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ABSTRACT

In this paper, we propose the generation of accented speech using generative ad-
versarial networks (GANs). Through this work we make two main contributions
a) The ability to condition latent representations while generating realistic speech
samples b) The ability to efficiently generate long speech samples by using a novel
latent variable transformation module that is trained using policy gradients. Previ-
ous methods are limited in being able to generate only relatively short samples or
are not very efficient at generating long samples. The generated speech samples
are validated through a number of various evaluation measures viz, a Wasserstein-
GAN critic loss and through subjective scores on user evaluations against a com-
petitive speech synthesis baseline. The evaluations demonstrate that the model
generates realistic long speech samples conditioned on accent efficiently.

1 INTRODUCTION

This work addresses the problem of synthesising speech data as a raw audio waveform using gen-
erative adversarial networks (GANs). While generative adversarial frameworks have been used in
a variety of settings mainly for images, generating speech using GANs has been more challenging.
Speech requires generating a continuous sequential waveform requiring explicit control on content
generated. Adversarial training of a recurrent sequence is more challenging especially in the con-
tinuous setting. One way to solve this is by generating an output sample of a predefined fixed size.
However, generating longer samples would not be feasible in this setting.

In this paper, we solve the problem by treating it as generation of a sequence of speech synthesis
segments. A naive implementation of this would not allow for generation of a continuous speech
output as they would be discontinuous segments. We address this problem by using recurrent units
that constrain and condition latent variables used for generation. End-to-end gradient based training
of this setup turns out to perform very badly on its own. We address this issue by making use
of a policy gradient framework. This allows for generation of a long sequence of speech from a
sequence of generators that have latent variables trained using policy gradients. A discriminator
evaluates the full sequence to adversarially provide feedback regarding the realism of the generated
audio samples.

We focus on the generation of accented speech samples. Generating accented speech is an impor-
tant problem that could lead to 1) increased comprehension when the accent matches that of the
listener (Ikeno & Hansen, 2007) and 2) better speech recognition for accented speech by augment-
ing data used to train speech recognition systems. The latent variables in our proposed model are
conditioned for both accent and content. The accent part uses a discrete random variable conditioned
using accent labels, which differs from the continuous content based random variable.

Our main contributions can be summarized as follows:

• We provide an efficient GAN based framework that generates speech using a segmented
speech synthesis approach.
• An efficient policy gradient based approach for training that allows for training rich set of

latent variables.
• Explicit conditioning on accent to enable generation of a variety of natural audio with the

ability to control the accent.
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• Generation of long speech signals using a sequence of generators that are jointly discrimi-
nated using a single discriminator.

• Thorough evaluation of the framework using a Wasserstein critic, accent discriminator and
human evaluation studies.

2 RELATED WORK

Statistical parametric speech synthesis systems have been extensively studied in prior work and
achieved initial success using hidden Markov model-based systems (Zen et al., 2009). Among neural
network-based approaches, both deep feed-forward neural networks (Zen et al., 2013) and recurrent
neural networks (Fan et al., 2014) have been successfully used in building statistical parametric
speech synthesis systems. More recent approaches have explored the use of neural networks for the
entire speech synthesis pipeline (Oord et al., 2016; Mehri et al., 2017; Wang et al., 2017; Arik et al.,
2017). Our work is similar in principle to two neural speech generation systems, Wavenet (Oord
et al., 2016) and SampleRNN (Mehri et al., 2017), that both present powerful generative models of
audio and operate directly on raw audio waveforms. Both Wavenet and SampleRNN, however, are
slower than our approach on account of their autoregressive properties. Our speed up in generating
samples comes from not having to re-encode samples during generation and instead sampling from
rich latent variables with the help of recurrent units trained using policy gradients.

This work focuses on generating accented speech samples. This could help improve listeners’ com-
prehension of the underlying content (Ikeno & Hansen, 2007). Also, prior work has shown that
listeners show a preference for synthesized speech clips generated in their own accents (Tamagawa
et al., 2011; Schreitter & Krenn, 2014). Generating speech samples in varying accents could also
potentially impact automatic speech recognition (ASR) systems. Variability in speech accents pose
a significant challenge to speech recognition systems (Benzeghiba et al., 2007). The presence of ac-
cented speech samples during ASR training could help with building more accent-robust speech
recognition systems. Prior work on accented speech synthesis has predominantly made use of
HMM-based synthesis models (Tomokiyo et al., 2005; Karhila & Wester, 2011; Garcı́a Lecumberri
et al., 2014; Toman & Pucher, 2015). We provide the first end-to-end neural framework to generate
accented speech.

