantees that iFFT3D(C) yields a real-number tensor.
Consequently, only one half-space of frequency coefficients needs to be parameterized independently,
effectively halving the number of learnable spectral parameters and reducing storage cost.

Efficient Implementation via 3D iFFT. CrossSpectra leverages highly optimized FFT implemen-
tations for computational efficiency. The core operations are:

i. Forward Pass (Algorithm 1): We first convert the sparse spectral coefficients C to the spatial
domain using 3D inverse FFT, yielding the full adaptation tensor TQKV . This operation is
performed only once per forward pass. We then extract the appropriate slice for each layer and
attention matrix (Q,K,V ) and add it to the pre-trained weights.

ii. Backward Pass (Algorithm 2): We collect all gradient updates into a single tensor, transform it
into the frequency domain using 3D FFT, and keep only the gradients corresponding to the sparse
indices in Ω. This effectively projects the gradient into our low-dimensional spectral subspace.

This implementation ensures that computation scales with the full tensor dimensions only for the
FFT operations, while parameter storage and updates remain proportional to |Ω|.
Implicit Gradient Regularization. Algorithm 2 reveals that the backward pass acts as a gradient
filter. When we compute ∇C = FFT3D(∇TQKV

) and retain only κ1 sparse coefficients within each
layer’s frequency space and κ2 frequencies across layers, we project gradients into a subspace with
low-frequency basis. This filtering prevents the accumulation of rapid variations, with the strongest
regularization occurring in the cross-layer dimension where truncation is the most aggressive. The
optimization process is thus biased toward discovering smooth adaptation patterns that align with the
natural spectral structure revealed by our theoretical analysis.

4.3 Complexity Analysis

Table 1 provides a comprehensive comparison of memory requirements and computational costs.

Method Memory Forward Pass Backward Pass

Full Fine-tuning O(3Ld2) O(Lnd2) O(Lnd2)
LoRA (rank r) O(6Lrd) O(2Lnrd) O(2Lnrd)
CrossSpectra O(κ1κ2) O(nd2 +D) O(nd2 +D)

Table 1: Complexity comparison. We denote n as sequence length, L is number of layers, and
D = 3Ld2(2 log d+ log(3L)) is the 3D FFT cost.
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Algorithm 1 CrossSpectra Forward Pass

1: Input: Sparse coefficients C with
2: κ1 non-zeros per layer, κ2 layers.
3: Cfull ← SparseToDense(C)
4: TQKV ← iFFT3D(Cfull)
5: for l = 1 to L do
6: for M ∈ {Q,K, V } do
7: ∆WM

l ← Extract(TQKV , M , l)
8: W̃M

l ←WM
l +∆WM

l
9: end for

10: end for
11: Return: {W̃M

l }

Algorithm 2 CrossSpectra Backward Pass

1: Input: Gradients {∇W̃M
l
L}.

2: Initialize∇TQKV
∈ Rd×d×3L

3: for l = 1 to L do
4: for M ∈ {Q,K, V } do
5: Place ∇W̃M

l
L into

6: ∇TQKV
at (M, l)

7: end for
8: end for
9: ∇Cfull

← FFT3D(∇TQKV
)

10: ∇C ← SparseSample(∇Cfull
, κ1, κ2)

11: Return: ∇C

Table 2: Performance comparison of LLaMA2 7B with different methods on eight commonsense
reasoning datasets. The symbol † indicates that the results are taken from [Wang et al., 2024a, Zhong
et al., 2024, Si et al., 2024].

Method # Params(%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

ChatGPT † / 73.10 85.40 68.50 78.50 66.10 89.80 79.90 74.80 77.01

LoRA† 0.84 69.80 79.90 79.50 83.60 82.60 79.80 64.70 81.00 77.61
DoRA† 0.84 71.80 83.10 79.90 89.10 83.00 84.50 71.00 81.20 80.45
PiSSA† 0.84 67.60 78.10 78.40 76.60 78.00 75.80 60.20 75.60 73.78
MiLoRA† 0.84 67.60 83.80 80.10 88.20 82.00 82.80 68.80 80.60 79.24
LoRA-Dash† 0.84 71.00 75.70 79.30 91.10 78.60 84.20 69.80 78.80 78.56
NEAT† 0.84 71.70 83.90 80.20 88.90 84.30 86.30 71.40 83.00 81.21
KaSA† 0.84 73.60 84.40 80.20 91.50 84.50 84.70 72.10 81.20 81.53

