
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEWTONGEN: PHYSICS-CONSISTENT AND CONTROL-LABLE TEXT-TO-VIDEO GENERATION VIA NEURAL NEWTONIAN DYNAMICS

Anonymous authors

Paper under double-blind review

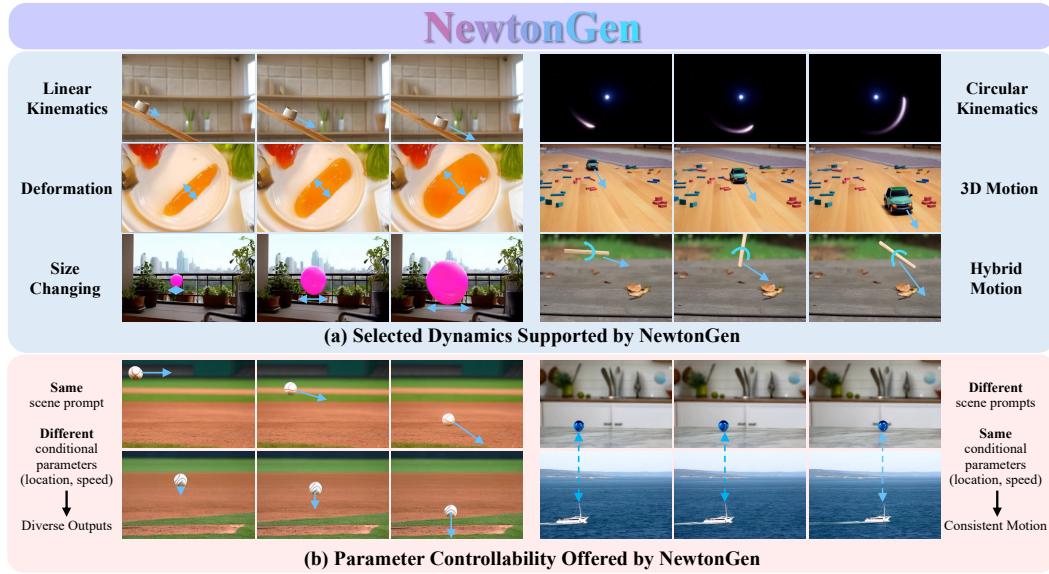


Figure 1: NewtonGen generates physically-consistent videos from text prompts, with diverse dynamic perception (a), and precise parameter control (b).

ABSTRACT

A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control. All data and code will be public.

1 INTRODUCTION

Since the breakthrough of probabilistic diffusion models in the early 2020's (See, e.g., Ho et al. (2020); Song et al. (2021); Ramesh et al. (2021); Rombach et al. (2022)), foundational vision models have created unprecedented opportunities for digital content generation. While contemporary video

generators can synthesize visually appealing frames (Ho et al., 2022; OpenAI, 2024b; Hong et al., 2023; Peebles & Xie, 2023; Kong et al., 2024; Yang et al., 2025b), they struggle to produce dynamic sequences that adhere to physically plausible motion. For instance, many videos generated by these methods violate basic physical laws such as objects falling upward, or abruptly changing velocity and direction (Bansal et al., 2024; 2025; Zhang et al., 2025a; Li et al., 2025b; Duan et al., 2025; Motamed et al., 2025; Gu et al., 2025). The goal of this paper is to provide a solution to these issues.

The failures in the above situations, according to some literature, can potentially be remedied by scaling laws (Kaplan et al., 2020). However, recent researches such as Kang et al. (2025); Li et al. (2025a); Chefer et al. (2025); Lin et al. (2025); Bansal et al. (2024; 2025) consistently point to a deeper reason that current models only learn the distribution of visual appearances. They lack an understanding of the underlying physical laws. Existing frameworks typically treat videos as spatio-temporal tokens and optimize the likelihood at the pixel level. During inference, the models mainly rely on **memorization and imitation**, making it difficult to generalize to out-of-distribution scenarios (Kang et al., 2025). To bridge this gap, we argue that we need to explicitly incorporate physical laws into the learning process. This is not only a crucial step for video generation, but also essential for connecting generative AI with the physical world.

In this paper, we introduce **NewtonGen**, a novel framework that integrates a data-driven, pre-trained video generator with physics-informed, Neural Newtonian Dynamics (NND). In NND, we introduce a neural ordinary differential equation (neural ODE) model to learn and predict the Newtonian motion from physics-clean data. By learning the dynamics of motion and manipulating its initial physical states, we can predict physics-consistent trajectories, orientations, and shapes. Subsequently, a motion-controlled video generator produces diverse and realistic videos by conditioning on both the predicted states and scene prompts. In summary, the contribution of this paper is twofold:

1. We propose NewtonGen, a **physics-consistent and controllable** text-to-video framework that explicitly incorporates dynamics into the generation process, allowing for interpretable, white-box control over generated motion.
2. We introduce **Neural Newtonian Dynamics (NND)**, which models different dynamics via unified neural ordinary differential equations (ODEs). NND can efficiently learn the latent dynamics from a small amount of physics-clean data.

We conducted extensive experiments, showing that NewtonGen achieves physical consistency and controllability across various dynamics, as illustrated in Figure. 1, and outperforms other baselines.

2 RELATED WORK

2.1 VIDEO GENERATION MODELS

The emergence of diffusion models (Ho et al., 2020; Song et al., 2021) has greatly enhanced the ability of generative models to produce visually realistic images (Ramesh et al., 2021; Rombach et al., 2022; SD2). In video generation, models learn the distribution of real-world motion from large-scale datasets (OpenAI, 2024b; Blattmann et al., 2023; Hong et al., 2023; Yang et al., 2025b; Kong et al., 2024; NVIDIA, 2025; Wan et al., 2025). The method DiT proposed by Peebles & Xie (2023) introduces transformer architectures into diffusion models, further enhancing their scalability (Kaplan et al., 2020) for video generation tasks. Following this trend, representative video generation models (e.g., Sora OpenAI (2024b)) aim to leverage extensive video data to evolve toward general-purpose world simulators.

However, current video generation models still lack an understanding of real-world physics. Studies show that increasing data or model size does not help them learn the physical rules behind video content (Kang et al., 2025; Liu et al., 2025; Motamed et al., 2025; Lin et al., 2025). As a result, these models often produce videos that look realistic but contain physically incorrect dynamics when applied to out-of-distribution cases (Kang et al., 2025; Bansal et al., 2025; 2024; Meng et al., 2025; Zhang et al., 2025a; Li et al., 2025a; Gu et al., 2025; Chefer et al., 2025). The main reason is that they focus on appearance-level **motion** rather than the underlying **dynamics**.

108 2.2 PHYSICS-AWARE GENERATION
109

110 To address the challenge of physical plausibility in video generation, recent research efforts have
111 started incorporating explicit physical priors into generative pipelines. Based on the stage and
112 approaches of injecting physical knowledge, these methods can be broadly categorized into three
113 types:

114 **Generation then Physical Simulation.** These methods first generate static 3D models or images
115 conditioned on textual or visual inputs using generative models. Subsequently, physical simulation
116 techniques such as Material Point Method (MPM) (Stomakhin et al., 2013) is applied to animate
117 these static outputs into dynamic 3D scenes or videos (Lin et al., 2024; Xie et al., 2024; Tan et al.,
118 2024; Zhang et al., 2024; Hsu et al., 2024). Although the post hoc physics-based rendering process
119 is explicit and controllable, it demands significantly more manual effort. These methods can be
120 summarized in the following Equation:

121
$$\hat{\mathbf{V}} = \underbrace{P}_{\text{Physical Simulation}} \left(\overbrace{G_\psi(\mathbf{I})}^{\text{Video Generation}} \right) \quad (1)$$
122

123 where P denotes the physical simulation, G denotes the video generator parameterized by network
124 weight ψ . \mathbf{I} is the input conditional prompt or image, $\hat{\mathbf{V}}$ is the video we want.

125 **Physical Simulation then Generation.** Approaches in this category (Yuan et al., 2023; Liu et al.,
126 2024; Savant Aira et al., 2024; Chen et al., 2025; Xie et al., 2025; Li et al., 2025d) first apply physical
127 simulation to conditionally specified images to generate plausible dynamic behaviors. The simulated
128 dynamics are then utilized as conditional inputs for video generation models. For instance, PhysGen
129 (Liu et al., 2024) segments dynamic objects from input images, simulates their motion according to
130 Newtonian mechanics, and then refines the rendering by conditioning a video generation model on
131 both simulated object positions and static backgrounds. However, generative models themselves lack
132 any inherent physical reasoning or simulation capability: users must predefine the physical simulation
133 parameters and rules for each scenario, and these settings cannot readily generalize to other contexts
134 or different physical laws. These approaches can be summarized as:

135
$$\hat{\mathbf{V}} = G_\psi(P(\mathbf{I})) \quad (2)$$
136

137 **Generation with Learned Physics Priors.** As illustrated in Equation 3, these methods leverage
138 physical priors extracted from large-scale pretrained models to guide the generative process directly
139 (Li et al., 2024; Lv et al., 2024; Xu et al., 2024; Yang et al., 2025a; Pandey et al., 2025; Xue et al.,
140 2025; Cao et al., 2024; Wang et al., 2025; Yuan et al., 2025; Zhang et al., 2025b; Chefer et al.,
141 2025; Zhang et al., 2025c; Feng et al., 2025; Yang et al., 2025a). For example, PhyT2V (Xue et al.,
142 2025) employs a large language model (LLM) ChatGPT (OpenAI, 2024a) and a vision-language
143 model (VLM) (Wang et al., 2024a) as physics-consistency evaluators, performing multiple rounds of
144 self-refinement to generate videos with improved physical plausibility. The main limitation of this
145 line of work lies in the implicit assumption that existing models are capable of physical reasoning. In
146 practice, however, these large-scale models, much like conventional video generation models, derive
147 their so-called “physical understanding” purely from data fitting, and thus struggle when faced with
148 physically challenging out-of-distribution scenarios. Our method broadly fits within this paradigm;
149 however, our physical prior is driven by both explicit physics models and physics-clean data, which
150 gives it stronger conditional controllability and better out-of-distribution generalization.

151
$$\hat{\mathbf{V}} = G_\psi(P_\phi(\mathbf{I})) \quad (3)$$
152

153 where ϕ is the learned physical parameters.

154 2.3 LEARN PHYSICS FROM VIDEOS

155 Leveraging the spatiotemporal information in videos, methods such as Wu et al. (2015); Watters
156 et al. (2017); Wu et al. (2017); Belbute-Peres et al. (2018); Raissi et al. (2019); Chari et al. (2019);
157 Greydanus et al. (2019); Lutter et al. (2019); Zhong & Leonard (2020); Jaques et al. (2020); Le Guen
158 & Thome (2020); Hofherr et al. (2023); Garrido et al. (2025); Garcia et al. (2025); Deng et al. (2025);
159 Li et al. (2025c) estimate the parameters of known governing equation, [which in turn enables tasks](#)

162 such as future-frame prediction and physical reasoning. These methods usually adopt an encoder-
163 decoder structure. Each frame is encoded into a latent physical state using models like a variational
164 autoencoder (VAE) (Kingma & Welling, 2013; 2019). The latent state is then processed by a physics
165 engine and decoded back to reconstruct the frame for training. Most of these approaches are designed
166 for a single type of simple dynamical system. They are difficult to generalize to different systems
167 within a single framework.

168 Our Neural Newtonian Dynamics (NND) is partly inspired by the aforementioned methods. We adopt
169 an encoder-only architecture integrated with physics-informed general neural ordinary differential
170 equations (ODEs) to explicitly capture diverse dynamics from videos.
171

172 3 PRELIMINARY CONCEPTS

173 3.1 INCORPORATING PHYSICAL DYNAMICS INTO DATA-DRIVEN VIDEO GENERATION

177 Existing video generation models (OpenAI, 2024b; Hong et al., 2023; Kong et al., 2024; Yang et al.,
178 2025b; Blattmann et al., 2023) are mostly data-driven, relying on large-scale video datasets without
179 physical annotations. While they achieve good performance within training domains, they often fail
180 in out-of-distribution scenarios by violating basic physical laws (Chefer et al., 2025; Kang et al.,
181 2025). In contrast, physics-driven dynamics methods explicitly incorporate governing constraints,
182 yielding better physical plausibility and out-of-distribution generalization (Champion et al., 2019).
183 To combine the strengths of both, we propose incorporating physical dynamics into data-driven video
184 generation. This hybrid paradigm leverages the low-bias learning capacity of data-driven models
185 while injecting lightweight dynamics priors to enforce consistency with fundamental laws, thereby
186 achieving improved generalization and physically coherent video synthesis.
187

188 3.2 MODELING THE DYNAMICS IN A GENERAL PHYSICS-INFORMED NEURAL ODE

190 To understand how NewtonGen works, we first ask: what is the best way to describe Newtonian
191 motion? Physics textbooks tell us that if we are given the initial position, initial velocity, acceleration
192 and mass, we can predict the trajectory of how the object moves in space and time. In mathematics,
193 this is done through ordinary differential equations (ODEs). Based on this intuition, we consider a
194 second-order system governed by autonomous ODEs with no explicit time-varying external forces.
195 We constrain the ODEs to the second order, because most common physical motions in daily life (e.g.,
196 flying balls) can generally be described by second-order dynamics. Even in more complex motions
197 and three-dimensional scenes, the dynamics can still be effectively characterized by second-order
198 formulations over relatively short time intervals with sufficiently dense anchor points.
199

200 To handle a wide range of video generation tasks, we require the ODE framework capable of
201 accommodating diverse dynamics. This raises the following question: how can we construct a
202 universal ODE framework that can describe various types of motion? To this end, we introduce two
203 key design principles:
204

- 205 1. **Latent Physical States.** We define a 9-dimensional latent physical state vector $\mathbf{Z} =$
206 $[x, y, v_x, v_y, \theta, \omega, s, l, a]$. Here, x, y represent the position, and v_x, v_y represent velocity
207 of the object’s center of mass. θ, ω encode the object’s rotation or rotation about a pivot
208 point. s, l are the object’s shortest and longest dimensions, and a is its projected area. This
209 formulation allows our physical states to capture translation, rotation, deformation, and
other complex behaviors. 3D motion effect can also be equivalently realized through the
combination of position and size control.
- 210 2. **Linear Physics-Informed Neural ODEs with a Residual MLP.** Different motions follow
211 inherently different dynamical laws: for instance, free-fall can be described by a simple
212 linear ODE, while a damped pendulum or other unknown motion cannot. To address this, we
213 combine linear physics-informed neural ODEs with a residual multilayer perceptron (MLP)
214 as illustrated in Equation 4 and Figure. 2(a). The linear ODEs capture the dominant linear
215 dynamics, while the residual MLP models nonlinear and unknown components, enabling
the system to flexibly approximate a wide range of physical behaviors.

216

217
$$a_z \ddot{z} + b_z \dot{z} + c_z z + d_z + \text{MLP}(\mathbf{Z}) = 0 \quad (4)$$

218 where z is one element of the 9-dimensional latent physical state vector \mathbf{Z} , and a_z, b_z, c_z, d_z are
219 learnable parameters of the linear ODE. We can use multiple ODEs to predict future physical states
220 in a compact autonomous form:

221
$$\mathbf{Z}_t = \mathbf{Z}_0 + \int_{t_0}^t \text{Func}(\mathbf{Z}(\tau)) d\tau, \quad (5)$$

222 where $\text{Func}(\mathbf{Z}(\tau))$ represents the collection of all individual dz/dt ODEs, and $\mathbf{Z}_0 = \mathbf{Z}(t_0)$ is the
223 known initial physical state at time t_0 .

224

225

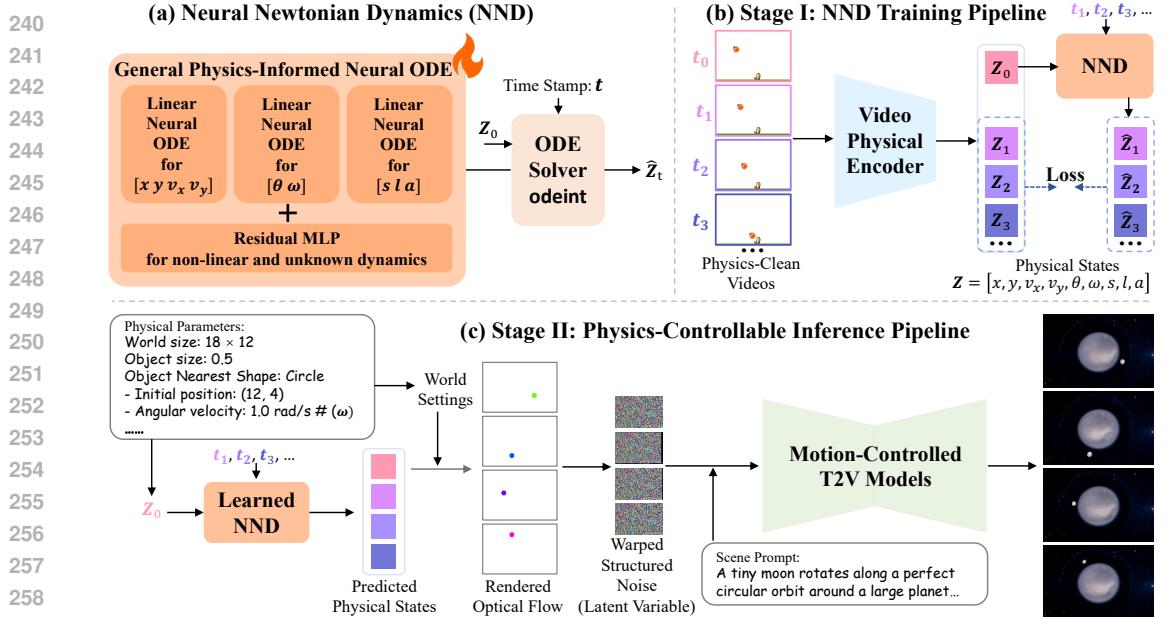
4 METHODOLOGY

226

227 **Problem Definition.** We study generating videos of foreground objects whose motion obey classical
228 mechanics, with controllable physical parameters, from prompts describing the scene and initial
229 conditions.230 **Overall Framework.** As shown in Figure. 2, NewtonGen consists of two main stages. As illustrated
231 in Figure. 2(b), in the first stage, we train the proposed Neural Newtonian Dynamics (NND) on
232 a small set of physics-clean data to learn the underlying motion dynamics and parameters. In the
233 second stage shown in Figure. 2(c), we use the learned dynamics to predict future physical states
234 from arbitrary initial conditions [specified by the user via text prompts at inference](#), and feed these
235 predictions, together with the scene prompt, into a motion-controlled text-to-video generation model
236 to produce the final video.

