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Abstract. Radiology reports provide detailed descriptions of medical
imaging integrated with patients’ medical histories, while report writing
is traditionally labor-intensive, increasing radiologists’ workload and the
risk of diagnostic errors. Recent efforts in automating this process seek to
mitigate these issues by enhancing accuracy and clinical efficiency. How-
ever, existing automated approaches are based on a single timestamp and
often neglect the critical temporal aspect of patients’ imaging histories,
which is essential for accurate longitudinal analysis. To address this gap,
we propose a novel History Enhanced Radiology Report Generation
(HERGen) framework that employs a group causal transformer to ef-
ficiently integrate longitudinal data across patient visits. Our approach
not only allows for comprehensive analysis of varied historical data but
also improves the quality of generated reports through an auxiliary con-
trastive objective that aligns image sequences with their correspond-
ing reports. More importantly, we introduce a curriculum learning-based
strategy to adeptly handle the inherent complexity of longitudinal ra-
diology data and thus stabilize the optimization of our framework. The
extensive evaluations across three datasets demonstrate that our frame-
work surpasses existing methods in generating accurate radiology reports
and effectively predicting disease progression from medical images.

Keywords: Radiology Report Generation · Longitudinal Study · Vision-
Language Learning

1 Introduction

Chest X-rays are a cornerstone in diagnosing thoracic conditions, including pneu-
monia and lung cancer [19,35]. Given a chest X-ray, radiologists will meticulously
examine each anatomical section in the X-ray and document their observations
with detailed text descriptions. The generated report is crucial to diagnose dis-
eases (e.g ., lung cancer, scoliosis) and assess the position of the treatment de-
vices (e.g ., tracheostomy tubes, pacemakers). Particularly, when prior images
are available, radiologists commonly compare the clinical findings of the current
scan with prior scans to assess the evolution of disease over time, which is es-
sential in regular clinical evaluations. However, the high volume of chest X-rays
overwhelms radiologists, exacerbating the impact of the global shortfall in this
workforce [8, 37].
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Fig. 1: Overview of our HERGen for radiology report generation: Our model processes
longitudinal data for each patient and utilizes the comprehensive historical information
within these longitudinal data to generate robust and precise radiology reports.

Automated chest X-ray report generation has emerged as a key research area,
aiming to ease radiologists’ workload and improve patient care [43]. Mainstream
approaches focus on improving clinical accuracy and completeness of individual
reports [9, 10,27,42], often overlooking the chronological consistency in longitu-
dinal imaging. Modeling such inherent temporal information in chest X-rays has
shown to be crucial for generating precise radiology reports [5, 20, 39, 59]. Some
recent studies integrate prior images for temporal representation and enhance
report generation [5, 39]. However, they are limited to the use of only one prior
image for the current report, failing to capture high-level disease progression
evident across a patient’s history. This highlights the need for a framework that
learns accurate representations from both study-level and patient-level images,
thereby producing reports closely aligned with radiologists’ analyses.

In this paper, we propose a novel History Enhanced radiology Report Gener-
ation framework (HERGen) to effectively capture the temporal information of
longitudinal data for generating comprehensive and temporally coherent radiol-
ogy reports, as shown in Fig. 1. The key part is a causal transformer model, which
treats all visual tokens from the same image as a group and uses a group causal
attention mechanism to handle it. Viewing all visual tokens of each patient as a
sequence, this mechanism groups visual tokens from the same image, facilitating
intra-image interactions of visual tokens and inter-image interactions of tokens
only across previous studies. Notably, it treats each patient’s X-ray series as a
distinct sequence, adeptly handling the variability in the number of longitudi-
nal images per patient. Moreover, we further refine the model’s capability to
chart disease progression through a cross-modal contrastive learning objective,
ensuring the alignment of longitudinal visual representations with their narrative
reports. Due to the inherent complexity of longitudinal data, it is non-trivial to
optimize the whole framework. We thereby introduce a new curriculum learning-
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based optimization strategy in three progressive steps to enhance and stabilize
the learning process of our framework. The model is first trained to generate radi-
ology reports for individual images and then, we employ the auxiliary contrastive
alignment module to optimize the latent space. After that, the entire framework
is trained with the integration of a temporal aggregation module, enabling it to
learn from the patient’s historical information. Extensive experimental results
on radiology report generation and temporal medical image classification tasks
demonstrate the superiority of our framework in generating accurate radiology
reports and effectively predicting the disease progression from medical images.
The source code is available at https://github.com/fuying-wang/HERGen.