MoLoRA 0.96 73.15 83.68 80.09 74.57 85.95 87.33 72.53 86.20 80.43
HydraLoRA 0.84 72.78 84.06 79.68 80.34 86.66 87.12 72.35 86.00 81.12

CrossSpectra 0.02 73.69 83.95 80.34 88.42 87.24 87.75 76.88 87.21 82.73

The memory efficiency of CrossSpectra stems from sparse spectral parameterization. For typical
transformer configurations with L = 24 layers and d = 768, full fine-tuning requires 42 MB, while
LoRA with rank r = 8 needs 2.2 MB. CrossSpectra with κ1 = 1024 (sparse within layers) and
κ2 = 8 (cross-layer truncation) requires only 8 KB—achieving 275× reduction compared to LoRA
and 5,250× reduction compared to full fine-tuning.

Computationally, CrossSpectra’s forward pass consists of a single 3D iFFT operation with com-
plexity O(3Ld2(2 log d + log(3L))), followed by standard matrix multiplications. For sequences
of length n, the dominant cost remains the attention mechanism’s O(n2d) complexity, making
CrossSpectra’s FFT overhead negligible in practice. The backward pass similarly requires a 3D
FFT for gradient computation with the same complexity. Modern FFT implementations on GPU
further reduce this overhead through optimized memory access patterns and parallelization.

5 Experiments

Baselines. To validate the effectiveness of CrossSpectra, we compare against three categories of
baselines: 1) Full FT: Full fine-tuning of all parameters; 2) Single-LoRA variants: LoRA [Hu et al.,
2021c], DoRA [Liu et al., 2024], PiSSA [Meng et al., 2024], MiLoRA [Wang et al., 2024b], rsLoRA
[Kalajdzievski, 2023], LoRA-Dash [Si et al., 2024], NEAT [Zhong et al., 2024], and KaSA [Wang
et al., 2024a]; 3) LoRA MoE methods: MoLoRA [Zadouri et al., 2024], AdaMoLE [Liu and Luo,
2024], and HydraLoRA [Tian et al., 2024]. These baselines represent the current state of the art in
parameter-efficient fine-tuning, both for standard and mixture-of-experts variants.

Benchmarks. To demonstrate the cross-modal effectiveness of our spectral approach, we evaluate
CrossSpectra on four diverse tasks. Image Classification (IC): We fine-tune CLIP ViT-B/32
[Radford et al., 2021] on 7 standard image datasets including StanfordCars, DTD, EuroSAT, GTSRB,
RESISC45, SUN397, and SVHN [Ilharco et al., 2023]. This evaluates CrossSpectra’s ability
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Table 3: Performance comparison of RoBERTa-large with different methods on 7 GLUE tasks. Total
rank is set to 32.

Method # Params (%) CoLA SST-2 MRPC QQP MNLI QNLI RTE Average

Full FT 100 84.27 95.98 85.29 91.58 89.83 94.49 84.84 89.47

LoRA 4.00 83.41 95.64 83.33 90.06 89.00 93.28 84.47 88.46
DoRA 4.00 85.33 95.99 84.07 91.24 89.52 93.54 84.48 89.17
PiSSA 4.00 69.12 95.98 82.84 91.24 88.94 93.59 73.29 85.00
MiLoRA 4.00 84.65 96.10 86.02 91.33 89.51 94.12 84.83 89.51
rsLoRA 4.00 83.51 95.98 86.02 90.75 88.97 93.84 84.12 89.03

MoLoRA 4.50 83.94 96.10 87.75 91.45 89.36 93.90 84.11 89.52
AdaMoLE 4.56 83.99 95.76 86.03 91.48 89.21 93.64 83.75 89.12
HydraLoRA 2.75 83.89 95.52 85.04 91.02 89.34 93.87 81.22 88.56

CrossSpectra 0.01 86.86 96.21 84.55 91.40 89.55 94.19 85.56 89.76

to capture visual adaptation patterns. Natural Language Understanding (NLU): We fine-tune
RoBERTa-large [Liu, 2019] on the GLUE benchmark [Raffel et al., 2020b], which comprises diverse
language tasks including grammatical acceptance (CoLA), sentiment analysis (SST-2), paraphrase
detection (MRPC, QQP), and natural language inference (MNLI, QNLI, RTE). Commonsense
Reasoning (CR): We use LLaMA2-7B [Touvron et al., 2023] on 8 reasoning benchmarks: BoolQ,
PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA. Following Hu et al. [2023],
we combine training datasets from all tasks and evaluate on each test set separately. Arithmetic
Reasoning (AR): Using LLaMA2-7B, we evaluate mathematical reasoning capabilities on GSM8K
[Cobbe et al., 2021], MAWPS [Koncel-Kedziorski et al., 2016], SVAMP [Patel et al., 2021], and
AQuA [Ling et al., 2017] benchmarks. The training data combines these sources with step-by-step
rationales. These diverse tasks let us verify that the cross-layer spectral structure we exploit exists
across various model architectures and domains.