237

238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
192

270 demonstrated in Figure. 2(a), physics-informed linear neural ODEs are employed to model the
271 underlying linear dynamics, while a residual three-layer MLP captures nonlinear and unknown
272 components of the dynamics. With this design, the learnable neural ODEs can represent more
273 complex or real-world dynamics. Given an initial physical states \mathbf{Z}_0 and a time stamp t , the ODE
274 solver `odeint` (Chen et al., 2018) can be used to predict the object’s future physical states \mathbf{Z}_t .
275

276 4.2 TRAINING FOR NEURAL NEWTONIAN DYNAMICS

277 **Overall Training Pipeline.** Figure. 2(b) illustrates that, for training Neural Newtonian Dynamics
278 (NND), we adopt an encoder-only architecture. This design does not require decoding back to
279 images, and optimizes solely in the latent physical space, significantly reducing computational cost.
280 Specifically, a Video Physical Encoder E_{phys} compresses each video frame into its corresponding
281 physical state. The initial state Z_0 and the sequence of frame time stamps (t_1, t_2, t_3, \dots) are fed into
282 NND, which predicts $(\hat{\mathbf{Z}}_1, \hat{\mathbf{Z}}_2, \hat{\mathbf{Z}}_3, \dots)$. The loss is then computed between the predicted states and
283 the states $(\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3, \dots)$ extracted by the Encoder E_{phys} :

$$285 \text{Loss} = \frac{1}{T} \sum_{t=1}^T \left\| \underbrace{E_{\text{phys}}(\mathbf{I}_t)}_{\mathbf{Z}_t} - \underbrace{\text{NND}_\kappa(E_{\text{phys}}(\mathbf{I}_0), t)}_{\hat{\mathbf{Z}}_t} \right\|_2^2 \quad (6)$$

286

287 where T denotes the number of sampled time stamps, \mathbf{I}_t is the video frame at time t , and κ represents
288 the learnable parameters of the ODEs.
289

290 **Training Data.** To enable Neural Newtonian Dynamics to learn accurate and effective representations
291 of physical dynamics, we require “physics-clean” video data. That is, the motion in the videos should
292 be prominent and monotonic, with no motion blur or excessive noise in each frame, and minimal
293 color, texture, or background distractions. However, to our knowledge, such high-quality datasets
294 of physical dynamics are still lacking. To address this, we developed a Python-based physics data
295 simulator that can render videos with precise timestamps for different world settings, initial conditions,
296 and types of dynamics. More details are shown in the Supplementary Material.
297

298 **Video Physical Encoder.** To extract physical state labels from videos, we first apply the visual
299 segmentation foundation model SAM2 (Ravi et al., 2025) to obtain masks for the dynamic regions in
300 each frame. From the extracted masks, [we extract the centroid, area, long/short axes, and orientation of the foreground mask via morphological analysis, and compute velocities from inter-frame differences](#).
301 Finally, these attributes are uniformly quantized to form the physical states \mathbf{Z} .
302

303 4.3 INFERENCE FOR PHYSICAL-CONTROLLABLE TEXT-TO-VIDEO GENERATION

304 As illustrated in Figure. 2(c), during inference, we decouple physical dynamics reasoning from video
305 generation. Physical dynamics reasoning focuses on modeling and predicting the motion of dynamic
306 objects, while video generation leverages rich scene understanding and generation capabilities to
307 render detailed and flexible visual content.
308

309 We adopt Go-with-the-Flow (Burgert et al., 2025) as our base video generation model, which
310 achieves motion control through structured noise (Chang et al., 2024). By warping the independently
311 initialized Gaussian noise of each frame according to the input optical flow, temporal correlations
312 emerge between the initial noise of consecutive frames, leading to more effective motion control.
313 Other motion-controlled video generation models (Yin et al., 2023; Wang et al., 2024b; Zhang
314 et al., 2025d) typically encode trajectories or bounding boxes through ControlNet (Zhang et al.,
315 2023) or additional encoders and inject the features into the base video generators. However, these
316 approaches often struggle with handling deformations, rotations, or more complex motions. We
317 choose Go-with-the-Flow for its generality and effectiveness.
318

319 To effectively transfer the physical knowledge from our NND to the video generation model, a
320 multi-step procedure is required. First, based on the user’s physical prompts, we parse the initial
321 physical state \mathbf{Z}_0 and future time stamps. \mathbf{Z}_0 and the frame timestamps are fed into the trained
322 NND to obtain the corresponding physical states for all future frames. Next, using the world setting
323 information parsed from the physical prompts (e.g., scene dimensions, object size, and the closest
324 simple geometric shape of the object), we compute an approximate pixel-level optical flow for
325 each frame based on the predicted physical states. These flows are then temporally and spatially

324 downsampled to match the resolution of the video generator’s latent space, resulting in a structured
325 optical flow sequence. Finally, combining the user’s scene prompts, video frames are sampled to
326 produce the final videos.
327

328 5 EXPERIMENTS 329

330 In this section, we evaluate the applications of our framework for physically-consistent and control-
331 lable video generation. Subsection 5.1 presents implementation details, Subsection 5.2 compares
332 NewtonGen with other baselines, and Subsection 5.3 discusses the results of ablation study.
333

334 5.1 IMPLEMENTATION DETAILS 335

336 **Supported Motion Types.** In NewtonGen, we evaluate 12 distinct types of motion: **uniform motion**,
337 **acceleration**, **deceleration**, **parabolic motion**, **3D motion**, **slope sliding**, **circular motion**, **rotation**,
338 **parabolic motion with rotation**, **damped oscillation**, **size changing**, and **deformation**. These
339 categories cover the most common fundamental motion patterns encountered in everyday scenarios.
340 The tested velocity magnitudes are mostly within the range of 0–15 m/s, while the duration of the
341 generated motions is typically concentrated within 1–2 seconds.
342

343 **Training Details for NND.** We optimize the NND with the AdamW optimizer (initial learning rate
344 1×10^{-4}) and a CosineAnnealingLR scheduler (Loshchilov & Hutter, 2017). For each type of motion,
345 we collect 100 physical videos with different initial conditions from the physics simulator mentioned
346 in Subsection 4.2 as training data. The model is trained with a batch size of 64 for a total of 20,000
347 epochs, which requires about 2 hours on a single NVIDIA A100 80 GB GPU.
348

349 **Metrics.** Assessing the physical consistency of different video generation models is hampered by
350 the absence of a shared ground truth and by the fact that each synthetic sequence is defined in its
351 own coordinate frame and scale and time. Consequently, a single, unified physical evaluation metric
352 cannot be directly applied. In this work, we are inspired by the Physical Invariance Score (PIS)
353 (Zhang et al., 2025a), which evaluates physical plausibility by checking whether a motion preserves
354 its expected invariants C . For example, in parabolic motion and the horizontal velocity v_x should be
355 constant. We use SAM2 (Ravi et al., 2025) to segment the object in each frame and obtain its centroid
356 and shape features. Velocities are estimated from frame-to-frame centroid differences. The Physical
357 Invariance Score for a quantity C is defined as the relative standard deviation of C over time:
358

$$359 \text{PIS} = (1 + C_\sigma / (|C_\mu| + \epsilon))^{-1} \quad (7)$$

360 where C denotes one of the quantities introduced above (i.e., the horizontal velocity, the vertical
361 acceleration, or the angular speed). $\epsilon = 1 \times 10^{-5}$ is added to the denominator to prevent division
362 by zero. The PIS score is bounded in $[0, 1]$, with a value of 1 indicating that the evaluated physical
363 quantity remains perfectly invariant.
364

365 We also adopt the background consistency (BC) and motion smoothness (MS) metrics from VBench
366 ((Huang et al., 2024)) to assess scene consistency and motion quality.
367

368 5.2 COMPARISONS WITH OTHER METHODS 369

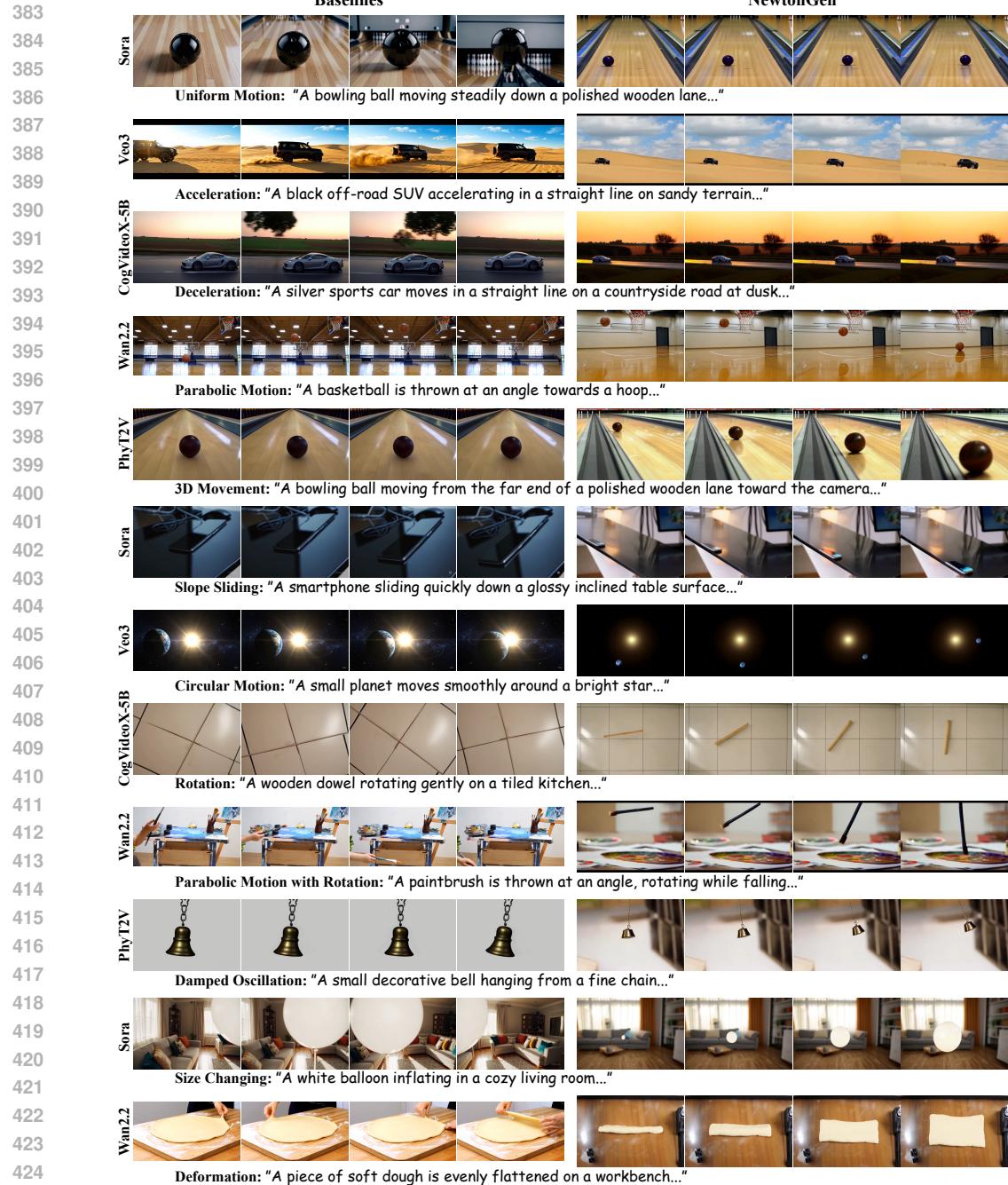
370 **General Comparisons.** We compare our method with five baselines: SORA (OpenAI, 2024b), Veo3
371 (Google, 2025), CogVideoX-5B (Yang et al., 2025b), Wan2.2 (Wan et al., 2025) and PhyT2V (Xue
372 et al., 2025). These baselines represent the current state-of-the-art in both closed-source and open-
373 source video generation models, as well as physics-based generation methods. We standardize the
374 video generation settings across all methods to ensure maximum fairness in comparison. We collected
375 24 prompts for each motion type to assess the physical generation capabilities of all methods.
376

377 In Figure. 3, the video sequences generated by NewtonGen exhibit the highest degree of physical
378 consistency across all 12 motion types. The motions display smooth and realistic trajectories without
379 abrupt changes in direction or speed, realistic 3D movement effects (with object scale gradually
380 increasing as distance decreases), physically plausible self-rotation (objects preserve shape with
381 uniform angular velocity), smooth deformations (edges stretch or shrink progressively), and natural
382 size variations (e.g., balloon diameter increases over time but at a decelerating rate). Table 1 further
383 shows that our model achieves significantly higher physical consistency scores than competing
384

378 methods across different motion categories. Notably, some motion types do not admit perfect physical
379 invariants; in these cases, we still compute quantities such as angular velocity and compare them
380 against reference simulation videos under the same conditions.

381

382



426 Figure 3: Visual comparisons of different text-to-video generation methods across diverse physical
427 dynamics, where our method consistently shows strong physical consistency and controllability (such
428 as we can control the shape of dough).

429
430 **Parameter Controllability Comparisons.** In Figure. 4, we demonstrate NewtonGen’s ability to
431 perceive physical parameters. Unlike other models, our method faithfully reflects world settings,

432
 433 Table 1: Quantitative comparison with different methods. The reference scores are computed on
 434 the simulated videos, and the detailed definition of PIS for each type of motion is provided in the
 435 Appendix. BC and MS denote background consistency and motion smoothness, respectively, with
 436 values in parentheses indicating the standard deviation across videos. We highlight the **best** and
 437 **second-best** results for each metric.