Our proposed approach is an end-to-end paradigm that is based on GANs. GANs have been used
for speech synthesis in combination with traditional statistical speech synthesis models (Kaneko
et al., 2017; Yang et al., 2017) and for voice conversion where a WGAN objective was introduced
to improve the quality of the generated samples (Hsu et al., 2017). SEGAN (Pascual et al., 2017)
and FSEGAN (Donahue et al., 2017) are the only prior works we know of that use GANs in an
end-to-end manner for speech generation. They propose speech enhancement systems that take raw
audio waveforms as input and produce enhanced speech as output. SEGAN (Pascual et al., 2017) is
one of the primary baseline systems we compare against.

Our work largely draws inspiration from the SeqGAN framework(Yu et al., 2017), which first intro-
duced the idea of modeling the generator as an agent with a stochastic policy which is trained via
policy gradients. In SeqGAN (Yu et al., 2017), discrete sequence generation is modeled within a
GAN framework. The authors avoid obtaining generator gradients through a policy update step. As
we obtain segments of speech synthesis, we also benefit by using a policy update. Further, work by
Dai et al. (2017) have applied policy update through an actor-critic framework where the policy up-
date for the intermediate steps are obtained by completing the action through a deterministic LSTM
update. This model could be used with the updates being obtained through deterministic policy
gradients Hunt et al. (2016). However, we observed in our setting that obtaining updates using the
method followed in SeqGAN worked better.

3 ARCHITECTURE

Our proposed neural network does recurrent generation of speech samples. This generation is done
by first encoding a speech sample to a rich latent variable. The latent variables are of two kinds.
The first set of variables combine to form an embedding that captures the style and content of the
speech sample, while the other set corresponds to discrete class variables that mark the accent of the
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speech. The model does not need original samples during inference, and is capable of generating
arbitrarily long samples starting from a random value for any given class of speech (i.e. the accent).

Figure 1 illustrates the architecture of our proposed approach, henceforth referred to as AccentGAN.
It has an encoder layer which outputs latent variables z and a decoder which transforms z into
output y. We would like y to be distributed like the input x and z to be distributed according to a
rich distribution. The former is enforced by a discriminator network, Cµ and the latter by a critic
network Cν . Given a partial input, x1:j , we shall compute z1:T where zj+1:T are sampled using a
recurrent LSTM unit trained via policy gradients. Below, we describe each of these components in
more detail.

3.1 ENCODER-DECODER

The encoder is a standard convolutional network that transforms an input speech sample to a con-
strained latent variable representation. The decoder is a deconvolution network with optional skip
connections between the deconvolution layers and convolution layers of the encoder.

The loss function for the encoder (parameterized by θ) and the decoder (parameterized by φ) is
defined as:

Jθ,φ(o, x;µ) := λ||o− x||2 + (1− Cµ(o))2 (1)

where Cµ is the discriminator network, x is an input speech segment, o is a predicted output and λ
is a tunable hyperparameter. (x and o are both marked in Figure 1.)

3.2 DISCRIMINATOR

The discriminator network Cµ is a standard convolutional network, similar to the one used for en-
coding, but significantly deeper. The extra layers are added to make the discriminator more robust
in differentiating between real and fake speech samples from the generator. We adopt the least
squares loss function for the discriminator (Mao et al.). The loss function for the discriminator (pa-
rameterized by µ) when the input segment is x and the output from the decoder is y is given as
Jdisc(Cµ(x), Cµ(y)) where Jdisc is defined as:

Jdisc(a, b) := ||1− a||22 + ||b||22 (2)
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Figure 1: Schematic diagram illustrating the proposed GAN-based framework.
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3.3 DISTRIBUTION OF THE LATENT VARIABLES

The distribution of the latent variables z used in our model are required to match a natural distri-
bution. Specifically, the class variables are passed through a softmax layer. The rest of the latent
variables are made to match a Gaussian distribution (Kingma & Welling, 2014). This is done by
training a discriminant critic Cν that is responsible for differentiating between latent variables that
are being sampled from the associated distribution and the ones which are being generated from the
encoder.