Implementation Details. For CrossSpectra, we adapt all query, key, and value projection matrices
in transformer attention blocks, except in image classification tasks where we only adapt query and
key matrices following standard practice. For frequency sparsity, we set the number of non-zero
coefficients |Ω| = 3000 (corresponding to approximately k1 = 1000 samples per layer slice and
k2 = 3 frequencies in the layer dimension). This represents just 0.1-0.5% of the full parameter
space depending on model size. For baseline comparisons, we use LoRA with rank r = 16 and
r = 32. All models are trained using Adam optimizer [Kingma and Ba, 2014] with batch size 64 and
cosine learning rate scheduling. For image classification, we use separate learning rates: 1e−3 for the
classification layer and 1e−5 for adaptation parameters.

5.1 Main Results

Table 4: We evaluate CLIP ViT-B/32 with full fine-tuning and LoRA variants with total rank 8 across
StanfordCars, DTD, EuroSAT, GTSRB, RESISC45, SUN397, and SVHN datasets. Bold indicates
the highest results.

Method # Params (%) Cars DTD EuroSAT GTSRB RESISC45 SUN397 SVHN Average

Full FT 100 60.33 73.88 98.96 98.30 93.65 53.84 96.78 82.25

LoRA 1.49 41.02 70.15 98.66 96.51 90.38 47.51 95.39 77.09
LoRA (rank16) 2.99 46.51 72.07 98.74 98.04 92.08 51.63 96.00 79.30
LoRA (rank32) 5.98 50.13 72.87 98.88 98.13 92.87 53.65 96.55 80.44
DoRA 1.49 40.75 71.91 98.89 97.71 90.19 47.54 95.46 77.49
PiSSA 1.49 40.41 69.62 98.48 95.84 90.58 47.21 95.84 76.85
MiLoRA 1.49 39.77 70.48 98.19 97.52 89.92 45.38 95.49 76.68

MoLoRA 2.24 50.83 73.51 98.63 97.72 92.58 52.55 96.00 80.26
AdaMoLE 2.33 49.47 71.65 98.52 97.73 91.95 52.29 95.82 79.63
HydraLoRA 1.58 48.42 72.18 98.40 97.28 92.93 51.80 96.06 79.58

CrossSpectra 0.03 53.50 75.32 98.82 98.17 93.46 54.53 96.62 81.49

The experimental results across multiple modalities in Tables 2,3,4 and 6 demonstrate that
CrossSpectra’s superior effectiveness in parameter-efficient fine-tuning. On commonsense reason-
ing tasks with LLaMA2-7B, CrossSpectra achieves 82.73% average accuracy, outperforming methods
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Table 5: Performance comparison under different frequency sparsity levels. CrossSpectra achieves
optimal performance with only 3.2‰ of the frequency space.

CSR Task IC Task

# Freq. |Ω| 10000 30000 60000 120000 1000 3000 6000 12000
Sparsity |Ω|/(d2) 0.9‰ 1.8‰ 3.6‰ 7.2‰ 2.5‰ 5.0‰ 10.1‰ 20.2‰

CrossSpectra 82.15 82.73 82.33 82.65 79.18 80.34 81.49 81.32
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Table 6: Accuracy comparison of various LLMs using PEFT
methods on arithmetic reasoning tasks. Results marked with
an asterisk (∗) are sourced from Hu et al. [Hu et al., 2023]. (†)
denotes our reproduced results on LoRA.

Model Methods MAWPS SVAMP GSM8K AQuA Avg.