Motion Types	Metrics↑	Methods						
		Reference	Sora	Veo3	CogVideoX-5B	Wan2.2	PhyT2V	Ours
Uniform Motion	PIS- <i>v</i>	0.9972	0.6548(0.022)	0.9784(0.006)	0.5392(0.007)	0.6395(0.029)	0.5349(0.014)	0.9830(0.005)
	BC	1.0000	0.9573(0.003)	0.9491(0.024)	0.9534(0.018)	0.9683(0.027)	0.9612(0.015)	0.9694(0.020)
	MS	1.0000	0.9926(0.003)	0.9953(0.001)	0.9905(0.005)	0.9939(0.003)	0.9876(0.015)	0.9962(0.003)
Acceleration (Uniform)	PIS- <i>a_x</i>	0.8489	0.3437(0.355)	0.6187(0.308)	0.5458(0.038)	0.3077(0.261)	0.5033(0.011)	0.6568(0.013)
	BC	1.0000	0.9495(0.011)	0.9373(0.015)	0.9518(0.037)	0.9695(0.018)	0.9636(0.021)	0.9748(0.012)
	MS	1.0000	0.9852(0.011)	0.9909(0.004)	0.9876(0.008)	0.9908(0.005)	0.9822(0.010)	0.9918(0.009)
Deceleration (Uniform)	PIS- <i>a_x</i>	0.8872	0.6162(0.072)	0.6173(0.102)	0.4988(0.014)	0.4705(0.328)	0.5167(0.023)	0.6891(0.007)
	BC	1.0000	0.9494(0.026)	0.9295(0.039)	0.9623(0.017)	0.9721(0.012)	0.9622(0.012)	0.9744(0.012)
	MS	1.0000	0.9883(0.006)	0.9933(0.003)	0.9787(0.024)	0.9903(0.007)	0.9814(0.014)	0.9947(0.005)
Parabolic Motion	PIS- <i>v_x</i>	0.9988	0.9095(0.014)	0.9042(0.012)	0.7392(0.007)	0.7747(0.126)	0.6370(0.199)	0.9803(0.002)
	PIS- <i>a_y</i>	0.9487	0.5723(0.266)	0.7662(0.139)	0.4230(0.028)	0.5571(0.953)	0.3567(0.799)	0.8189(0.014)
	BC	1.0000	0.9486(0.023)	0.9514(0.023)	0.9330(0.030)	0.9602(0.028)	0.9436(0.046)	0.9693(0.014)
	MS	1.0000	0.9915(0.004)	0.9948(0.002)	0.9856(0.009)	0.9903(0.007)	0.9844(0.011)	0.9967(0.001)
3D Motion	PIS- <i>Δ_t</i>	0.7388	0.5013(0.005)	0.5932(0.005)	0.3026(0.005)	0.4583(0.005)	0.2911(0.007)	0.6472(0.005)
	PIS- <i>v_y</i>	0.9986	0.8481(0.008)	0.8913(0.008)	0.6690(0.003)	0.8384(0.018)	0.6510(0.002)	0.9371(0.007)
	BC	1.0000	0.9426(0.017)	0.9410(0.022)	0.9620(0.018)	0.9772(0.008)	0.9629(0.016)	0.9672(0.018)
	MS	1.0000	0.9934(0.003)	0.9944(0.003)	0.9945(0.003)	0.9943(0.002)	0.9888(0.012)	0.9954(0.005)
Slope Sliding	PIS- <i>a_x</i>	0.8741	0.4931(0.153)	0.6081(0.157)	0.3533(0.160)	0.3108(0.421)	0.3570(0.354)	0.6312(0.041)
	PIS- <i>a_y</i>	0.9148	0.4616(0.212)	0.3815(0.092)	0.4731(0.028)	0.3967(0.744)	0.4297(0.569)	0.5840(0.043)
	BC	1.0000	0.9667(0.013)	0.9631(0.016)	0.9556(0.024)	0.9653(0.017)	0.9568(0.022)	0.9787(0.010)
	MS	1.0000	0.9919(0.005)	0.9958(0.002)	0.9903(0.006)	0.9912(0.005)	0.9829(0.014)	0.9971(0.001)
Circular Motion	PIS- <i>ω</i>	0.9933	0.8393(0.010)	0.8932(0.007)	0.7726(0.026)	0.4677(0.006)	0.6391(0.322)	0.9788(0.018)
	BC	1.0000	0.9684(0.012)	0.9711(0.010)	0.9842(0.013)	0.9745(0.016)	0.9677(0.027)	0.9812(0.007)
	MS	1.0000	0.9949(0.001)	0.9960(0.001)	0.9979(0.001)	0.9949(0.004)	0.9974(0.002)	0.9980(0.001)
Rotation (Uniform)	PIS- <i>ω</i>	0.9836	0.4267(0.099)	0.5285(0.436)	0.6596(0.023)	0.3425(0.172)	0.7842(0.304)	0.8838(0.038)
	BC	1.0000	0.9543(0.030)	0.9650(0.018)	0.9397(0.025)	0.9620(0.010)	0.9375(0.028)	0.9700(0.008)
	MS	1.0000	0.9900(0.006)	0.9942(0.003)	0.9795(0.028)	0.9909(0.007)	0.9878(0.006)	0.9958(0.002)
Para. w/ Rotation	PIS- <i>v_x</i>	0.9990	0.5797(0.150)	0.7029(0.197)	0.6488(0.031)	0.6558(0.175)	0.7689(0.039)	0.9446(0.008)
	PIS- <i>a_y</i>	0.9657	0.4903(2.581)	0.5603(1.012)	0.2614(0.127)	0.4331(1.982)	0.2879(0.046)	0.5614(0.028)
	PIS- <i>ω</i>	0.9829	0.6522(0.556)	0.9019(0.119)	0.3380(0.199)	0.3474(0.334)	0.4119(0.105)	0.9289(0.029)
	BC	1.0000	0.9532(0.016)	0.9583(0.018)	0.9567(0.018)	0.9617(0.027)	0.9675(0.020)	0.9786(0.009)
Damped Oscillation	MS	1.0000	0.9889(0.005)	0.9952(0.001)	0.9841(0.018)	0.9908(0.005)	0.9921(0.003)	0.9969(0.001)
	PIS- <i>a_y</i>	0.9402	0.4418(0.364)	0.3516(0.482)	0.3083(0.055)	0.3494(0.395)	0.2841(0.042)	0.5240(0.017)
	BC	1.0000	0.9738(0.013)	0.9666(0.011)	0.9699(0.007)	0.9715(0.014)	0.9708(0.010)	0.9743(0.012)
Size Changing	MS	1.0000	0.9909(0.014)	0.9958(0.001)	0.9853(0.005)	0.9919(0.009)	0.9867(0.003)	0.9968(0.001)
	PIS- <i>Δ_r</i>	0.8501	0.2840(0.010)	0.4167(0.006)	0.5774(0.007)	0.1972(0.022)	0.4010(0.011)	0.6362(0.010)
	BC	1.0000	0.9507(0.025)	0.9548(0.017)	0.9636(0.019)	0.9735(0.018)	0.9666(0.022)	0.9669(0.015)
Deformation	MS	1.0000	0.9916(0.003)	0.9955(0.002)	0.9926(0.007)	0.9889(0.008)	0.9925(0.004)	0.9955(0.002)
	PIS- <i>Δ_t</i>	0.9247	0.3626(0.004)	0.3466(0.017)	0.3550(0.002)	0.3515(0.043)	0.3601(0.003)	0.5492(0.005)
	BC	1.0000	0.9553(0.039)	0.9058(0.052)	0.9462(0.018)	0.9347(0.042)	0.9211(0.010)	0.9475(0.025)
Ablation Study	MS	1.0000	0.9941(0.004)	0.9940(0.006)	0.9935(0.009)	0.9903(0.009)	0.9867(0.001)	0.9957(0.001)

471
 472 Table 2: Quantitative results of ablation study. We compute the normalized absolute error between
 473 the predicted and ground-truth physical states across all time steps within the test batch.

Motions	Uni	Acc	Dec	Para	3DMot	Slope	Circ	Rota	ParaRota	Osci	Size	Def
Ablations	Normalized Absolute Error ↓											
W/o MLP	0.0174	0.0069	0.0104	0.0193	0.0937	0.0831	0.5388	0.0382	0.7451	0.2275	0.1239	0.0854
Our-data10	0.0632	0.0260	0.0184	0.0284	0.1079	0.0935	0.1246	0.0739	0.0273	0.1045	0.2327	0.0555
Our-data100	0.0142	0.0034	0.0078	0.0042	0.0182	0.0324	0.0255	0.0058	0.0064	0.0425	0.1193	0.0357
Our-data500	0.0195	0.0051	0.0072	0.0040	0.0192	0.0307	0.0196	0.0049	0.0063	0.0694	0.1379	0.0290

480 object properties, and initial conditions, with trajectories and velocities that better follow physical
 481 laws (third row). More cases are provided in the Appendix.

5.3 ABLATION STUDY

484 Our ablation study focuses on the effects of the MLP in Neural Newtonian Dynamics (NND), the
 485 training data scale and real-world video training. As shown in Table 2, adding the MLP significantly
 486 improves NND's performance on nonlinear dynamics and noisy data. Increasing the training dataset

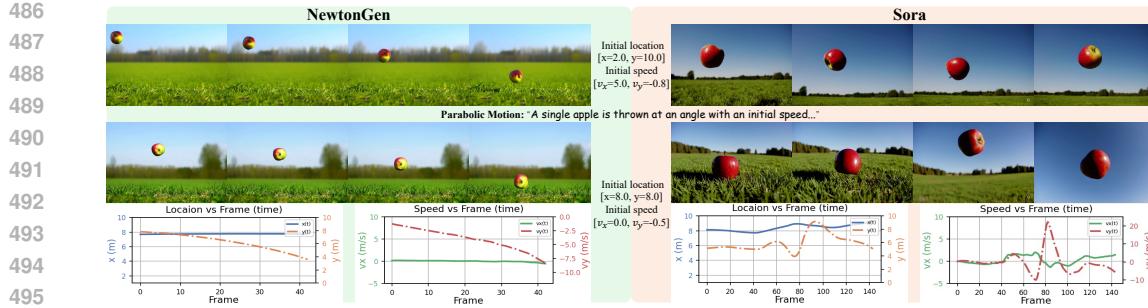


Figure 4: NewtonGen generates videos that can accurately reflect user-specified initial physical parameters, including object position, velocity, angle, shape and size.

size does not lead to notable gains, indicating that NND can accurately infer the underlying system dynamics from a relatively small number of physically clean samples.

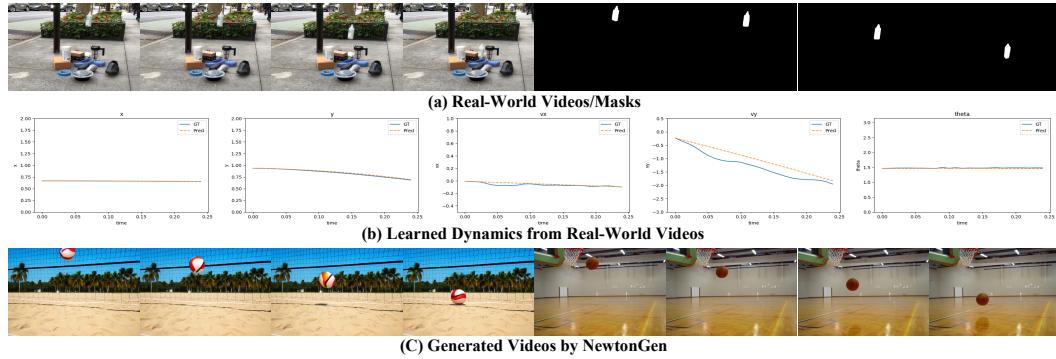


Figure 5: Feasibility of training NewtonGen(NND) on real-world videos

Real-world video training. To evaluate NewtonGen on real-world data, we select real-world videos from the PISABench (Li et al., 2025a) (example frames are shown in Fig. 5(a)). We train NND on these fall videos. As shown in Fig. 5(b), NND can effectively learn the underlying falling dynamics, even though the videos contain motion blur. Using the dynamics learned from these real videos, NewtonGen can then generalize to generate physically plausible falling motions in new scenes, as illustrated in Fig. 5(c). For this real-world case, the PIS- v_x and PIS- a_y scores are 0.8485 and 0.6008, which are lower than our results on the simulated dataset (0.9803 and 0.8189). This shows that collecting real dynamic scenes is feasible but time-consuming and requires careful setup (e.g., arranging scenes and measuring physical scales), and the data quality is often lower than that of clean simulations. Our simulated physics-clean data provides a faster and cheaper way to obtain high-quality training data.

6 CONCLUSION

In this paper, we introduce NewtonGen, a physics-consistent and controllable text-to-video generation framework. NewtonGen integrates a Neural Newtonian Dynamics (NND) module, which learns latent dynamics for diverse motions from a small set of physically accurate examples and predicts future physical states. We validate NewtonGen on over twelve different dynamic video generation tasks, demonstrating its physical consistency and parameter controllability. NewtonGen holds the potential to narrow the gap between current generative models and the real physical world.

Limitations. While our framework effectively models and predicts the dynamics of most common motions, it is based on continuous dynamics. This means that NewtonGen can be less effective for handling multi-object interactions (e.g., collisions or coalescence). We expect that future work incorporating event-based or discrete neural architectures will address these limitations.

540 7 ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT 541

542 **Ethics Statement.** This model is designed to generate high-quality content and educational videos;
543 however, when misused without labels and watermarks, it can produce fake videos and lead to the
544 spread of misinformation.

545 **Reproducibility Statement.** All data, code and model weights will be made publicly available. In
546 our model evaluation, we fix the random seed and provide the test prompts and generated videos in
547 the supplementary materials and appendix. In addition, we include more detailed explanations of the
548 evaluation metrics in the Appendix.
549

550 REFERENCES 551

552 Stable Diffusion. <https://github.com/Stability-AI/StableDiffusion>.

553 Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu Jiang,
554 Yizhou Sun, Kai-Wei Chang, and Aditya Grover. VideoPhy: Evaluating physical commonsense
555 for video generation. *arXiv preprint arXiv:2406.03520*, 2024.

556 Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grover, and Kai-Wei Chang.
557 VideoPhy-2: A challenging action-centric physical commonsense evaluation in video generation.
558 *arXiv preprint arXiv:2503.06800*, 2025.

559 Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, and Josh Tenenbaum. End-to-end
560 differentiable physics for learning and control. In *Advances in Neural Information Processing
561 Systems*, 2018.

562 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
563 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach.
564 Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint
565 arXiv:2311.15127*, 2023.

566 Ryan Burgert, Yuancheng Xu, Wengqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma,
567 Yitong Deng, Lingxiao Li, Mohsen Mousavi, Michael Ryoo, Paul Debevec, and Ning Yu. Go-with-
568 the-flow: Motion-controllable video diffusion models using real-time warped noise. In *IEEE/CVF
569 Conference on Computer Vision and Pattern Recognition*, 2025.

570 Qinglong Cao, Ding Wang, Xirui Li, Yuntian Chen, Chao Ma, and Xiaokang Yang. Teaching video
571 diffusion model with latent physical phenomenon knowledge. *arXiv preprint arXiv:2411.11343*,
572 2024.

573 Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery
574 of coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116
575 (45):22445–22451, 2019.

576 Pascal Chang, Jingwei Tang, Markus Gross, and Vinicius C. Azevedo. How i warped your noise: a
577 temporally-correlated noise prior for diffusion models. In *International Conference on Learning
578 Representations*, 2024.

579 Pradyumna Chari, Chinmay Talegaonkar, Yunhao Ba, and Achuta Kadambi. Visual physics: Discov-
580 ering physical laws from videos. *arXiv preprint arXiv:1911.11893*, 2019.

581 Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman, Lior Wolf,
582 and Shelly Sheynin. Videojam: Joint appearance-motion representations for enhanced motion
583 generation in video models. In *International Conference on Machine Learning*, 2025.

584 Boyuan Chen, Hanxiao Jiang, Shaowei Liu, Saurabh Gupta, Yunzhu Li, Hao Zhao, and Shenlong
585 Wang. Physgen3d: Crafting a miniature interactive world from a single image. In *IEEE/CVF
586 Conference on Computer Vision and Pattern Recognition*, 2025.

587 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
588 differential equations. In *Advances in Neural Information Processing Systems*, pp. 6572–6583,
589 2018.

-
- 594 Congyue Deng, Brandon Y. Feng, Cecilia Garraffo, Alan Garbarz, Robin Walters, William T. Freeman,
595 Leonidas Guibas, and Kaiming He. Denoising hamiltonian network for physical reasoning. *arXiv*
596 *preprint arXiv:2503.0759*, 2025.
- 597
- 598 Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, and Jiajun Wu. WorldScore: A unified evaluation
599 benchmark for world generation. *arXiv preprint arXiv:2504.00983*, 2025.
- 600 Tao Feng, Xianbing Zhao, Zhenhua Chen, Tien Tsin Wong, Hamid Rezatofighi, Gholamreza Haffari,
601 and Lizhen Qu. Physics-grounded motion forecasting via equation discovery for trajectory-guided
602 image-to-video generation. *arXiv preprint arXiv:2507.06830*, 2025.
- 603
- 604 Alejandro Castañeda Garcia, Jan van Gemert, Daan Brinks, and Nergis Tömen. Learning physics
605 from video: Unsupervised physical parameter estimation for continuous dynamical systems. In
606 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.
- 607
- 608 Quentin Garrido, Nicolas Ballas, Mahmoud Assran, Adrien Bardes, Laurent Najman, Michael
609 Rabbat, Emmanuel Dupoux, and Yann LeCun. Intuitive physics understanding emerges from
610 self-supervised pretraining on natural videos. *arXiv preprint arXiv:2502.08987*, 2025.
- 611 Google. Veo 3: Our state-of-the-art video generation model. <https://aistudio.google.com/models/veo-3/>, 2025.
- 612
- 613 Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In *Advances*
614 *in Neural Information Processing Systems*, 2019.
- 615
- 616 Jing Gu, Xian Liu, Yu Zeng, Ashwin Nagarajan, Fangriu Zhu, Daniel Hong, Yue Fan, Qianqi Yan,
617 Kaiwen Zhou, Ming-Yu Liu, and Xin Eric Wang. Phyworldbench: A comprehensive evaluation of
618 physical realism in text-to-video models. *arXiv preprint arXiv:2507.13428*, 2025.
- 619
- 620 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*
621 *Neural Information Processing Systems*, pp. 6840–6851, 2020.
- 622
- 623 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
624 Fleet. Video diffusion models. In *Advances in Neural Information Processing Systems*, volume 35,
625 pp. 8633–8646, 2022.
- 626
- 627 Florian Hofherr, Lukas Koestler, Florian Bernard, and Daniel Cremers. Neural implicit representations
628 for physical parameter inference from a single video. In *IEEE/CVF Winter Conference on*
629 *Applications of Computer Vision*, 2023.
- 630
- 631 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
632 pretraining for text-to-video generation via transformers. In *International Conference on Learning*
633 *Representations*, 2023.
- 634
- 635 Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, and Shenlong Wang. Autovfx: Physically
636 realistic video editing from natural language instructions. *arXiv preprint arXiv:2411.02394*, 2024.
- 637
- 638 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
639 Wu, Qingyang Jin, Nattapol Champaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
640 Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models.
641 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.
- 642
- 643 Miguel Jaques, Michael Burke, and Timothy Hospedales. Physics-as-inverse-graphics: Unsupervised
644 physical parameter estimation from video. In *International Conference on Learning Representations*,
645 2020.
- 646
- 647 Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, and Jiashi Feng.
648 How far is video generation from world model: A physical law perspective. In *International*
649 *Conference on Machine Learning*, 2025.
- 650
- 651 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
652 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
653 *arXiv preprint arXiv: 2001.08361*, 2020.