3.4 RECURRENT GENERATION OF SPEECH

During recurrent generation of a long speech sequence, we need to ensure correlation between the
generated segments, which are individually generated in one time step of the architecture. Towards
this, we incorporate a mechanism to force the sequence of latent variables z1, . . . , zT generated
by encoding a speech sample x1, . . . , xT to be somewhat predictable from a prefix of the sequence.
This mechanism involves a memory element (GRU or LSTM) that is trained to transform zj to zj+1.

3.5 REINFORCEMENT LEARNING FORMULATION

While the architecture so far may appear reasonable for generating speech, it turns out to perform
very badly on its own. Speech sequences consist of a large number of frames T , and training the
memory elements that output z1, . . . , zT directly using back-propagation seems quite ineffective,
resulting in poor outputs.

To resolve this issue, we draw inspiration from SeqGAN (Yu et al., 2017), which modeled sequence
generation in a GAN framework. The high-level idea is to use a reinforcement learning approach
with delayed rewards to train the memory elements to produce a full valid sequence z1, . . . , zT from
any prefix. In terms of the reinforcement learning framework, the state corresponds to the latent
variables zj ; actions correspond to the transformation from zj to zj+1 (alternately, the action can
be viewed as producing the next segment of speech, as it is a deterministic function of zj+1).1 The
policy is parametrized by the parameters ω of a memory element Ψω .

The gradients used to train the policy parameters ω are derived in Sutton et al. (1999), as:

∇ωJ(πω) = E(s,a)[Q
π(s, a)∇ω log πω(a|s)] (3)

where s is the state, a is the action, and Qπ(s, a) is the expected reward, and πω(a|s) is the proba-
bility assigned to action a by the policy, given state s. As mentioned above, in our case, the state s is
the latent variable zj produced by the encoder after seeing a prefix x1:j of a segment x1:T ; the action
is the next state ẑ(j)j+1 predicted using the LSTM network (with some added noise). The expected
reward Qπ(s, a) is replaced by the output of the discriminator Cµ(o(j)), where o(j) is a predicted
output given ẑ(j)j+1: Note that the reward is higher if the discriminator is fooled more into considering
o(j) to be from the real distribution. Here, instead of the expected reward, a single empirical sam-
ple of the prediction o(j) is used. The expectation over (s, a) is also approximated by empirically
summing over samples.2 To predict o(j) we predict ẑ(j)k for all k > j, using Ψω∗ , where ω∗ is the
value of ω at the beginning of processing a batch. (This corresponds to an off-policy update of the
parameter ω.) Thus, we instantiate (3) as

∇ωJω(zj , ẑ
(j)
j+1, o

(j);µ, ω) =
∑

Cµ(o(j))∇ω log πω(ẑ
(j)
j+1|zj) (4)

where the summation is over all examples in a batch and all j ∈ {1, . . . , T − 1}, with the prediction
o(j) computed as in Line 12 of Algorithm 1. As mentioned above we define ẑ(j)j+1 = Ψω(zj) + ε,

1We remark that unlike SeqGAN, our actions were continuous. One may wonder if the SeqGAN frame-
work is necessary, or appropriate, when the actions are continuous, and therefore admit training using back-
propagation. But as discussed above, our experiments in fact show that the policy gradient approach of SeqGAN
is useful even in this case.

2This could be viewed as a Monte Carlo approach of estimating Qπ(s, a). An alternate approach using an
actor critic model based on deterministic policy gradients Hunt et al. (2016) turned out to not perform as well
in our setting.
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Algorithm 1 ACCENTGAN training pseudocode.