LLaMA2-7B

Base 51.7 32.4 15.7 16.9 24.8
LoRA* 79.0 52.1 37.5 18.9 44.6
DoRA 79.2 52.0 37.3 17.4 43.1
PiSSA 78.6 52.5 38.0 17.7 44.7

MiLoRA 79.0 52.1 37.5 18.9 44.6
CrossSpectra 81.4 51.8 38.2 18.1 43.7

Figure 3: Left: Performance vs. spectrum coverage across modalities. Task performance rapidly
increases with low frequencies (0-20%) and shows diminishing returns beyond 60%, validating our
theoretical prediction of low-frequency dominance.

such as KaSA (81.53%) and NEAT (81.21%). For NLU tasks using RoBERTa-large, it scores 89.76%
across GLUE benchmarks, excelling particularly on complex tasks such as CoLA (86.86%). The
cross-modality effectiveness is further validated in vision tasks with CLIP ViT-B/32, CrossSpectra
reaches 81.49% average accuracy, surpassing even high-rank LoRA variants (80.44%). For arithmetic
reasoning, it outperforms standard approaches on benchmarks such as GSM8K and MAWPS. These
consistent results across diverse tasks validate our theoretical framework that exploiting cross-layer
smoothness via tensor-based Fourier parameterization enables substantial parameter reduction while
maintaining or improving performance, confirming that weight adaptations exhibit the spectral bias
predicted by our gradient analysis.

5.2 Analysis of Spectral Properties in Weight Adaptations.

The experimental analysis of Figure 1 and Figure 3 provide compelling evidence for our theoretical
claims about the spectral properties of weight adaptations in neural networks with skip connections.

Low-Frequency Dominance in Adaptation Energy. Figure 1 illustrates the distribution of energy
across different frequency components in weight of LLaMA2-7B (we use value projection in the
attention layer for illustration). The analysis reveals that a significant portion of the total adaptation
energy (69.7%) is concentrated in the low-frequency region of the spectrum, while only 30.3% is
distributed across high-frequency components. This striking imbalance confirms weight adaptations
should inherit the spectral properties with energy concentrated in low-frequency components.

Performance Correlation with Spectral Components. Figure 3 demonstrates how model perfor-
mance across different tasks (Commonsense Reasoning, Natural Language Understanding, and Image
Classification) varies as we progressively increase the sample portions of the frequency spectrum.
(i.e., the x-axis indicate we limit the selected frequency basis reside in the first X% part of spectrum).
It demonstrates that across all three modalities (Commonsense Reasoning, Natural Language Under-
standing, and Image Classification), performance increases rapidly with just the initial low-frequency
components (0 − 20% of the spectrum), stabilizes in the middle range (20 − 60%), and shows
diminishing returns in the high-frequency range (beyond 60%). The consistent pattern across diverse
modalities confirms that the smoothness induced by skip connections creates adaptation patterns that
are efficiently representable in the low frequency domain along the layer dimension, allowing our
approach to achieve strong performance while using dramatically fewer parameters.
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Table 7: Spectral energy vs. model scale. Low-
frequency dominance persists across sizes.

Model Layers Params Low-Freq (%) High-Freq (%)

LLaMA2-13B 40 13B 61.2 38.8
LLaMA2-7B 32 7B 69.7 30.3
RoBERTa-L 24 355M 68.4 31.6
ViT-B/32 12 86M 70.9 29.1

Table 8: LLaMA2-13B commonsense results.
CrossSpectra surpasses LoRA with far fewer
parameters.

Method BoolQ PIQA SIQA HellaSwag Avg.

LoRA 75.2 83.4 82.1 89.8 82.62
CrossSpectra 76.1 83.2 82.7 92.1 83.52

Table 9: Computational efficiency. Sub-linear time scaling
with model size.

Model Layers Time/Epoch (s) Params(%) Avg.

LLaMA2-13B (CrossSpectra) 40 1.82 0.02 83.52
LLaMA2-7B (CrossSpectra) 32 0.79 0.02 82.73
LLaMA2-7B (LoRA) 32 0.61 0.84 77.61

Table 10: FFT overhead. 3D iFFT
cost is negligible vs. attention.

Tensor Size FFT Time (s)

(4096, 4096, 3×10) 0.05
(4096, 4096, 3×20) 0.12
(4096, 4096, 3×30) 0.28
(4096, 4096, 3×40) 0.41

Sparsity along the Weight Dimension. Table 6 presents a comprehensive comparison of various
PEFT methods’ performance specifically on arithmetic reasoning tasks across different LLM archi-
tectures ( LLaMA2-7B). The evaluation spans four key mathematical benchmarks: MAWPS (math
word problems), SVAMP (simple variations on arithmetic problems), GSM8K (grade school math),
and AQuA (arithmetic questions and answers). The results demonstrate that CrossSpectra achieves
comparable or superior performance to standard LoRA and DoRA methods in solving these complex
mathematical problems.