2 Related Work

Automated Report Generation. Radiology report generation, inspired by
image captioning techniques [11, 46, 54, 56], face unique challenges due to the
complexity and variability in radiology reports [1, 9, 10, 18, 23, 25, 49, 55]. Initial
approaches, primarily based on CNN-RNN [17,18,49,57], have evolved with the
adoption of transformer [44]. Recent advancements include memory-driven trans-
formers for enhanced cross-modal interactions [9,10], alignment of visual features
with disease tags [55], and contrastive methods for anomaly detection [25]. In-
tegration of knowledge graphs [23, 57], warm starting strategies [27], and in-
teractive frameworks for region-specific reports [42] have also been explored.
However, these methods often treat X-rays and reports as independent entities,
overlooking the temporal aspects inherent in various radiology modalities.

Longitudinal Chest X-ray Representations. Radiology studies, inherently
chronological, are crucial for accurate reporting, yet the temporal dimension is
often under-addressed in research. [34] indirectly acknowledged the importance
of sequential context by proposing a method to reduce language model hallucina-
tions. [5] introduced a self-supervised framework capturing the longitudinal evo-
lution of chest X-ray findings. Similarly, [59] developed a cross-attention-based
multi-modal fusion framework utilizing patient record chronology to enhance
report pre-filling. [20] employed graph attention networks [45] for an anatomy-
aware approach to tracking disease progression in longitudinal CXR data. [39]
used Faster R-CNN [36] to project longitudinal studies into a composite rep-
resentation highlighting anatomical changes over time. However, most of these
methods primarily focus on learning representations rather than generating re-
ports. Furthermore, these methods often treat two consecutive image-text pairs,
lacking flexibility for varying patient history lengths and are limited in capturing
the complex progression of diseases.

Biomedical Vision-language Pretraining. Radiology reports, paired with
chest X-rays, offer rich labels for learning visual representations. Building on the
CLIP framework [32], [7, 15, 47, 58] demonstrate the efficacy of self-supervised
vision-language pretraining in biomedical imaging tasks. Particularly, [58] use a
contrastive objective [29] for modality alignment, [15] focus on local alignment
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for detailed feature learning, and [7] develop CXR-BERT, employing masked lan-
guage modeling for enhanced image feature learning from radiology language.
Furthermore, [5] adapt BioViL [7] for longitudinal analysis in radiology, improv-
ing temporal aspects in report generation and classification tasks. Our work
further explores the application of vision-language pretraining on longitudinal
data, aiming to effectively capture disease progression in patient records.

3 Method

3.1 Problem Formulation

The overall framework of the proposed method is shown in Fig. 2. We analyze
a dataset comprising chest X-rays from M patients, denoted as {Ii}i=1,2,...,M ,
where Ii = {I(i)j }j=1,2,...,Ni represents the set of X-rays for the i-th patient and
Ni is the number of studies (visits). For each patient i, their X-rays are chronolog-
ically ordered based on their associated study dates Ti = {T(i)

j }j=1,2,...,Ni . The
objective of our method is to generate a set of radiology reports {R̂i}i=1,2,...,M for
each patient, aiming to closely approximate the ground truth reports {Ri}i=1,2,...,M .
In the following, we use i and j to index patient and study respectively.

3.2 History-enhanced Report Generation

Extract Representations of Single Images. In our approach, each X-ray
image I

(i)
j ∈ RC×W×H is first encoded into a feature representation P

(i)
j ∈

RS×F with an image encoder. Here, C, W , and H denote the number of chan-
nels, width, and height of the image, respectively, while S and F represent
the number of visual tokens and the feature dimension per token. Following
CvT-212DistilGPT2 [27], we utilize the CvT architecture [52], pretrained on
ImageNet-21K, as our image encoder, while our framework can take other en-
coder backbones. To tailor the dimensions of S and F to our requirements, we
introduce an encoder projection layer Eproj . This layer comprises a 1× 1 convo-
lution layer followed by a linear projection layer, transforming each P

(i)
j into a

more compact visual representation V
(i)
j ∈ RS′×F ′

, where S′ and F ′ denote the
adjusted number of visual tokens and their new dimensionality, respectively.
Sequential Date-aware Temporal Embedding. Temporal embeddings are
especially critical for our group causal transformer to learn longitudinal infor-
mation. Standard positional embeddings typically assume equidistant intervals
between tokens, an assumption that is not applicable in our context due to the
varying time gaps between consecutive chest X-rays. For example, the clinical
progression captured in X-rays taken a month apart is significantly different
from that in X-rays taken a year apart. To tackle this challenge, we introduce
study date-aware positional embeddings, p(i)

j ∈ RS∗×F ′
for each study. These

embeddings are conditioned on the study dates T(i)
j , offering a more precise rep-

resentation of the temporal intervals between X-rays. In detail, we first calculate
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Fig. 2: History Enhanced Radiology Report Generation (HERGen): the framework
processes patient-level chest X-rays using the CvT* (CvT combined with the encoder
projection layer), which then aggregates temporal information through a group causal
transformer. Subsequently, GPT2 serves as the decoder for predicting the radiology
report, which was optimized by a cross-entropy (CE) loss. Additionally, an auxiliary
contrastive alignment module is employed to enhance the alignment of the latent spaces
between image and text modalities, thereby producing more consistent reports. Note
that in the group causal transformer block, thick lines represent image-level interac-
tions, while thin lines indicate token-level interactions.