-
- 648 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
649 *arXiv:1312.6114*, 2013.
- 650
- 651 Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. *arXiv preprint*
652 *arXiv:1906.02691*, 2019.
- 653
- 654 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
655 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
656 models. *arXiv preprint arXiv:2412.03603*, 2024.
- 657
- 658 Vincent Le Guen and Nicolas Thome. Disentangling physical dynamics from unknown factors
659 for unsupervised video prediction. In *IEEE/CVF Conference on Computer Vision and Pattern
Recognition*, pp. 11471–11481, 2020.
- 660
- 661 Chenyu Li, Oscar Michel, Xichen Pan, Sainan Liu, Mike Roberts, and Saining Xie. Pisa experiments:
662 Exploring physics post-training for video diffusion models by watching stuff drop. In *International
Conference on Machine Learning*, 2025a.
- 663
- 664 Dacheng Li, Yunhao Fang, Yukang Chen, Shuo Yang, Shiyi Cao, Justin Wong, Michael Luo, Xiaolong
665 Wang, Hongxu Yin, Joseph E. Gonzalez, Ion Stoica, Song Han, and Yao Lu. WorldModelBench:
666 Judging video generation models as world models. *arXiv preprint arXiv:2502.20694*, 2025b.
- 667
- 668 Shiqian Li, Ruihong Shen, Chi Zhang, and Yixin Zhu. Neural force field: Learning generalized
669 physical representation from a few examples. *arXiv preprint arXiv:2502.08987*, 2025c.
- 670
- 671 Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image dynamics.
In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.
- 672
- 673 Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, and Jiajun
674 Wu. Wonderplay: Dynamic 3d scene generation from a single image and actions. In *International
Conference on Computer Vision*, 2025d.
- 675
- 676 Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, and Min Jiang. Phys4dgen: A physics-driven
677 framework for controllable and efficient 4d content generation from a single image. *arXiv preprint*
678 *arXiv:2411.16800*, 2024.
- 679
- 680 Minghui Lin, Xiang Wang, Yishan Wang, Shu Wang, Fengqi Dai, Pengxiang Ding, Cunxiang Wang,
681 Zhengrong Zuo, Nong Sang, Siteng Huang, and Donglin Wang. Exploring the evolution of physics
682 cognition in video generation: A survey. *arXiv preprint arXiv:2503.21765*, 2025.
- 683
- 684 Daochang Liu, Junyu Zhang, Anh-Dung Dinh, Eunbyung Park, Shichao Zhang, and Chang Xu.
Generative physical ai in vision: A survey, 2025.
- 685
- 686 Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-
687 grounded image-to-video generation. In *European Conference on Computer Vision*, 2024.
- 688
- 689 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In *International
Conference on Learning Representations*, 2017.
- 690
- 691 Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model
692 prior for deep learning. In *International Conference on Learning Representations*, 2019.
- 693
- 694 Jiaxi Lv, Yi Huang Huang, Mingfu Yan, Jiancheng Huang, Jianzhuang Liu, Yifan Liu Liu, Yafei
695 Wen, Xiaoxin Chen, and Shifeng Chen. Gpt4motion: Scripting physical motions in text-to-video
696 generation via blender-oriented gpt planning. In *IEEE/CVF Conference on Computer Vision and
Pattern Recognition*, 2024.
- 697
- 698 Fanqing Meng, Jiaqi Liao, Xinyu Tan, Wenqi Shao, Quanfeng Lu, Kaipeng Zhang, Cheng Yu, Dianqi
699 Li, Yu Qiao, and Ping Luo. Towards world simulator: Crafting physical commonsense-based
700 benchmark for video generation. In *International Conference on Machine Learning*, 2025.
- 701 Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini Jaini, and Robert Geirhos. Do generative
video models understand physical principles?, 2025.

-
- 702 NVIDIA. Cosmos world foundation model platform for physical ai. *arXiv preprint arXiv:2501.03575*,
703 2025.
- 704
- 705 OpenAI. Introducing openai o1-preview. <https://openai.com/index/introducing-openai-o1-preview/>, 2024a.
- 706
- 707 OpenAI. Video generation models as world simulators. <https://openai.com/index/video-generation-models-as-world-simulators/>, 2024b.
- 708
- 709
- 710 Karran Pandey, Matheus Gadelha, Yannick Hold-Geoffroy, Karan Singh, Niloy J. Mitra, and Paul
711 Guerrero. Motion modes: What could happen next? In *IEEE/CVF Conference on Computer Vision
and Pattern Recognition*, 2025.
- 712
- 713 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *International
Conference on Computer Vision*, 2023.
- 714
- 715
- 716 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
717 deep learning framework for solving forward and inverse problems involving nonlinear partial
718 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.
- 719
- 720 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
721 and Ilya Sutskever. Zero-shot text-to-image generation. In *International Conference on Machine
Learning*, 2021.
- 722
- 723 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
724 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
725 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
726 Sam 2: Segment anything in images and videos. In *International Conference on Learning
Representations*, 2025.
- 727
- 728 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
729 resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer
Vision and Pattern Recognition*, pp. 10674–10685, 2022.
- 730
- 731 Luca Savant Aira, Antonio Montanaro, Emanuele Aiello, Diego Valsesia, and Enrico Magli. Motion-
732 craft: Physics-based zero-shot video generation. In *Advances in Neural Information Processing
Systems*, 2024.
- 733
- 734 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
735 Poole. Score-based generative modeling through stochastic differential equations. In *International
Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.
- 736
- 737
- 738
- 739 Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
740 point method for snow simulation. *ACM Transactions on Graphics*, 2013.
- 741
- 742 Xiyang Tan, Ying Jiang, Xuan Li, Zeshun Zong, Tianyi Xie, Yin Yang, and Chenfanfu Jiang.
743 Physmotion: Physics-grounded dynamics from a single image. *arXiv preprint arXiv:2411.17189*,
744 2024.
- 745
- 746 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
747 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
748 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
749 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
750 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
751 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
752 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
753 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
754 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
755 *arXiv preprint arXiv:2503.20314*, 2025.
- Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and
evaluating large video description models. *arXiv preprint arXiv:2407.00634*, 2024a.

-
- 756 Jing Wang, Ao Ma, Ke Cao, Jun Zheng, Zhanjie Zhang, Jiasong Feng, Shanyuan Liu, Yuhang Ma,
757 Bo Cheng, Dawei Leng, Yuhui Yin, and Xiaodan Liang. WISA: World simulator assistant for
758 physics-aware text-to-video generation. *arXiv preprint arXiv:2502.08153*, 2025.
- 759
- 760 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and
761 Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM
762 SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024b.
- 763 Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
764 Tacchetti. Visual interaction networks: Learning a physics simulator from video. In *Advances in
765 Neural Information Processing Systems*, 2017.
- 766 Jiajun Wu, Ilker Yildirim, Joseph J. Lim, William T. Freeman, , and Joshua B. Tenenbaum. Galileo:
767 Perceiving physical object properties by integrating a physics engine with deep learning. In
768 *Advances in Neural Information Processing Systems*, 2015.
- 769
- 770 Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics
771 via visual de-animation. In *Advances in Neural Information Processing Systems*, 2017.
- 772 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
773 Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In *IEEE/CVF Conference
774 on Computer Vision and Pattern Recognition*, 2024.
- 775
- 776 Tianyi Xie, Yiwei Zhao, Ying Jiang, and Chenfanfu Jiang. Physanimator: Physics-guided generative
777 cartoon animation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.
- 778 Tianshuo Xu, Zhifei Chen, Leyi Wu, Hao Lu, Yuying Chen, Lihui Jiang, Bingbing Liu, and Yingcong
779 Chen. Motion dreamer: Realizing physically coherent video generation through scene-aware
780 motion reasoning. *arXiv preprint arXiv:2412.00547*, 2024.
- 781
- 782 Qiyao Xue, Xiangyu Yin, Boyuan Yang, and Wei Gao. PhyT2V: Llm-guided iterative self-refinement
783 for physics-grounded text-to-video generation. In *IEEE/CVF Conference on Computer Vision and
784 Pattern Recognition*, 2025.
- 785
- 786 Xindi Yang, Baolu Li, Yiming Zhang, Zhenfei Yin, Lei Bai, Liqian Ma, Zhiyong Wang, Jianfei Cai,
787 Tien-Tsin Wong, Huchuan Lu, and Xu Jia. Vlipp: Towards physically plausible video generation
788 with vision and language informed physical prior. In *International Conference on Computer Vision*,
2025a.
- 789
- 790 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
791 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
792 with an expert transformer. In *International Conference on Learning Representations*, 2025b.
- 793
- 794 Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, and Nan Duan. Dragnuwa:
795 Fine-grained control in video generation by integrating text, image, and trajectory. *arXiv preprint
arXiv:2308.08089*, 2023.
- 796
- 797 Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
798 motion diffusion model. In *International Conference on Computer Vision*, 2023.
- 799
- 800 Yu Yuan, Xijun Wang, Yichen Sheng, Prateek Chennuri, Xingguang Zhang, and Stanley Chan.
801 Generative photography: Scene-consistent camera control for realistic text-to-image synthesis.
802 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.
- 803
- 804 Chenyu Zhang, Daniil Cherniavskii, Andrii Zadaianchuk, Antonios Tragoudaras, Antonios Vozikis,
805 Thijmen Nijdam, Derck W. E. Prinzhorn, Mark Bodracska, Nicu Sebe, and Efstratios Gavves.
Morpheus: Benchmarking physical reasoning of video generative models with real physical
806 experiments. *arXiv preprint arXiv:2504.02918*, 2025a.
- 807
- 808 Ke Zhang, Cihan Xiao, Yiqun Mei, Jiacong Xu, and Vishal M. Patel. Think before you diffuse:
809 Llms-guided physics-aware video generation. *arXiv preprint arXiv:2505.21653*, 2025b.
- 810
- 811 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
812 diffusion models. In *IEEE International Conference on Computer Vision*, 2023.

-
- 810 Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun
811 Wu, and William T. Freeman. PhysDreamer: Physics-based interaction with 3d objects via video
812 generation. In *European Conference on Computer Vision*, 2024.
- 813
- 814 Xiangdong Zhang, Jiaqi Liao, Shaofeng Zhang, Fanqing Meng, Xiangpeng Wan, Junchi Yan, and
815 Yu Cheng. Videorepa: Learning physics for video generation through relational alignment with
816 foundation models. *arXiv preprint arXiv:2505.23656*, 2025c.
- 817 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
818 Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. In *IEEE/CVF*
819 *Conference on Computer Vision and Pattern Recognition*, 2025d.
- 820
- 821 Yaofeng Desmond Zhong and Naomi Ehrich Leonard. Unsupervised learning of lagrangian dynamics
822 from images for prediction and control. In *Advances in Neural Information Processing Systems*,
823 2020.
- 824
- 825
- 826
- 827
- 828
- 829
- 830
- 831
- 832
- 833
- 834
- 835
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863

Appendix

A APPENDIX INTRODUCTION

This appendix provides additional discussions and details on the physics-clean video simulator (Section B), Neural Newtonian Dynamics network design and prediction accuracy analysis (Section C), evaluation details (Section D), more visual results (Section E), and a Q & A section (Section F). To illustrate the continuity and effects of physical coherence and controllability, **we recommend that readers view the Videos** included in the Supplementary Materials.

B MORE DETAILS OF THE DATA SIMULATOR

For each type of motion, we construct a physics-clean dataset for training the NND model. Our simulator is built upon physical principles and renders videos with time stamps. The simulator supports multi-parameter control, including initial position, velocity, orientation, angular velocity, world settings (world size, friction coefficient, acceleration/deceleration coefficient, damping coefficient, pivot point), and object properties (size, shape). Representative samples are shown in Figure. 6, while the complete simulator code and additional video examples are provided in the Supplementary Materials.

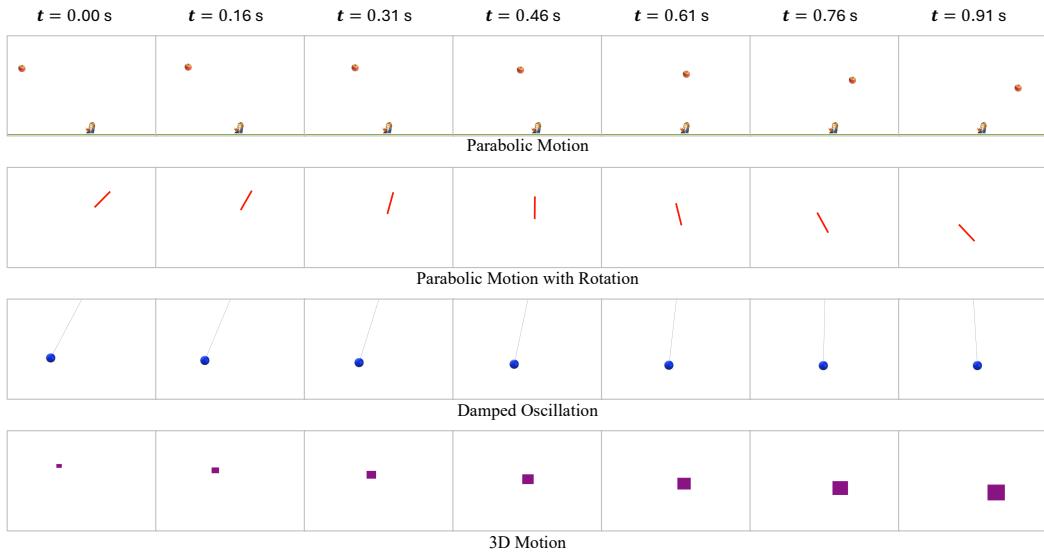


Figure 6: Sample physics-clean videos generated by our simulator.

C MORE DETAILS OF NEURAL NEWTONIAN DYNAMICS

C.1 NEURAL NEWTONIAN DYNAMICS NETWORK

In Algorithm 1 we present the detailed architecture of the Neural Newtonian Dynamics network. We model the most salient dynamics using a physics-driven linear Neural ODEs, and augment it with a learnable MLP to capture nonlinear and unknown dynamics. The full network implementation is provided in the Supplementary Materials.

918 **Algorithm 1** Neural Newtonian Dynamics Network Architecture
919
920 **Require:** Initial physical state $\mathbf{Z}_0 = [x, y, v_x, v_y, \theta, \omega, s, l, a]$, time stamps t_0, \dots, t_T
921 **Ensure:** Future Latent physical states $\mathbf{Z}(t)$

922 1: Define learnable parameters:
923 • $(a_x, b_x, c_x), (a_y, b_y, c_y)$ for linear 2nd-order dynamics of (x, y)
924 • $(g/L, \gamma)$ for linearized pendulum or circular motion (θ, ω)
925 • $(\alpha_s, \beta_s), (\alpha_l, \beta_l), (\alpha_a, \beta_a)$ for 1st-order dynamics of (s, l, a)
926 • Residual scale ϵ

927 2: Define residual MLP: $\text{ResMLP} : \mathbb{R}^9 \rightarrow \mathbb{R}^6$ (initialized to 0)
928 3: **for** each time t **do**
929 4: Split $\mathbf{Z} = [x, y, v_x, v_y, \theta, \omega, s, l, a]$
930 5: Compute linear dynamics:
931
$$a_x^{\text{lin}} = a_x x + b_x v_x + c_x$$

932
$$a_y^{\text{lin}} = a_y y + b_y v_y + c_y$$

933
$$d\theta/dt = \omega$$

934
$$d\omega^{\text{lin}}/dt = -(g/L)\theta - \gamma\omega$$

935
$$ds^{\text{lin}}/dt = \alpha_s s + \beta_s, \quad dl^{\text{lin}}/dt = \alpha_l l + \beta_l, \quad da^{\text{lin}}/dt = \alpha_a a + \beta_a$$

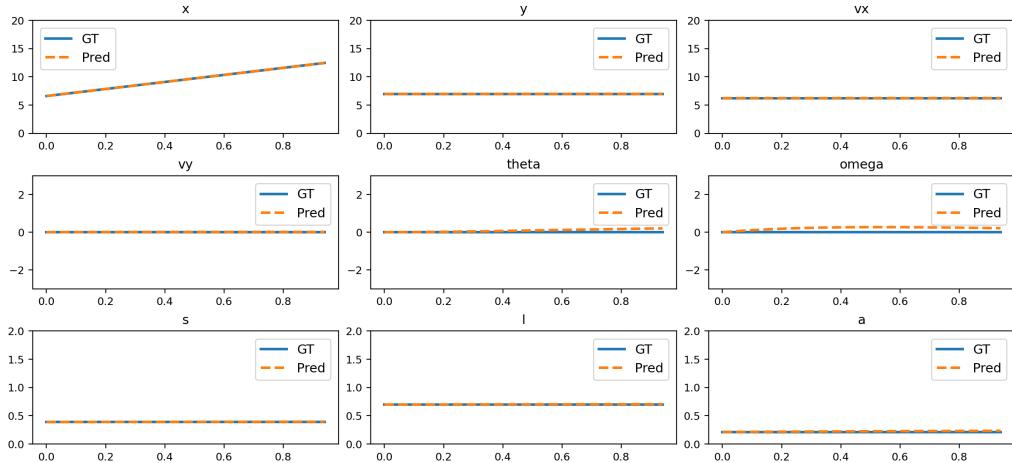
936
937 6: Compute residual correction:
938
$$[a_x^{\text{res}}, a_y^{\text{res}}, d\omega^{\text{res}}, ds^{\text{res}}, dl^{\text{res}}, da^{\text{res}}] = \epsilon \cdot \tanh(\text{ResMLP}(\mathbf{Z}))$$

939
940 7: Update derivatives:
941
$$\frac{d\mathbf{Z}}{dt} = [v_x, v_y, a_x^{\text{lin}} + a_x^{\text{res}}, a_y^{\text{lin}} + a_y^{\text{res}}, d\theta/dt, d\omega^{\text{lin}} + d\omega^{\text{res}}, ds^{\text{lin}} + ds^{\text{res}}, dl^{\text{lin}} + dl^{\text{res}}, da^{\text{lin}} + da^{\text{res}}]$$

942
943 8: **end for**
944 9: Integrate ODE by odeint to obtain $\mathbf{Z}(t)$ over t_0, \dots, t_T

949 C.2 ACCURACY OF NEURAL NEWTONIAN DYNAMICS PREDICTIONS 950

951 Figure. 7 to Figure. 18 show the predictions of the trained Neural Newtonian Dynamics (NND)
952 model for each type of motion. Given the initial physical state \mathbf{Z}_0 , the model's predicted physical
953 states closely follow the ground truth over time.
954



965 966 967 968 969 970 971 Figure 7: Comparison of NND predictions and ground truth for uniform motion.