Impact of Frequency Sparsity. Table 5 demonstrates how CrossSpectra’s performance varies
with different levels of frequency sparsity across modalities. For commonsense reasoning (CSR)
tasks, we tested sparsity levels from 0.9‰ to 7.2‰ of the full frequency space (10,000 to 120,000
non-zero frequencies). Similarly, for image classification (IC) tasks, we explored sparsity levels
from 2.5‰ to 20.2‰ (1,000 to 12,000 frequencies). Remarkably, CrossSpectra achieves optimal
performance with extremely sparse parameterization—only 1.8‰ (30,000 frequencies) for CSR tasks
and 5.0‰ (3,000 frequencies) for IC tasks. This confirms our theoretical prediction that weight adap-
tations naturally concentrate in a small subset of frequency components. The consistent performance
across wide sparsity ranges further validates that our approach captures the essential adaptation
information while eliminating redundancy. Even at the sparsest setting (0.9‰), CrossSpectra
outperforms traditional methods that use orders of magnitude more parameters, demonstrating the
practical impact of our theoretical insights about spectral concentration in transformer adaptations.

Scaling to Larger Models. We examine whether the low-frequency concentration holds as model
size increases. Table 7 shows that the low-frequency share of adaptation energy remains high (61–
71%) from ViT-B/32 (86M) up to LLaMA2-13B (13B), supporting our scale-agnostic hypothesis.
We further fine-tune LLaMA2-13B on commonsense reasoning. CrossSpectra surpasses LoRA
with far fewer parameters (Table 8), indicating that our cross-layer spectral parameterization scales
favorably.

Computational Efficiency. Training time scales sub-linearly with model size due to sparse spectral
coefficients (Table 9). LoRA is faster per epoch but yields lower accuracy, illustrating an effi-
ciency–accuracy trade-off. Using torch.fft.ifftn, 3D FFT runtime grows as O(N logN) and
remains negligible relative to attention (Table 10).

6 Conclusions

This work connects neural network theory with efficient adaptation methods, revealing how architec-
tural properties determine optimal weight adaptation parameterization. CrossSpectra demonstrates
that skip connections create structured adaptation patterns across layers—an insight previously
overlooked. Future research could explore dynamic spectral bases, adaptation for emerging ar-
chitectures, or information-theoretic compression limits. Our findings suggest the most efficient
neural network parameterizations align with their intrinsic dynamics rather than treating parameters
independently. As foundation models grow, leveraging these inherent structures will be essential for
making specialized adaptation accessible.
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A Proofs

Our analysis builds on standard stability and smoothness properties of residual architectures.
Assumption A.1 (Residual stability and ODE scaling). Each residual block Rl(Hl−1;Wl) is
Lipschitz continuous with ∥∂Rl/∂Hl−1∥2 ≤ cH and ∥∂Rl/∂W

M
l ∥2 ≤ cM , where cH , cM are

depth-independent constants. We assume residual–ODE scaling Hl = Hl−1+
1
LRl(Hl−1;Wl), and

bounded loss gradients ∥∂L/∂HL∥F ≤ G (Xiong et al., 2020, Liu et al., 2020). Layer normalization
and residual scaling guarantee such bounded Jacobians.

Assumption A.2 (Spatial regularity and weak separability). Within-layer adaptation maps possess
bounded Sobolev norms, implying decay of high-frequency spectral components in each spatial
dimension. Such spectral bias is well documented in neural networks (Rahaman et al., 2019).
Moreover, the 3-D adaptation tensor is approximately separable across spatial and layer dimensions,
as suggested by empirical analyses of attention weight spectra.

These assumptions are mild and supported by empirical evidence in prior work. They ensure that the
subsequent proofs yield depth-normalized gradient smoothness and power-law spectral decay.

A.1 Proof of Theorem 3.2

Proof. Step 1: Residual formulation. We express each transformer block in residual–ODE form
Hl = Hl−1 + 1

LRl(Hl−1;Wl), where Rl denotes the combined attention and feed-forward
submodules. Let Jj = ∂Rj/∂Hj−1 and Kl = ∂Rl/∂W

M
l , with ∥Jj∥2 ≤ cH and ∥Kl∥2 ≤ cM .

Step 2: Gradient decomposition. By the chain rule,

∇WM
l
L =

∂L
∂HL

∂HL

∂WM
l

,
∂HL

∂WM
l

=
1

L

L∑
t=l

Φt+1←lKl,

where the propagation operator Φt+1←l =
∏t

j=l+1(I +
1
LJj) satisfies ∥Φt+1←l∥2 ≤ ecH(t−l)/L.