the relative study date for each X-ray image as T′(i)
j = T

(i)
j −T

(i)
0 . Then, we iden-

tify the maximum relative study date in the training set and create a learnable
embedding vocabulary of the corresponding length. Each temporal embedding is
defined as: p(i)

j = Embedding(T′(i)
j ) ∈ R1×F ′

. The visual token embeddings V(i)
j

are then added with the temporal embedding p
(i)
j to form Z

(i)
j = V

(i)
j + p

(i)
j ,

where Z
(i)
j ∈ RS′×F ′

. Finally, we concatenate all visual token embeddings for
each patient to create a patient-level sequence Z̃i = Concat([{Z(i)

j }j=1,2,...,Ni
])

where Z̃i ∈ RS(i)×F ′
and S(i) = Ni ×S′, which is then fed into the group causal

transformer for temporal aggregation.
Group Causal Transformer. Our group causal transformer comprises L group
causal blocks, designed to aggregate longitudinal information from patient data.
In block l, for every visual token (indexed by p), we first compute the query, key,
and value vectors from its preceding block’s representation z

(l−1)
(p) ∈ RF ′

as:

q
(l,a)
(p) = W

(l,a)
Q LN(z

(l−1)
(p) ) ∈ RDh ,

k
(l,a)
(p) = W

(l,a)
K LN(z

(l−1)
(p) ) ∈ RDh ,

v
(l,a)
(p) = W

(l,a)
V LN(z

(l−1)
(p) ) ∈ RDh . (1)

Here, LN denotes LayerNorm and a = 1, ..., A indexes the A attention heads
with the latent dimensionality for each head being Dh = F ′/A. The initial
representation z(0) corresponds to the input sequence Z̃i. WQ, WK , and WV
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Fig. 4: Illustration of the proposed cur-
riculum training strategy.

are learnable matrices. For simplicity, we have omitted the patient index i in our
notation. Then, the process for computing dot-product self-attention weights,
along with subsequent steps, is defined as follows:

α
(l,a)
(p) = SM(

q
(l,a)
(p)

Dh
· [k(l,a)

(p′) ]p′∈0,...,S(i)−1),

s(p)
(l,a)

=
∑
p′

M(p′)α(p)(p′)
(l,a)

v(p′)
(l,a)

, (2)

where α ∈ RS(i)

. The group causal attention matrix M(p′), as illustrated in
Fig. 3, differs fundamentally from the bidirectional attention used in BERT [12]
and the causal attention in GPT [33]. It ensures that each visual token within
an image not only interacts with others in the same image but also with tokens
from preceding images.

This design reflects our intention to make the transformer cognizant of the
temporal sequence in radiological data, a crucial aspect for accurately capturing
disease progression over time. Subsequently, we perform concatenation followed
by a Multi-Layer Perceptron (MLP) with residual connections to get the output.
This can be mathematically represented as:

z′
(l)
(p) = WO[s

(l,1)
(p) ...s

(l,A)
(p) ] + z

(l−1)
(p) ,

z
(l)
(p) = MLP(LN(z′

(l)
(p))) + z′

(l)
(p), (3)

where WO is a learnable matrix. Then, the output sequence of the group causal
transformer, denoted as z(L) ∈ RS(i)×F ′

, is split into a series of representations
of studies {D(i)

j }j=1,...,Ni
and D

(i)
j ∈ RS′×F ′

.
Report Generation and Auxiliary Contrastive Alignment. Each tempo-
rally aggregated visual representation D

(i)
j is input into a text decoding module

for generating radiology reports. Note that We chose GPT-2 as the text decoder
following [27], which shows DistilGPT2 [38] outperforms other alternatives like
ClinicalBERT [2], PubMedBERT [13], and SciBERT [6]. We minimize a cross-
entropy loss LCE to ensure predicted reports are close to ground truth reports.
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To improve the coherence of generated reports, we introduce an auxiliary con-
trastive alignment module. This module is designed to align the distributions
of the visual and textual modalities, thereby enhancing the model’s overall per-
formance. Initially, for each visual token embedding D

(i)
j ∈ RS′×F ′

, we perform
a mean pooling operation along the first dimension and it results in a global
representation of the entire image, denoted as D̃