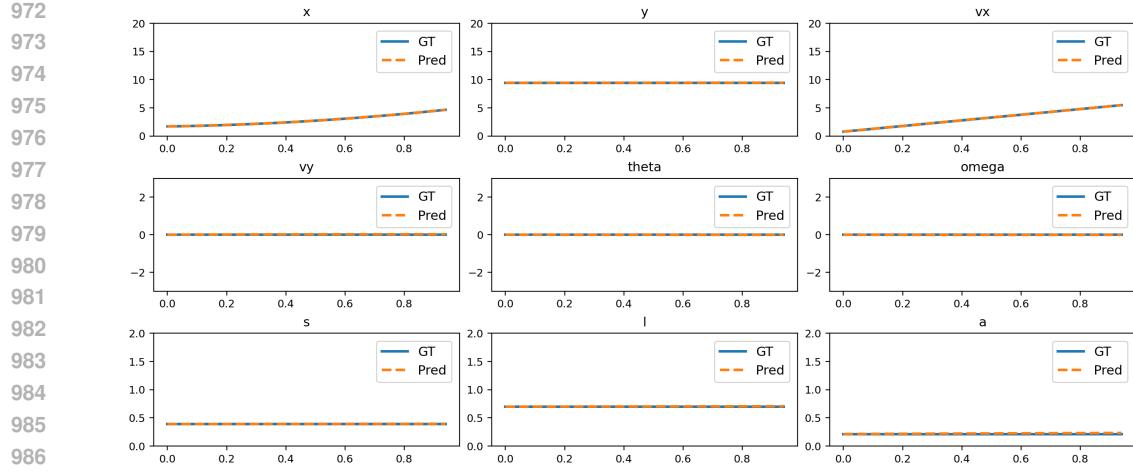


Figure 8: Comparison of NND predictions and ground truth for acceleration.

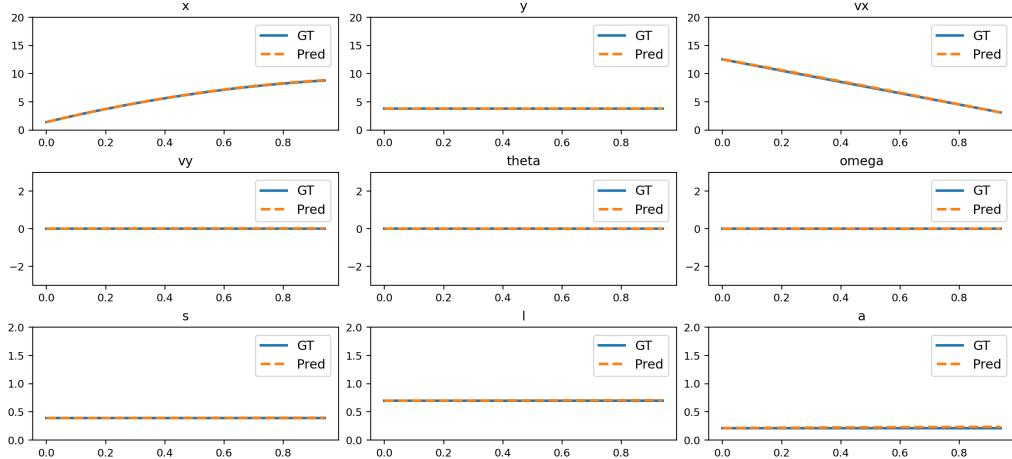


Figure 9: Comparison of NND predictions and ground truth for deceleration.

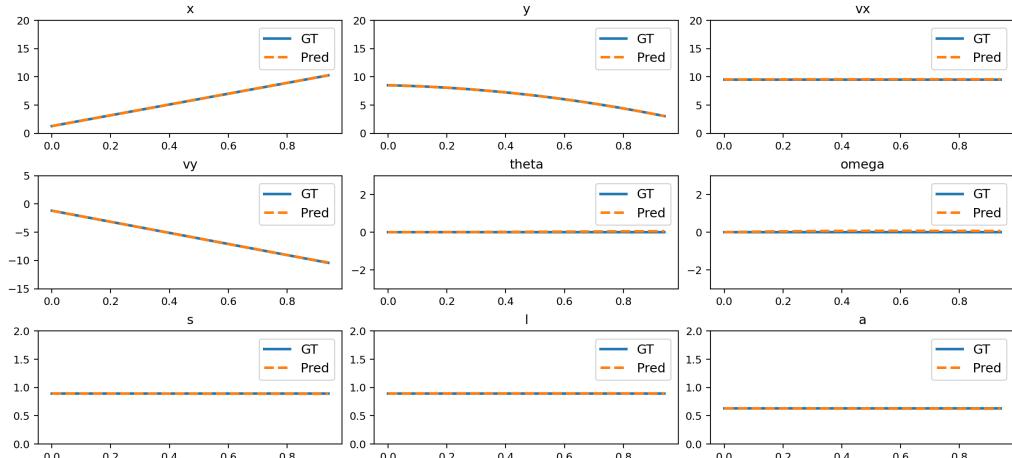


Figure 10: Comparison of NND predictions and ground truth for parabolic motion.

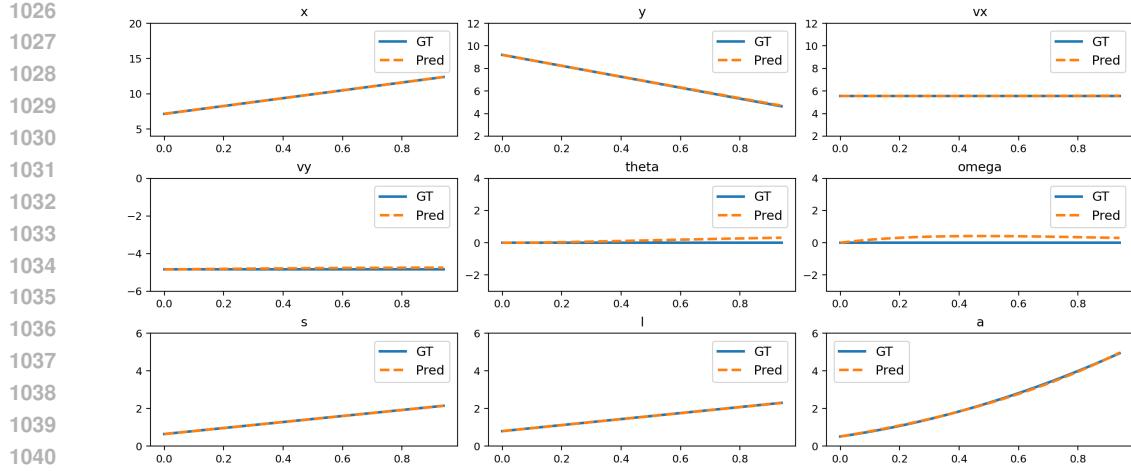


Figure 11: Comparison of NND predictions and ground truth for 3D motion.

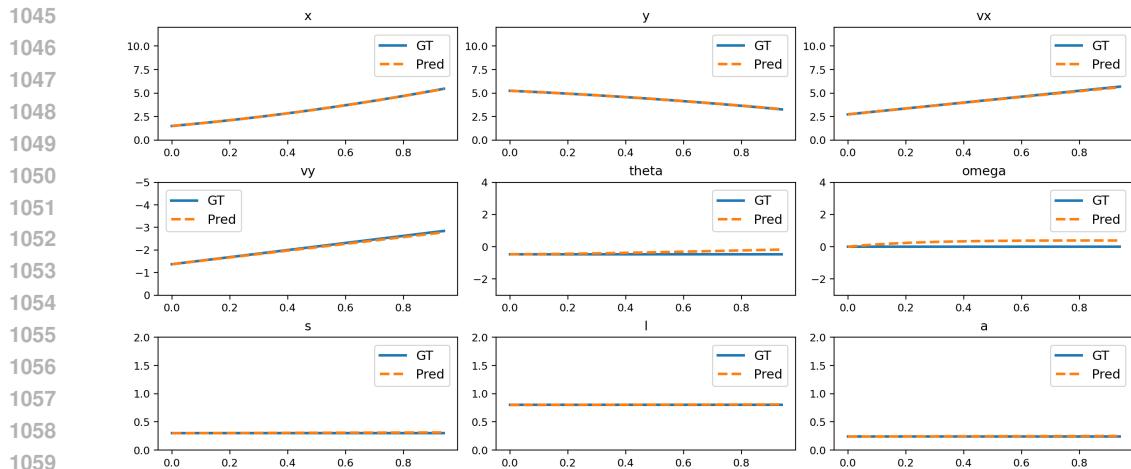


Figure 12: Comparison of NND predictions and ground truth for slope sliding.

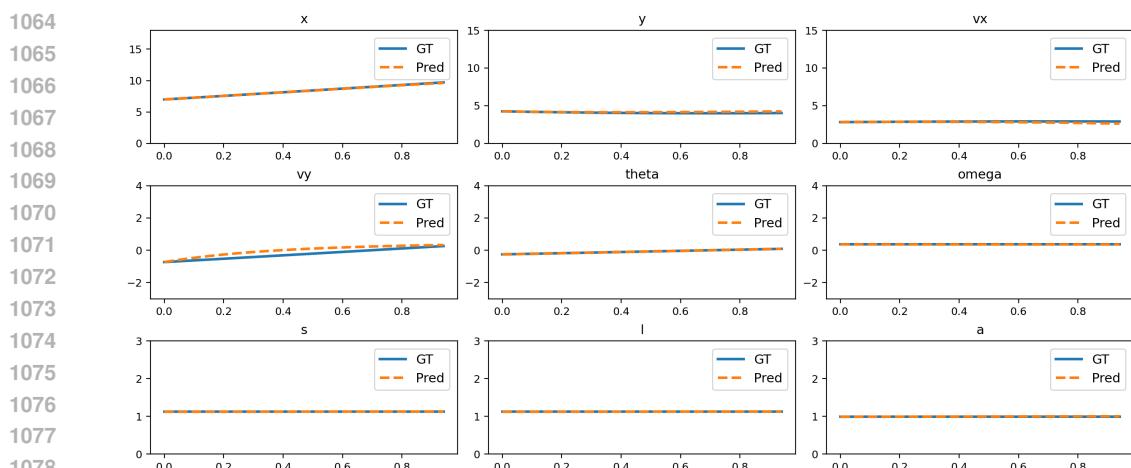


Figure 13: Comparison of NND predictions and ground truth for circular motion.

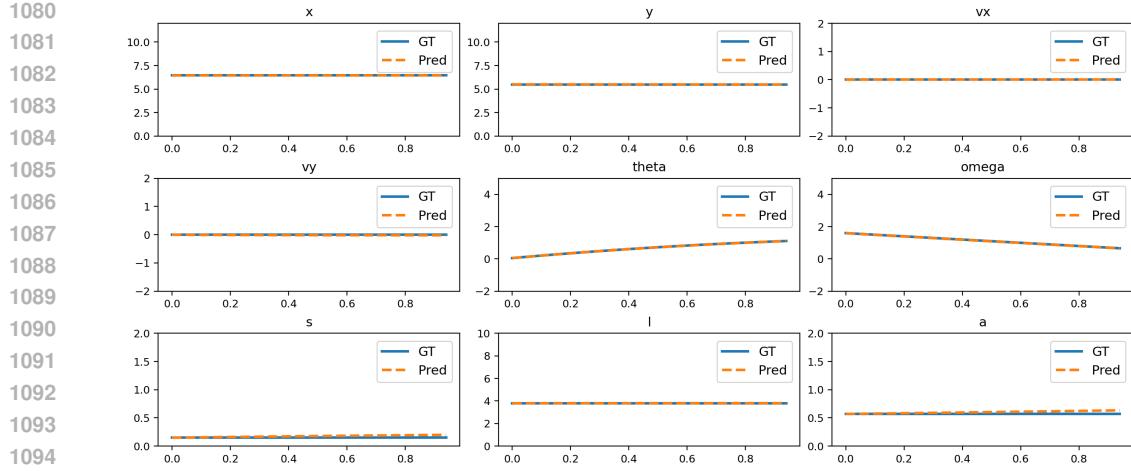


Figure 14: Comparison of NND predictions and ground truth for rotation.

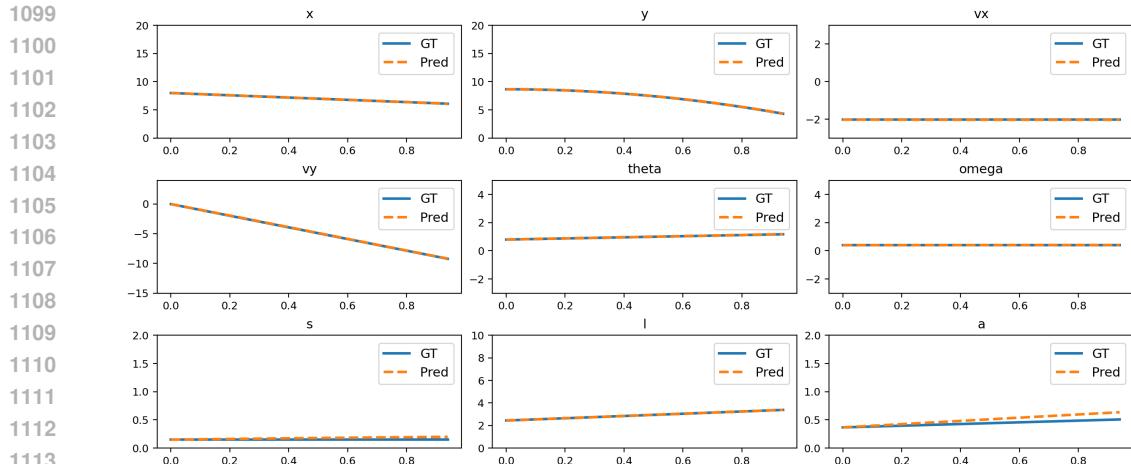


Figure 15: Comparison of NND predictions and ground truth for parabolic motion with rotation.