1: Inputs: data D, batch size m, segment length T , number of iterations Niter, weight λ
2: Initialize φ, µ, θ, ω, ν
3: for i = 1 to Niter do
4: ω∗ ← ω . Make a working copy of the policy parameter
5: Sample a batch of m segments x1:T from data D
6: for j = 1 to T do
7: zj ← Eθ(xj)
8: yj = Dφ(zj)
9: for k = j + 1 to T do

10: ẑ
(j)
k = πω∗(zk−1) + ε where ε ∼ N (0, σ2I)

11: ŷ
(j)
k = Dφ(ẑ

(j)
k )

12: o(j) = [y1:j |ŷ(j)j+1:T ]

13: ω ← update(ω,∇ωJω(zj , ẑ
(j)
j+1, o

(j);µ, ω∗)) . Policy gradients in Eqn 5
14: ζ ← N (0, I)
15: ν ← update(ν,∇νJdisc(Cν(ζ), Cν(zj)) . Jdisc defined in Eqn 2
16: (θ, φ)← update((θ, φ), Jθ,φ(oT , x;µ)) . Jθ,φ defined in Eqn 1
17: µ← update(µ,∇µJdisc(Cµ(x1:T ), Cµ(y1:T ))

where ε is an error vector (we consider all the vectors to be row vectors below). More precisely, we
take ε ∼ N (0, σ2I). Then, we have πω(ẑ

(j)
j+1|zj) ∝ exp( −1

2σ2 ||zj+1 −Ψω(zj)||22). Then,

∇ω log πω(ẑ
(j)
j+1|zj) = ∇ω

−||ẑ(j)j+1 −Ψω(zj)||22
2σ2

=
ẑ
(j)
j+1 −Ψω(zj)

σ2
∇ωΨω(zTj ).

Combined, our final expression for the gradient is

∇ωJω(zj , ẑ
(j)
j+1, o

(j);µ, ω) =
∑

Cµ(o(j))
(ẑ

(j)
j+1 −Ψω(zj))

σ2
∇ωΨω(zTj ). (5)

Our complete training algorithm is outlined in Algorithm 1.

4 EXPERIMENTAL SETUP

We evaluate the efficacy of our proposed approach with the help of two standard datasets 1) The
CSLU Foreign Accented English dataset (Lander, 2007) that contains accented speech in English
from native speakers of 22 different languages and 2) The VCTK dataset (Veaux et al., 2010) that
consists of speech from 109 speakers with varying accents. We used less than 5 hours of training
data from both datasets. We trained our models using speech from 5-15 accents in the CSLU corpus
and 20-30 speakers for the VCTK task.

AccentGAN was implemented using Tensorflow (Abadi et al., 2016). The encoder is a 12-layer
convolution layer network with a kernel size of 31, while the decoder is a mirror image of the
encoder network with the addition of skip connections. We use Relu (Arora et al.) units between
the layers of the encoder network, while we use LeakyRelu (Arora et al.) units between the layers
of the decoder network. We are able to fit up to 12 recurrent layers of the model in a single GPU
while training. Skip connections are not used while generating samples.

The discriminator network has 2 more layers than the generator network giving it more discrimina-
tive power. The layers in this network again have a kernel width of 31 and we downsample by 2
in every layer. We also add batch normalization layers in order to ensure faster and more effective
training (Ioffe & Szegedy).

The discriminator critic is a single-layer MLP with a large hidden layer containing 750 units that
produces a single logit as output. The MLP layers are interspersed with LeakyRelu units. This
network is trained using the least squares GAN loss function.
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Model WGAN CRITIC
SpeechGAN 346.21± 3.21

SEGAN 312± 4.32
SampleRNN 441.76± 6.05

Conditioned GAN 291.16± 3.2
Policy GAN 302.41± 3.4
AccentGAN 201.98± 7.8

Model WGAN CRITIC
SpeechGAN 276.42± 15.02

SEGAN 266.88± 5.06
SampleRNN 412.88± 13.45

Conditioned GAN 305.88± 15.05
Policy GAN 337.34± 20.04
AccentGAN 164.55± 30.05

Table 1: Wasserstein distances using critics trained on (a) the VCTK dataset (b) the CSLU dataset.

While doing inference and sampling from the trained model, we can either generate from noise for
random content and use a random accent or start with a seed which is 1 second long and upsample
to generate speech samples (that are at most 12 seconds in length). We use the latter in all our
experiments.