Step 3: Bounding cross-layer differences. Successive gradients differ by

∂HL

∂WM
l+1

− ∂HL

∂WM
l

=
1

L

L∑
t=l+1

(Φt+1←l+1 − Φt+1←l)Kl.

Using the series expansion Φt+1←l+1 − Φt+1←l = O( 1
L ) and ∥Φt+1←l∥2 ≤ ecH(t−l)/L gives∥∥∥ ∂HL

∂WM
l+1

− ∂HL

∂WM
l

∥∥∥
2
≤ (ecH − 1)cM

L
.

Multiplying by ∥∂L/∂HL∥F ≤ G yields

∥GM
l+1 −GM

l ∥F ≤
CM

L
, CM = GcM (ecH − 1).

A.2 Proof of Theorem 3.3

Proof. Step 1: Constructing the adaptation tensor. Let ∆WM
l denote the accumulated weight

updates, and form AM ∈ Rd×d×L with AM
:,:,l = ∆WM

l . Define its 3D discrete Fourier transform:

ÂM (n1, n2, n3) =
∑
i1,i2,l

AM
i1,i2,l e

−2πi(n1i1/d+n2i2/d+n3l/L).

Step 2: Smoothness implies spectral decay. From Theorem 3.2,

∥∆WM
l+1 −∆WM

l ∥F ≤
C1

L
.
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A bounded first finite difference yields Fourier magnitude

∥ÂM
:,:,n3
∥F ≤

C̃1

1 + n3
.

If a stronger second-difference bound ∥∆WM
l+1 − 2∆WM

l +∆WM
l−1∥F ≤ C2/L

2 holds, then

∥ÂM
:,:,n3
∥F ≤

C̃2

(1 + n3)2
.

This confirms a power-law decay in the cross-layer dimension.

Step 3: Combined spatial–layer spectral structure. Empirically, neural networks exhibit spectral
bias toward low within-layer frequencies [Rahaman et al., 2019], so that

|ÂM (n1, n2, n3)| ≤
CM

(1 + n1)β1 (1 + n2)β2 (1 + n3)β3
,

where β3 > β1, β2 due to stronger smoothness along depth. This establishes the claimed dimension-
specific spectral decay.

B Limitations and Future Work

While CrossSpectra demonstrates significant parameter efficiency across diverse tasks, there
are several limitations worth noting. First, our current approach focuses exclusively on adapting
attention weights (Q,K,V ), potentially missing optimization opportunities in other components
like feed-forward networks. This design choice has the benefit of reducing overfitting risk by
targeting the most information-dense parameters identified by our gradient analysis, but extending
the spectral approach to other transformer components in a principled way could yield further
improvements. Second, the computational overhead of 3D FFT operations, while well-optimized on
modern hardware, might become a bottleneck for extremely large models (trillions of parameters) or
resource-constrained deployment environments. Third, our method requires a careful selection of
frequency sparsity patterns—currently uniform sampling within layers—which may not be optimal
for all model architectures or tasks. A promising direction for future work is to develop adaptive
frequency sampling strategies that automatically identify the most important spectral components for
a specific task. Additionally, exploring theoretical connections between CrossSpectra and other
parameter-efficient methods like prompt tuning could lead to hybrid approaches that combine their
complementary strengths. Finally, while we observed consistent cross-layer spectral patterns across
model sizes up to 7B parameters, verifying that these properties scale efficiently to models with
hundreds of billions of parameters remains an important direction for future research.
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NeurIPS Paper Checklist

i. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] ,

Justification: We introduce contributions and scope on introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

ii. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of our work on the Appendix

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

iii. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:We provide the full set of assumptions and a roof
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
iv. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We write all the main experimental results
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

v. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18



Answer: [No]

Justification: We promise code will be public available when paper get accepted

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

vi. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The results and experiment are displayed in experiment part

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

vii. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We define the standard deviation over five times training, thereby conveying
statistical significance and variability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

viii. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of this experiment are displayed in main paper

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

ix. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conducted in the paper conform with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

x. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: paper discusses both potential positive societal impacts and negative societal
impacts of the work performed

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

xi. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] ,

Justification: This work does not have any danger.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

xii. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use all public datasets without private data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

xiii. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: We use all public datasets without private data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

xiv. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: We do not have crowdsourcing experiments and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

xv. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: We do not have crowdsourcing experiments and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

xvi. Declaration of LLM usage

22



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: We use LLM for grammar correction.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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