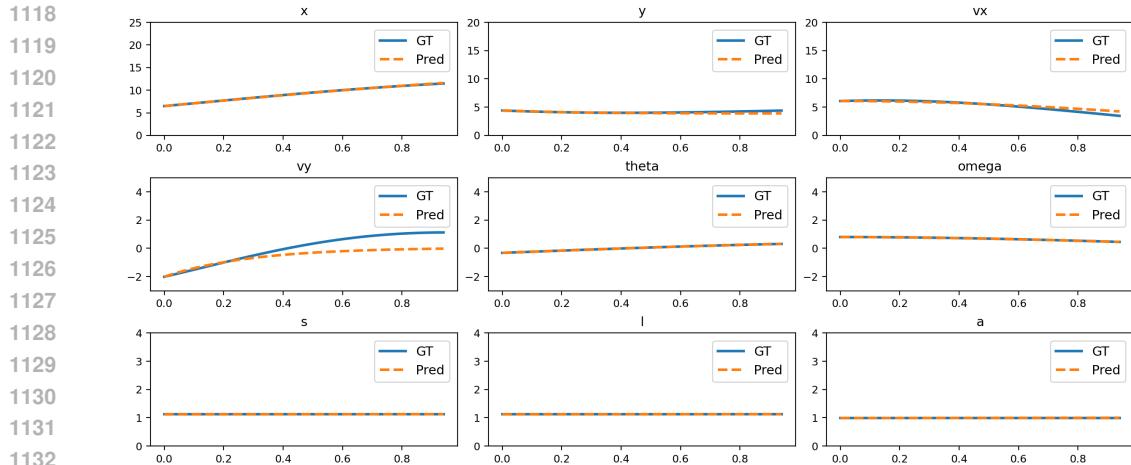
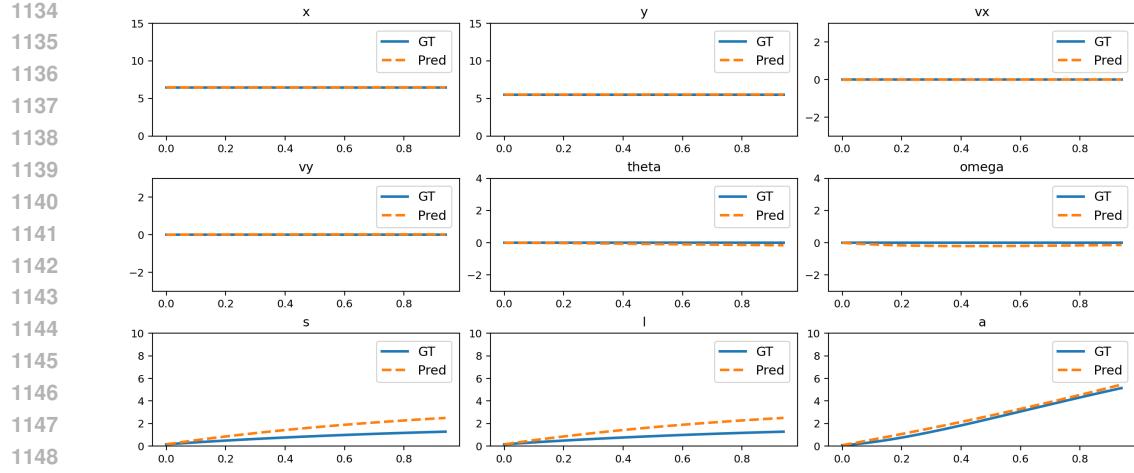
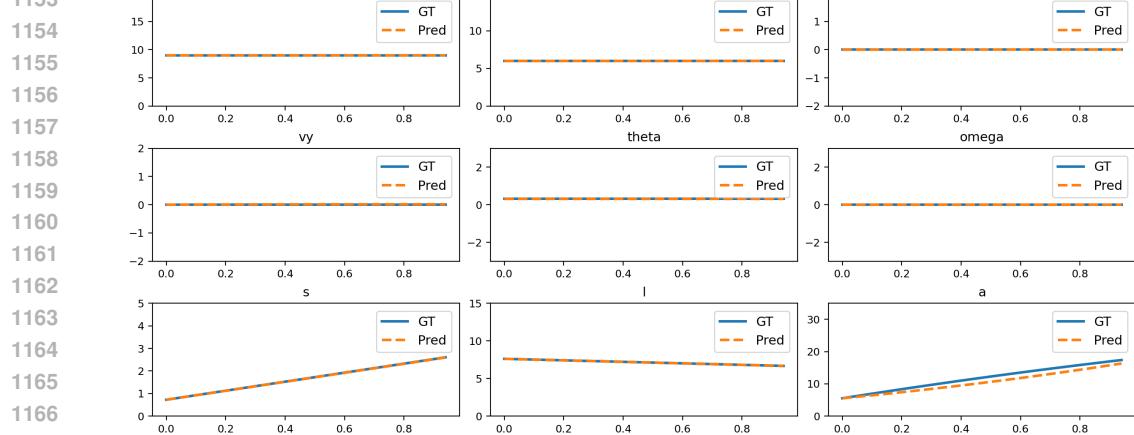


Figure 16: Comparison of NND predictions and ground truth for damped oscillation.



1188
1189

1190 D EVALUATION DETAILS 1191

1192 D.1 PHYSICAL INVARIANCE SCORE 1193

1194 The Physical Invariance Score (PIS) as described in equation 7 indicates whether a certain quantity C
1195 remains invariant over time. If the laws of physics are replicated perfectly, C remains constant, and
1196 $C_\sigma \rightarrow 0 \implies \text{PIS} \rightarrow 1$. For each type of motion, a suitable C should be selected.

1197 **Uniform Motion:** An object is prompted to travel horizontally in uniform velocity in each scene.
1198 Therefore, we select the horizontal velocity v_x as the invariant feature.

1199 **Uniform Acceleration and Deceleration:** Under these motions, we check if the object obeys the law
1200 of accelerating (or decelerating) at a constant rate. The guidance parameters and prompts specify
1201 horizontal motion. Therefore, we set $C = a_x$ for acceleration, and $C = -a_x$ for deceleration.

1202 **Parabolic Motion:** Under this motion, there is no horizontal acceleration. Therefore v_x is expected
1203 to be constant. Additionally, the vertical acceleration a_y due to gravity should be constant.

1204 **3D Motion:** The prompt guides an object to travel towards the observer, creating the effect of
1205 increasing object dimensions, while also having a 2D motion. We approximate this effect as having a
1206 constant vertical velocity v_y , and a constant increment rate in the long-axis of the object Δl .

1207 **Slope Sliding:** An object is prompted to slide down a constant slope. Assuming negligible effects
1208 from friction, we can expect accelerations a_x, a_y to be constant.

1209 **Circular Motion:** Objects are guided to orbit in a circular path, we assume the angular velocity about
1210 the orbital center ω is constant.

1211 **Rotation:** When objects are prompted to "spin" or "rotate about their axes", we assume that the brief
1212 duration of the video, that they rotate in a constant angular velocity ω .

1213 **Parabolic Motion with Rotation:** Videos under this category should describe a superposition of a
1214 projectile motion under gravity, and a rotation about the object's axis. Therefore the metrics used in
1215 these two motions (v_x, a_y, ω) are used for C .

1216 **Damped Oscillation** is simulated through various instances of pendulums, hinged at the top. We
1217 assume small angles (θ) for the stride. This leads to the vertical force varying with $\cos(\theta)$, and we
1218 assume it to be a constant. Thereby we use $C = a_y$.

1219 **Size Changing:** We prompt videos where it's natural to increase an object's overall size, while
1220 maintaining it's aspect ratio.(e.g., an inflating balloon). Assuming a constant rate of inflation, we set
1221 $C = \Delta r$; the rate of increasing the radius of the object.

1222 **Deformation:** Objects under this category should expand, stretch, or spread-out over time. The
1223 aspect ratios may change. (e.g., the spread of a thick viscous liquid). We assume that the object
1224 increases its dimensions at a constant rate, and track this rate along it's long axis Δl .

1225 After selecting C for a motion type, C_σ, C_μ is calculated for every video. This lends to a PIS
1226 score per video. The final score reported in table 1 show the median PIS score after generating 12
1227 different videos for each motion. In our case, temporal derivatives are formed from successive frames
1228 with $\Delta t = 1/(\text{FPS value})$, then mapped to physical units using a constant of 0.00625 meters per
1229 pixel. Each video is preprocessed with a 5-frame moving-average filter to reduce noise in derivative
1230 estimates.

1231 Some feature assumptions are idealizations that may not hold in the real world. Accordingly, we
1232 report a **Reference** PIS computed directly from the guidance mask used to drive the video generation.
1233 For example, in 3D motion, Δl need not be constant, so expecting $C_\sigma = 0 \implies \text{PIS} = 1$ is
1234 unrealistic. The mask-based PIS instead, serves as a practical upperbound– the score that would be
1235 achieved if the generator perfectly followed the guidance mask (which itself has $C_\sigma \neq 0$).
1236

1237

1238 D.2 TESTING PROMPTS 1239

1240 Samples of text prompts ¹ used for evaluation are listed in the table 3.
1241

¹The reader may refer the supplementary materials for an exhaustive list.

1242

1243

1244

1245

Table 3: Samples of Testing Prompts.

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

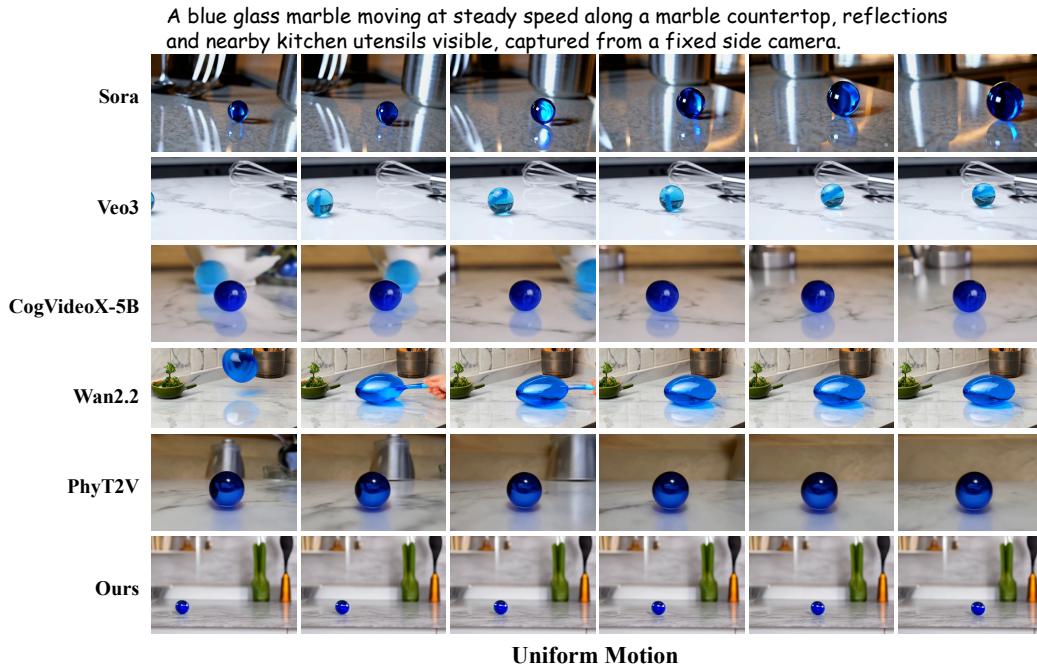
1295

Motion	Testing Prompts
Uniform Motion	<p>A small metal cube sliding steadily along a smooth laboratory bench, reflections visible on the surface, scattered tools in the background, captured from a fixed side camera.</p> <p>A red rubber ball rolling at constant speed on a polished wooden floor, pulled by a thin string, with scattered papers and books in the background, observed from a fixed side camera.</p>
Acceleration	<p>A red sedan accelerating in a straight line on a clean highway, the road flat and clear, with only a pale sky and distant horizon in the background, captured from a fixed roadside camera.</p> <p>A black off-road SUV accelerating in a straight line on sandy terrain, with continuous sand dunes in the background, a few white clouds in the sky, sunlight slanting, kicking up fine sand particles, viewed from a stationary side-angle camera.</p>
Deceleration	<p>A yellow bus decelerates in a straight line in front of a traffic light on a city street, with pedestrians crossing nearby, and the wet road reflecting the sky, captured by a fixed side-view camera.</p> <p>A red coach brakes and decelerates in a straight line on a highway, with road signs and streetlights nearby and the city skyline visible in the distance, captured by a fixed side-view camera.</p>
Parabolic Motion	<p>A golf ball is hit at an angle with an initial speed. The camera captures its parabolic trajectory from the side. The scene takes place on a sunny golf course with manicured fairways, sand bunkers, and distant trees, adding depth and realism.</p> <p>A volleyball is served at an angle, captured from the side by a stationary camera. The scene is set on an outdoor beach volleyball court, with sand texture, net, and distant palm trees in view.</p>
3D Motion	<p>A fighter jet accelerates slowly from the distance along the runway towards the camera, hangars and runway lights visible in the background, captured from a fixed oblique side camera.</p> <p>A cardboard box slides from the distance along a warehouse floor towards the camera, shelves and crates visible in the background, captured from a fixed oblique side camera.</p>
Slope Sliding	<p>A hardcover book accelerating down a carpeted inclined board in a classroom, chalkboard and desks in the background, captured from a fixed side camera parallel to the ramp.</p> <p>A small metal cube sliding down a laboratory ramp, shiny reflections on its surface, scattered tools and wires in the background, captured from a fixed side camera parallel to the ramp.</p>
Circular Motion	<p>A tiny moonlet orbits a gas giant along a smooth, circular path. The top-down view shows the consistent motion without motion trails..</p> <p>A comet with a glowing tail orbits a distant star along a stable circular path. A top-down perspective emphasizes the symmetrical orbit and the stationary central star.</p>
Rotation	<p>A metal rod spinning on a concrete floor, faint scratches and dust visible, captured from a fixed top-down camera.</p> <p>A wooden dowel rotating gently on a tiled kitchen floor, soft shadows from ceiling lights, viewed from a stationary overhead camera.</p>
Parabola +Rotation	<p>A pen is thrown at an angle, rotating as it falls. Captured from a side camera, the notebook and desk provide background details and depth.</p> <p>A thin cylindrical rod gently tossed, rotating along its long axis, fixed side camera, realistic reflections, ground shadows visible, subtle motion blur.</p>
Damped Oscillation	<p>A small decorative bell hanging from a fine chain. The fixed camera captures realistic material and shadows.</p> <p>A realistic pendulum with a spherical bob swinging from a fixed pivot. The fixed camera captures the entire motion.</p>
Size Changing	<p>A red helium balloon gradually inflating in a sunny park, children playing in the background, trees casting soft shadows, captured from a stationary side camera.</p> <p>A transparent water balloon expanding in a laboratory, scientific instruments and glassware around, bright fluorescent lights overhead, captured from a fixed top-down camera.</p>
Deformation	<p>A long strip of yogurt slowly spreads into a smooth layer, captured by a fixed overhead camera.</p> <p>A long strip of jelly gradually deforms and flattens on a plate, captured by a fixed overhead camera.</p>

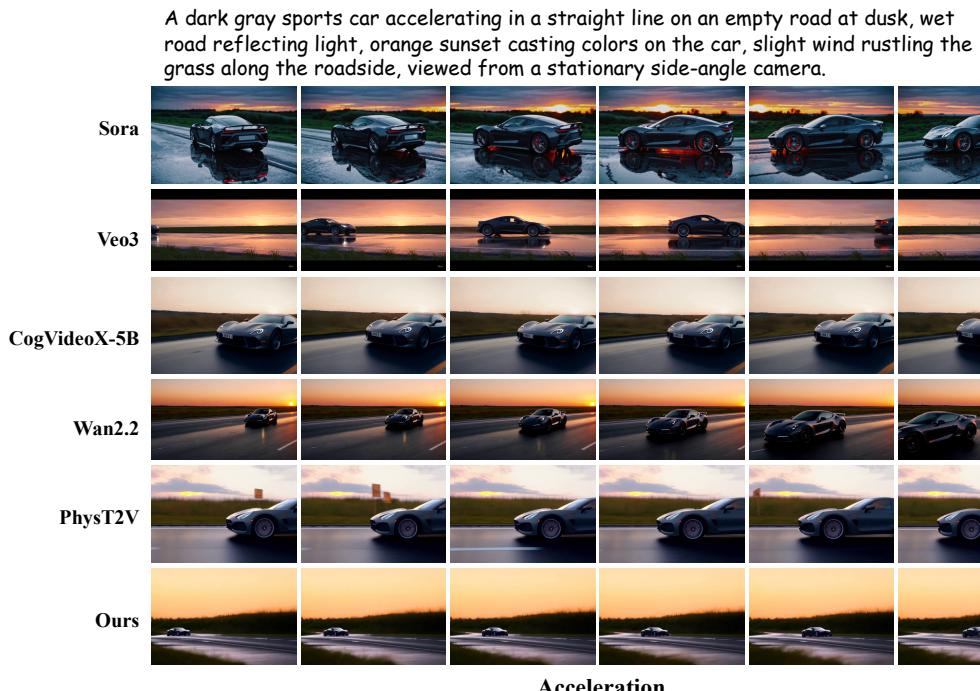
1296 **E MORE VISUAL RESULTS**

1297 **E.1 MORE GENERAL COMPARISON RESULTS**

1300 From Figure. 19 to Figure. 30, we provide additional visual results and comparisons with other
1301 methods.



1324 Figure 19: Visual comparisons on uniform motion.



1348 Figure 20: Visual comparisons on acceleration.

1350
1351
1352

A red bowling ball rolls in a straight line on a wooden lane and gradually decelerates, slowing down before reaching the pins, with the polished lane surface reflecting light, captured by a fixed side-view camera.