5 RESULTS AND ANALYSIS

5.1 WGAN CRITIC BASED BENCHMARKING

As an objective evaluation metric, we use the Wasserstein distance from an independent Wasserstein
GAN (Arjovsky et al., 2017) critic, trained on held out data, that is used to evaluate generated
samples from our models. This measure has been adopted in prior work and is indicative of whether
the generator is overfitting or whether the model is subject to mode collapse (Rosca et al., 2017;
Danihelka et al., 2017). This WGAN critic is trained to maximize the following loss function (in the
stochastic setting, with batch size N ):

LCRITIC =
1

N

(
N∑
i=1

Cµ(xheldout
i )−

N∑
i=1

Cµ(xg
i )

)

where xheldout corresponds to a batch of samples from the heldout set and xg is a batch of generated
samples. We train the model by clipping weights but do not add the gradient penalty since large
values of Wasserstein distances help us gain a better understanding of the model.

We build a first critic for the VCTK dataset that is trained on 50% of the held out data (correspond-
ing to 23 speakers) and a second critic that is trained on the five most common accents appearing in
the CSLU dataset. Table1 shows Wasserstein distances on both datasets using both these critics. We
compare AccentGAN with other models trained on exactly the same data. SpeechGAN is a naive
model that generates speech using the standard GAN loss formulation, by reconstructing speech
samples from noise. PolicyGAN and ConditionedGAN are two ablations of AccentGAN: the first
variant does not involve conditioning of the latent variables and the second conditions the latent vari-
able but does not use recurrent generation. SEGAN (Pascual et al., 2017) and SampleRNN (Mehri
et al., 2017) are baseline models from prior work. We observe that AccentGAN performs the best
cross both datasets and produces the smallest Wasserstein distance compared to the other models.

We also explore how the Wassertein distances change as we increase the number of accents that
the critic is trained on. Figure 2 shows that the Wasserstein distance steadily drops with increasing
number of accents.

5.2 HUMAN EVALUATION

The main objective of our model is to generate high-quality accented speech samples. In order to
assess whether the speech accents are produced clearly in the generated samples and the speech is
of high quality, we set up a human evaluation task to address both these questions. Six samples
each from five different accents were generated using both AccentGAN and SEGAN.3 We also used
six ground-truth samples from each accent in the user study. Twelve pairs of samples, six samples

3We note here that we did not use SampleRNN in our user evaluation study since this system did not
generate high quality speech clips, on account of the small amount of data that we used for training.
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Number of accents Wasserstein distance
5 708.45± 5.1
7 716.42± 4.3
10 704.41± 4.1
13 682.23± 3.4
15 672.43± 5.2

Table 2: (a)[CSLU dataset] Wasserstein distances using an alternate critic that is pre-trained on held-
out data for 15 accents. This measures the average Wasserstein distance of samples generated by
AccentGAN from ground truth samples, as we increase the number of accents we train on.

(b) [Graph] Represents the observed curve in the Wasserstein distances

each from two different accents, were presented to each user. In every pair, one was a ground-truth
sample and the other came from either AccentGAN or SEGAN. No two utterances were identical in
content across the twelve different pairs of samples. Users were asked first to listen to three reference
samples in each accent to familiarize themselves with the underlying accent. Then, the users were
asked to mark naturalness for both the samples in the pair on a 1-100 scale and they were also asked
to mark on a numeric scale which of the two samples they thought was closer to the accent in the
reference samples.

A total of 24 users participated in our study. The users were all undergraduate and graduate students
and all of them were fluent speakers of English. Each combination of samples (AccentGAN vs.
SEGAN, AccentGAN vs. ground-truth, SEGAN vs. ground-truth) got 2-3 scores from different
users. Figures 2 and 3 show histograms of naturalness scores computed for AccentGAN vs. ground-
truth samples and AccentGAN vs. SEGAN samples, respectively. (A score of 1.0 suggests that both
systems were equally matched in naturalness scores, and scores greater and less than 1 suggest pref-
erences for the respective systems.) We observe that for most pairs of speech samples, AccentGAN
and ground-truth were equally matched. There were roughly equal number of speech samples that
were rated higher for AccentGAN compared to ground-truth and vice-versa. For AccentGAN vs.
SEGAN samples, however, we see a clear preference for AccentGAN samples in Figure 3.