1353

Sora



1354

1355

1356

1357

Veo3

1358

1359

1360

CogVideoX-5B

1361

1362

1363

Wan2.2

1364

1365

1366

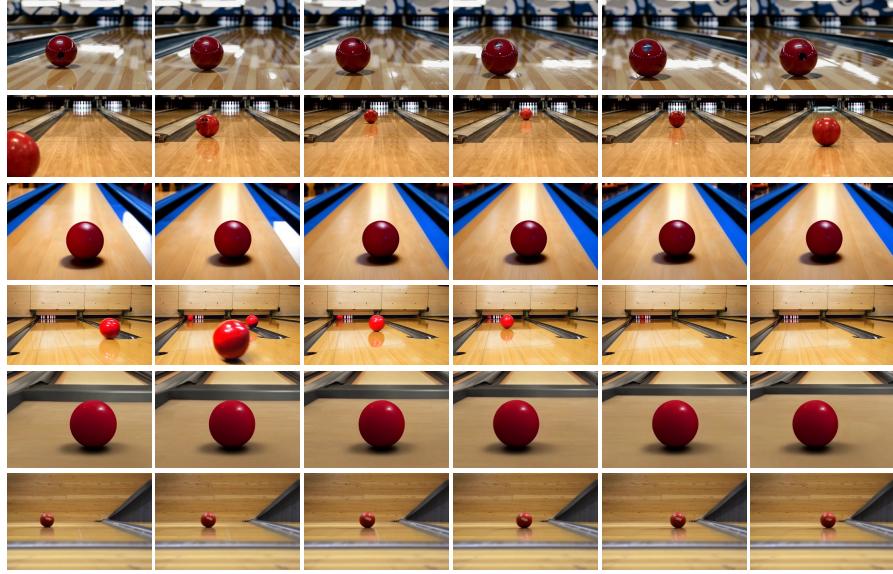
PhyT2V

1367

1368

1369

Ours



1370

Deceleration

1371

1372

1373

Figure 21: Visual comparisons on deceleration.

1374

1375

1376

1377

1378

1379

1380

A baseball is thrown at an angle with an initial speed. The camera captures its flight from the side, rising and then descending. The scene is set on a baseball field, with dirt infield and green outfield grass, and stadium seats faintly visible in the background.

1381

1382

1383

Sora

1384

1385

1386

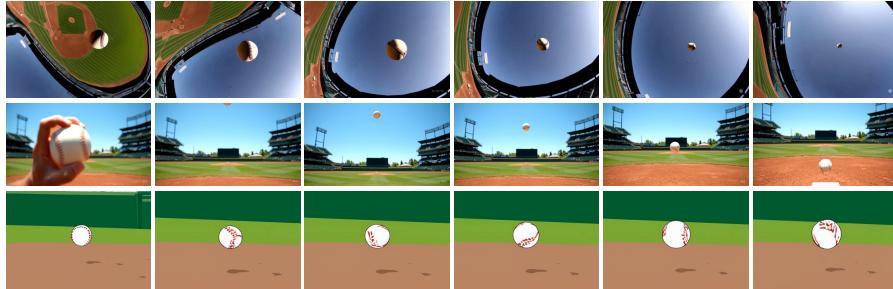
Veo3

1387

1388

1389

CogVideoX-5B

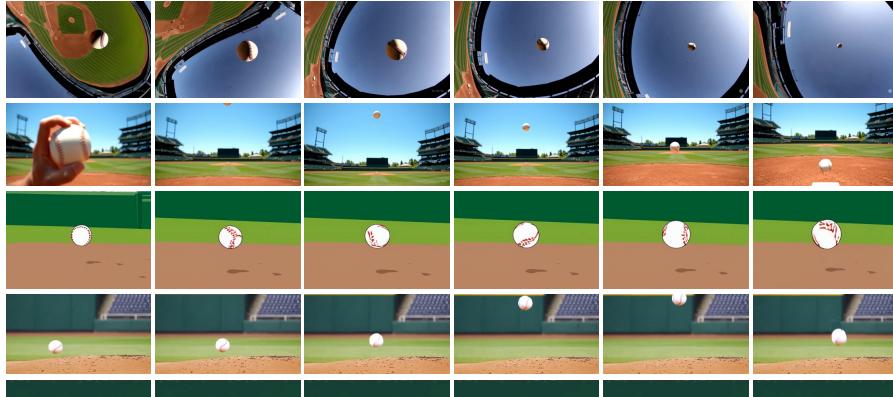


1390

1391

1392

Wan2.2

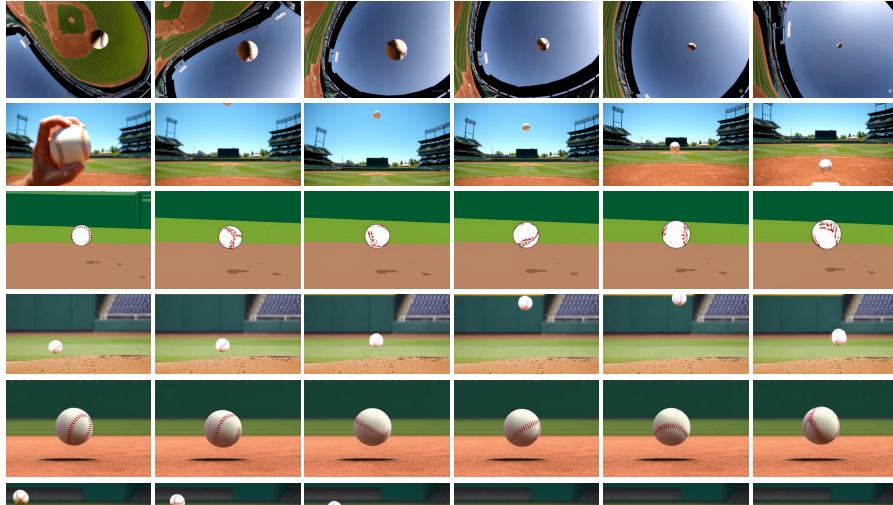


1393

1394

1395

PhyT2V

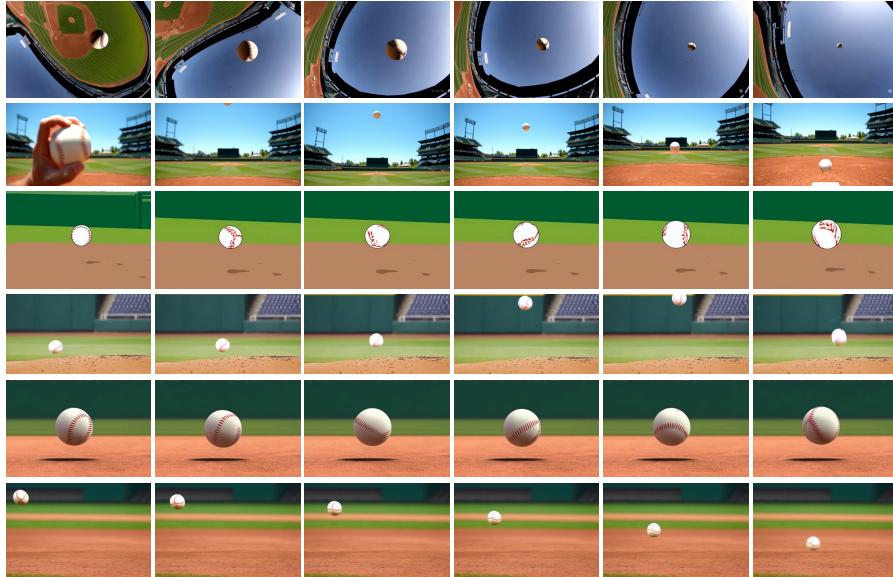


1396

1397

1398

Ours



Parabolic Motion

1399

1400

1401

1402

1403

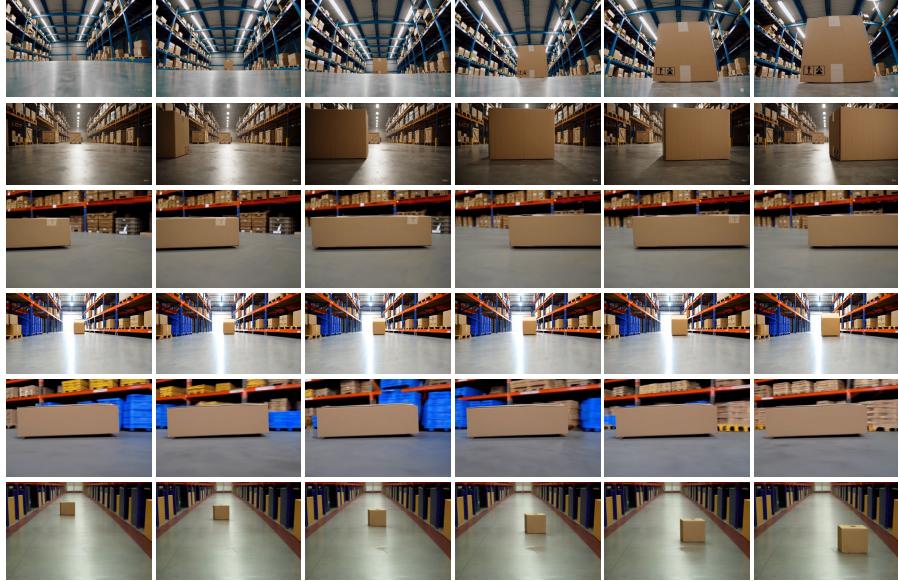
Figure 22: Visual comparisons on parabolic motion.

1404
1405

A cardboard box slides from the distance along a warehouse floor towards the camera, shelves and crates visible in the background, captured from a fixed oblique side camera.

1406

Sora



1407

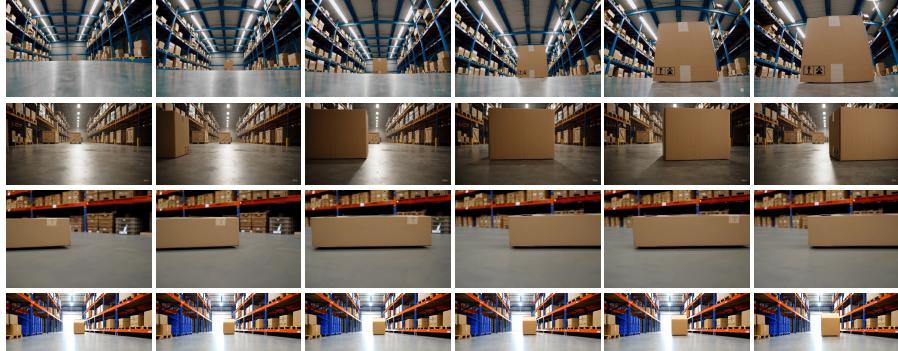
Veo3

1408

CogVideoX-5B

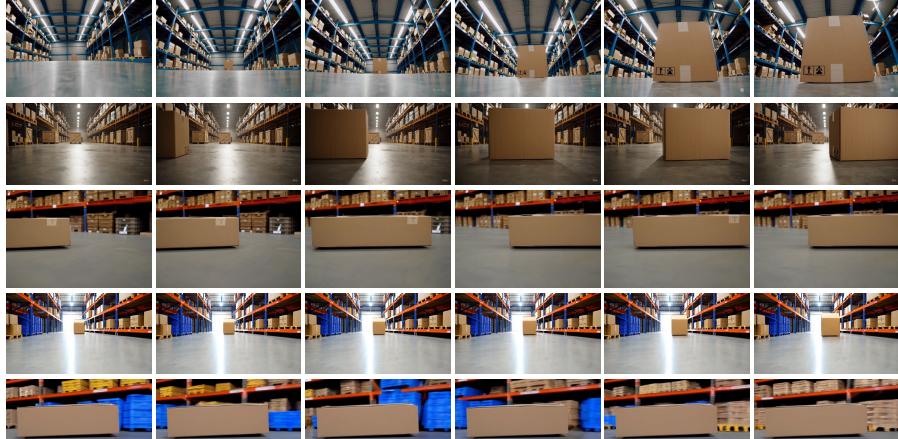
1409

Wan2.2



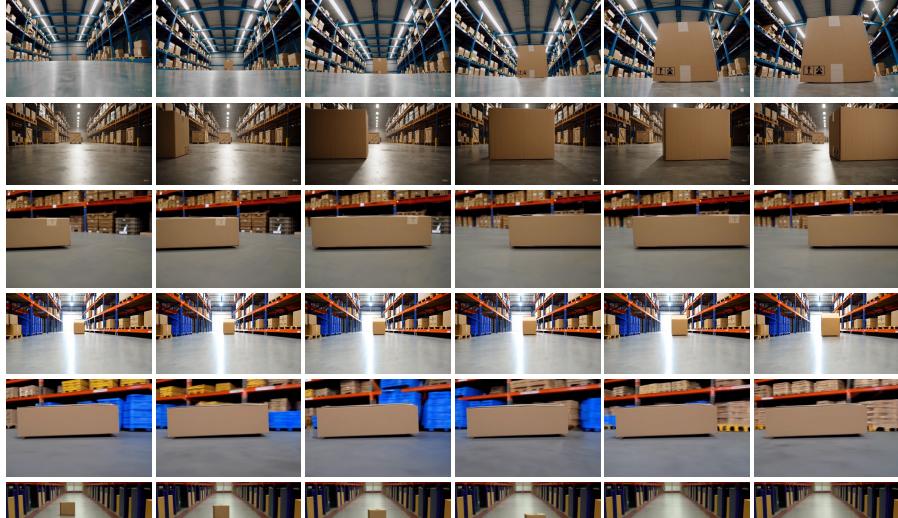
1410

PhyT2V



1411

Ours



1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

Figure 23: Visual comparisons on 3D motion.

1427

1428

1429

1430

1431

1432

1433

1434

1435

A ceramic mug accelerating down a wooden inclined board, kitchen tiles and shelves in the background, natural daylight streaming through a window, captured from a fixed side camera parallel to the ramp.

1436

1437

Sora

1438

Veo3

1439

1440

1441

1442

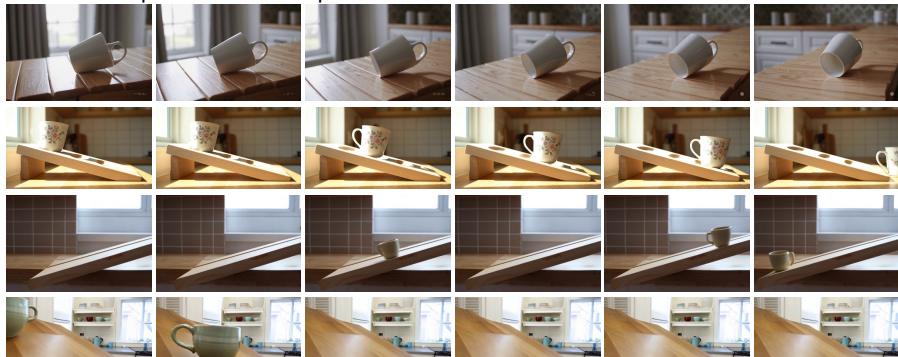
1443

1444

CogVideoX-5B

1445

Wan2.2



1446

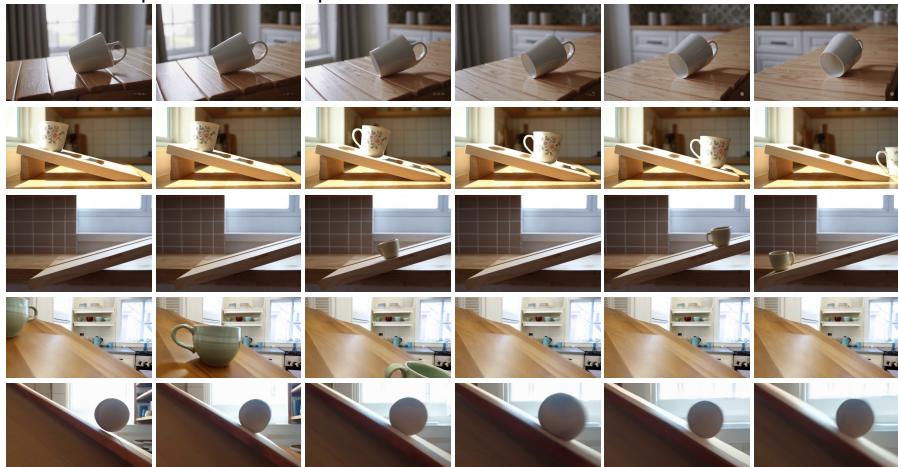
1447

1448

1449

1450

PhyT2V



1451

1452

1453

1454

1455

1456

1457

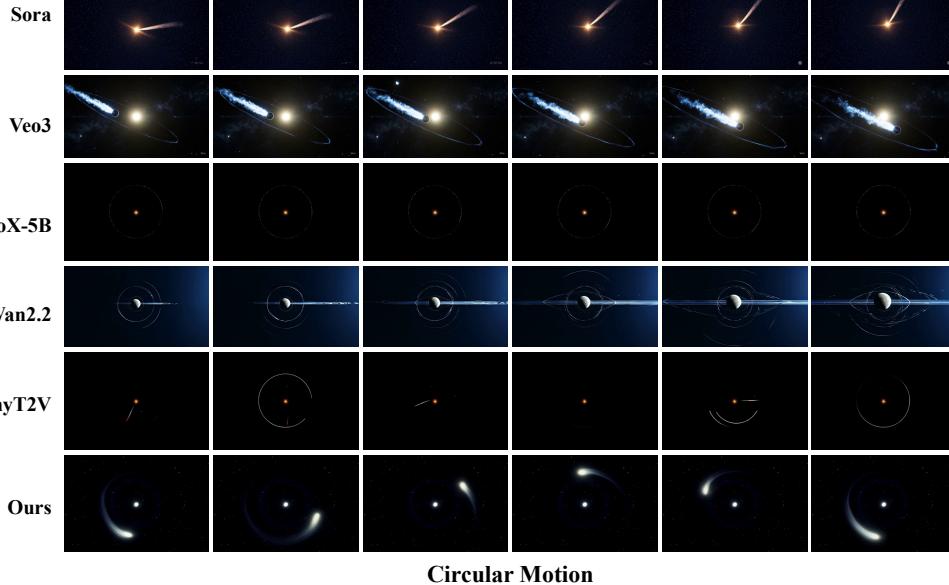
Slope Sliding

Figure 24: Visual comparisons on slope sliding.