Figure 4(a) shows a box plot of weighted accent preferences. The users assigned a continuous value
between -50 and 50 for accent preference, which was bucketed into 5 classes and associated with
a weight from 2, 1, 0, 1, 2, thus giving more importance to samples which had a higher similarity
score compared to samples with lower similarity scores. This re-weighting reduced all the values to
the range -100 to 100. We see that preferences were fairly well-matched when AccentGAN samples
were paired against ground-truth samples.
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Figure 2: AccentGAN vs. Ground truth
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Samples Accuracy Deviation
Ground Truth 9.2% 0.14
AccentGAN 9.3% 0.08

Model L1 loss difference
Different Accents 0.14

AccentGAN 0.023
ConditionedGAN 0.036

Figure 4: (a - Graph) Accent preference values from user evaluation study (b - Table upper) Ac-
cent recognition accuracies for ground truth vs. AccentGAN samples (c - Table lower) Difference
between L1 losses for ground truth sample and accent transfer sample.

5.3 ACCENT RECOGNITION ACCURACY BASED EVALUATION

Accent recognition accuracy (ARA) is an alternate objective evaluation metric obtained using a
trained accent identification system. We trained a classifier on speech samples generated for N
different accents and predict the accents of unseen generated samples. This is compared with a
classifier trained on the same number of ground-truth speech samples from the same N accents. We
expect the ARA rates to be comparable across both systems, suggesting that our model generates
accented speech samples that are very close in quality to the ground-truth samples.

To compute accent recognition accuracies, we extracted i-vector (Dehak et al., 2011) features from
the speech samples; i-vectors are a low-dimensional representation of the speech signal that capture
all relevant information about a speaker. i-vectors have been successfully used for accent identifica-
tion in prior work (Bahari et al., 2013). We extracted 100-dimensional i-vectors using a background
model that was trained on more than 100 hours of American accented speech (Godfrey & Edward,
1993) and we train a linear SVM classifier to predict the accent class of a test sample.

Figure 4(b) shows 3-fold accent recognition accuracies (and deviation statistics) on a test set of 130
samples (and training/validation sets of size 910 and 250, respectively). Each test sample was one
of 15 accents. We observe very similar performance from using AccentGAN samples and ground-
truth samples. We note here that the accent accuracies are low since we did not optimize the speech
features and the classifier. Our objective was not to maximize ARA accuracy but to examine how
AccentGAN samples fared against ground-truth samples in an accent recognition task.

5.4 TRANSFER LEARNING

We also experimented with transferring the content of speech across accents. This was done to
ascertain whether the learned representations are (as claimed) disentangled in terms of accents and
content. We also did this to generate samples with a specific accent and new content which appeared
in other accents during training.

We passed batches of 64 samples each from the VCTK dataset into the auto-encoder and then
changed the accent being conditioned for. We computed the true L1 loss between the sample gen-
erated by accent transfer via both AccentGAN and one ablation of this model, ConditionedGAN,
as shown in Figure 4(c). We show that our model performs better giving a lower L1 loss value.
As reference, we also show the true L1 loss between samples with the same content and different
accents. (We used the VCTK dataset for this experiment as it has parallel corpora where the same
content is rendered in different accents.)
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5.5 COMPUTATIONAL EFFICIENCY

We compare our model against SampleRNN on two computational objectives: training time and in-
ference time. We took roughly 6 hours to train AccentGAN on the CSLU dataset while SampleRNN
took about 72 hours of training time. During inference, we could sample up to 10 samples of length
12 seconds each in one second of computation time on Tesla P-100 GPUs, which is an order of
magnitude faster than SampleRNN.

We also notice that models such as SEGAN need to add more computationally intensive convolu-
tional layers to generate longer samples, while we can generate arbitrary long samples by recurrently
applying the autoencoder networks, given a rich enough seed. We successfully generated a speech
sample which was 16 seconds long from 1 second of real speech.

6 CONCLUSION

We present a GAN-based approach for speech generation that efficiently generates long speech
samples via policy gradients. We enable the generation of accented speech by explicitly conditioning
on a latent variable that uses accent supervision. Future work includes extending this framework and
conditioning on text to build text-to-speech synthesis systems.
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