1458
1459

A comet with a glowing tail orbits a distant star along a stable circular path. A top-down perspective emphasizes the symmetrical orbit and the stationary central star.

1460



Circular Motion

1461

1462

1463

1464

1465

1466

1467

CogVideoX-5B

1468

1469

1470

Wan2.2

1471

1472

1473

PhyT2V

1474

1475

1476

1477

1478

1479

1480

Figure 25: Visual comparisons on circular motion.

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

A metal rod spinning on a concrete floor, faint scratches and dust visible, captured from a fixed top-down camera.

1491

1492

1493

1494

1495

1496

1497

1498

1499

CogVideoX-5B

1500

1501

1502

1503

1504

1505

1506

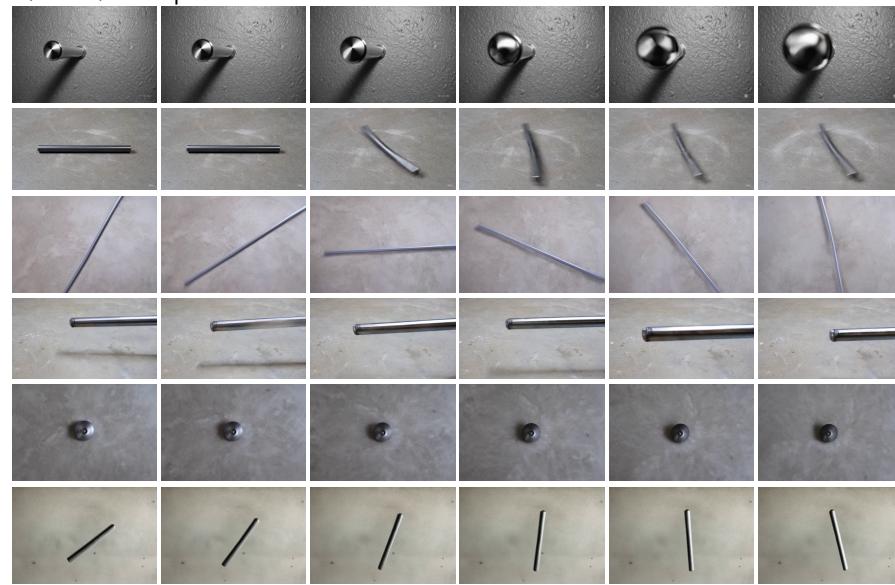
1507

1508

1509

1510

1511



Rotation

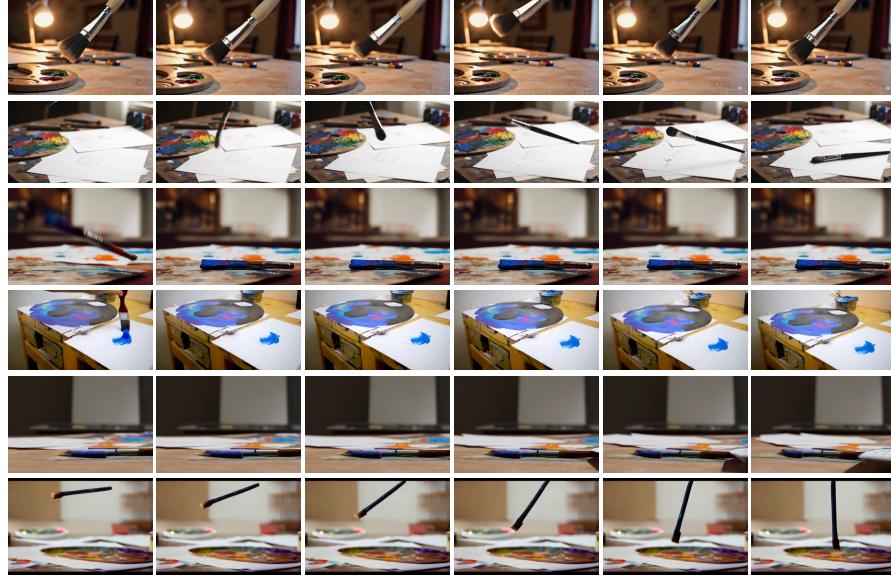
Figure 26: Visual comparisons on rotation.

1512
1513

A paintbrush is thrown at an angle, rotating while falling. Captured from a side camera, the artist's desk with palette and papers serves as background.

1514

Sora



1515

Veo3

1516

1517

1518

1519

1520

CogVideoX-5B

1521

1522

1523

1524

Wan2.2

1525

1526

PhyT2V

1527

1528

1529

Ours

1530

1531

1532

Parabolic Motion with Rotation

1533

Figure 27: Visual comparisons on parabolic motion with rotation.

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

A small decorative bell hanging from a fine chain. The fixed camera captures realistic material and shadows.

1545

Sora

1546

1547

1548

1549

Veo3

1550

1551

CogVideoX-5B

1552

1553

Wan2.2

1554

1555

1556

PhyT2V

1557

1558

Ours

1559

1560

1561

1562

1563

1564

1565

Damped Oscillation

Figure 28: Visual comparisons on damped oscillation.

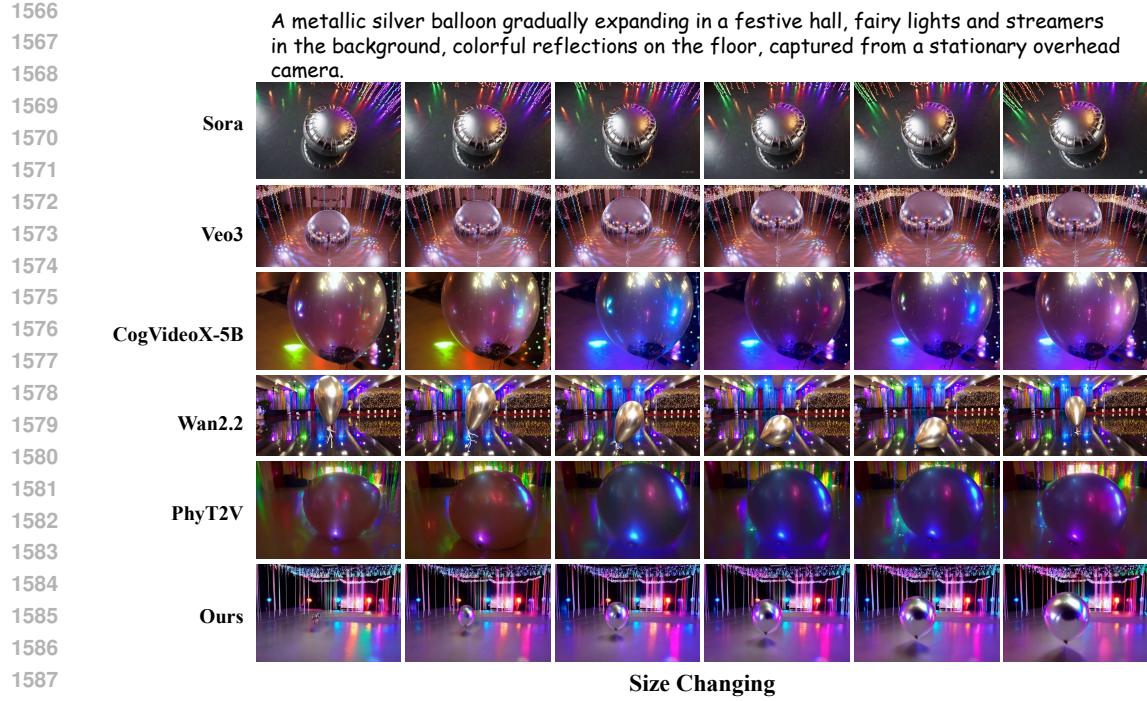


Figure 29: Visual comparisons on size changing.

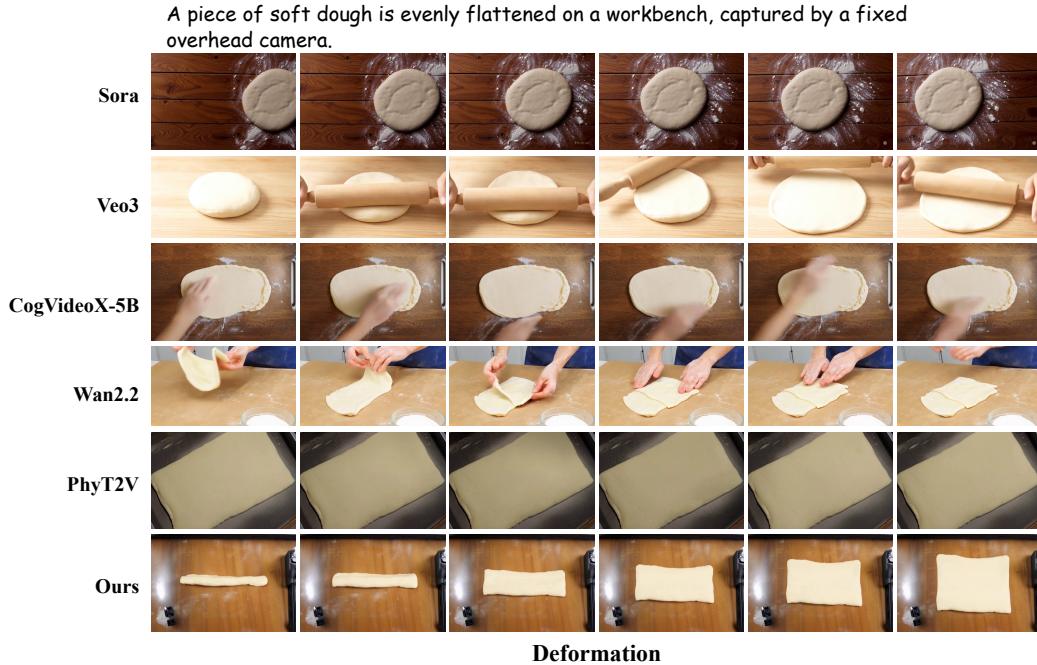
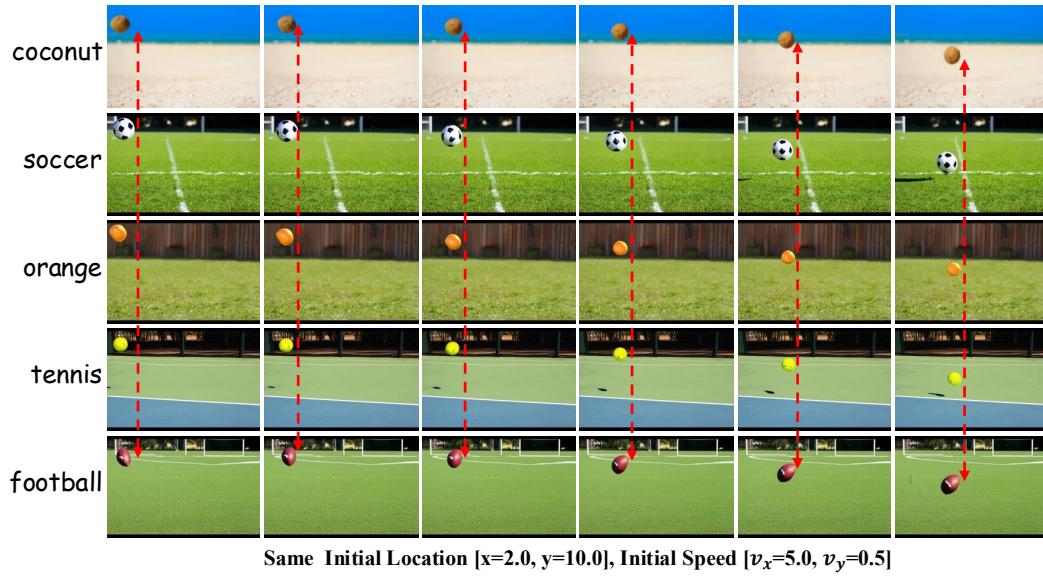


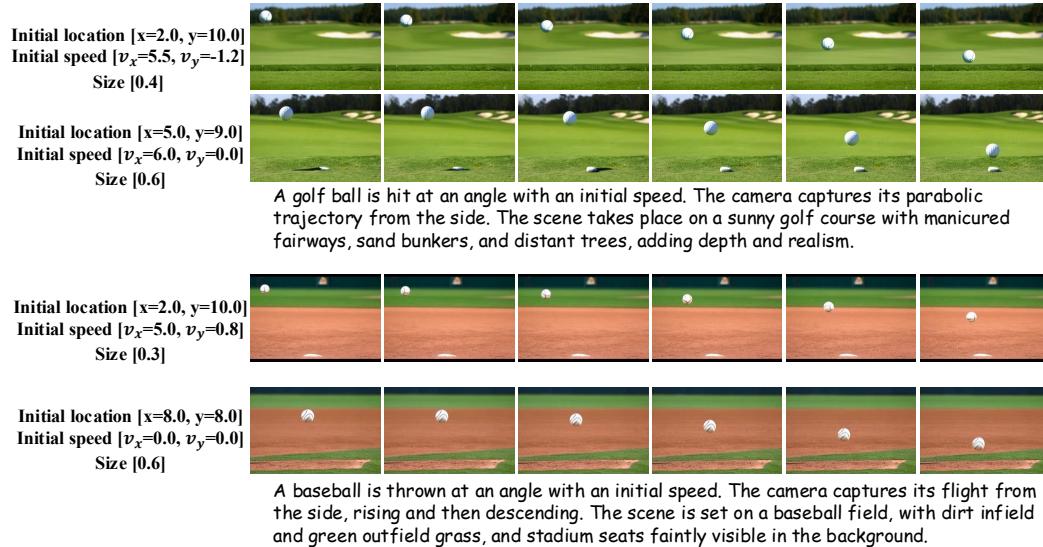
Figure 30: Visual comparisons on deformation.

1620 E.2 MORE PARAMETER CONTROLLABILITY COMPARISON RESULTS
1621

1622 Figure. 31 and Figure. 32 illustrate the physical parameter control capability of NewtonGen.
1623



1642 Figure 31: Given the same initial physical states but different scene descriptions, NewtonGen can
1643 generate diverse scenes with consistent motion.
1644



1665 Figure 32: Given different initial physical states but the same scene description, NewtonGen can
1666 generate the corresponding motions.
1667

1674 F QUESTIONS AND ANSWERS 1675

1676 **Question 1:** Why is a NND (neural ODE) necessary to model/forecast Newtonian motion, and
1677 why not train a simple neural network to predict the coefficients of a parabola (for the parabolic
1678 trajectory)?

1679 **Answer 1:** Our NND learns the underlying dynamics behind different systems, rather than merely
1680 fitting simple kinematics (trajectories) from data. They also provide a unified framework capable of
1681 representing diverse types of dynamics.

1682 **Question 2:** For some motions, the underlying physical dynamics equations are already known, so
1683 why do we still need neural networks to learn dynamics?

1684 **Answer 2:** Many complex or real-world motions are difficult to capture with simple physical formulas.
1685 For example, when rotation, parabolic motion, and even deformation occur simultaneously, it is
1686 challenging for humans to explicitly formulate the underlying physical laws. In contrast, our ODE
1687 model directly learns the dynamics from video data.

1688 **Question 3:** Does your physical control model compromise the generative model's original physical
1689 effects or performance (e.g., shadows)?

1690 **Answer 3:** Empirically, we have not observed any degradation in physical plausibility, such as
1691 shadow dynamics, after applying control. Our framework is training-free in the second stage, it
1692 injects physically consistent optical flow as a control condition only during inference, which preserves
1693 the model's original capabilities.

1694 **Question 4:** Can NewtonGen (NND) handle video generation tasks involving collisions, rebounds,
1695 or explosions?

1696 **Answer 4:** Currently, NewtonGen (NND) does not support such cases, as it is designed for continuous
1697 dynamics. These tasks would require additional event-based ODEs or hard-coded implementations.

1698 **Question 5:** Can NewtonGen generate the motions of multiple objects' motion in a video?

1699 **Answer 5:** Yes. NND can independently predict the physical states of multiple objects and then feed
1700 them into the motion-controlling video generator. The main bottleneck for video quality lies in the
1701 latter.

1702 **Question 6:** Why choose "Go-with-the-Flow" instead of other motion control models as the base
1703 model for the second-stage video generation?

1704 **Answer 6:** Other models often control motion through trajectories or bounding boxes, which makes
1705 it difficult for them to handle tasks involving deformation or rotation. In contrast, Go-with-the-Flow
1706 is based on optical flow control and thus has the potential to address such challenges.

1707 **Question 7:** Is NND fast during training and inference?

1708 **Answer 7:** Yes. NND is trained in the latent space rather than directly on videos, and its learnable
1709 parameters are concentrated in a lightweight three-layer MLP. As a result, inference can achieve
1710 real-time or faster speeds.

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727