(i)
j ∈ RF ′

. Then, we use a text
encoder to encode each report R

(i)
j into a representation E

(i)
j . Subsequently, we

concatenate all visual and text embeddings within the same minibatch to form a
combined set: {D̃s}s=1,2,...,NB

and {Es}s=1,2,...,NB
, respectively. Note that NB

represents the total number of studies within the mini-batch. The contrastive
loss is defined as follows:

LCont =

NB∑
r=1

1

2NB
(−log

exp(sim(D̃r,Er)/τ)∑NB

s′=1 exp(sim(D̃r,Es′)/τ)

− log
exp(sim(Er, D̃r)/τ)∑NB

s′=1 exp(sim(Er, D̃s′)/τ)
)

(4)

where τ is the temperature hyperparameter.
Learning Objectives. Finally, our model is optimized by jointly minimizing
these two objectives:

L = LCE + λ · LCont. (5)

Here, λ is a hyperparameter used to balance these two losses. Based on empirical
studies, we set λ as 1.0. The ablation results of the hyperparameter r can be
found in the Supplementary Material.

3.3 Curriculum Training

As shown in Fig. 4, we introduce a curriculum learning strategy, unfolding in
three stages to progressively enhance our model’s performance:

– Stage 1: Encoder-Decoder Report Generation: Initially, reports are
generated using an encoder-decoder architecture trained on individual chest
X-ray image-text pairs. This foundational step focuses solely on static data
without temporal context.

– Stage 2: Alignment Refinement with Text Encoder: Subsequently,
a text encoder is incorporated, utilizing contrastive learning to refine the
alignment between the visual and textual data.

– Stage 3: Temporal Information Learning:The final stage expands the
model’s capability to a longitudinal perspective. Here, we integrate the group
causal transformer to process sequences of chest X-rays, thereby incorporat-
ing temporal information into the report generation.

These stages collectively develop a robust and comprehensive model, which
is then systematically evaluated to assess its effectiveness in generating accurate
and contextually relevant radiology reports.
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4 Experiments

4.1 Experimental Setup

Dataset and Preprocessing. We evaluate the performance of our model on
two clinical tasks: radiology report generation and temporal medical image clas-
sification. The used datasets are as follows:

– MIMIC-CXR: We utilize the MIMIC-CXR dataset [19], which originally
comprises 377, 110 chest X-ray images and 227, 835 reports, to evaluate our
model. Aligning with previous work [9, 10, 27], we adopt the official split of
the MIMIC-CXR dataset in our experiment. However, the original dataset
includes multiple lateral images, which could introduce inconsistency in lon-
gitudinal analyses. Additionally, we observed duplicate images within the
same study, bringing noise to patient-level progression analysis. Therefore,
we meticulously curated the dataset by removing lateral images and dupli-
cates within studies for each train/validation/test set, resulting in a prepro-
cessed dataset consisting of 145, 471 pairs for training, 1, 151 for validation,
and 2, 210 for testing. We then follow [27] to preprocess images and re-
ports. Specifically, we resize all images to 384×384 while preserving aspect
ratios. Report preprocessing involved truncating to 60 words, converting to
lowercase, removing special characters, and replacing infrequent terms with
placeholders. Crucially, we organized the image-report pairs chronologically
based on the “StudyDate" metadata, preserving temporal integrity for ana-
lyzing each patient’s radiological history. Further details on dataset curation
and preprocessing are available in the Supplementary Material. Note that
we re-run the publicly released code of compared methods on our curated
MIMIC-CXR dataset to ensure a fair comparison.

– Longitudinal MIMIC-CXR: We further devise the Longitudinal MIMIC-
CXR dataset, derived from the preprocessed MIMIC-CXR-JPG dataset, to
assess our model’s capability in generating temporally coherent reports, fol-
lowing [59]. This subset includes only patients with at least two consecutive
visits. It is worth noting that the training, validation, and test splits of
the Longitudinal-MIMIC dataset correspond to the official divisions of the
MIMIC-CXR dataset.

– MS-CXR-T: We also assess our model’s capacity for capturing temporal
information using the MS-CXR-T dataset [4]. This dataset consists of 1326
multi-image frontal chest X-rays, each annotated with one of five findings.
For each finding, there are three possible states reflecting disease progression:
“Improving," “Stable," and “Worsening".

Radiology Report Generation. We evaluate the performance of our method
in radiology report generation on both the MIMIC-CXR dataset and the Lon-
gitudinal MIMIC-CXR dataset. We compare HERGen with 7 state-of-the-art
(SOTA) radiology report generation models, including M2Transformer [11],
R2Gen [10], R2GenCMN [9], M2TR.PROGRESSIVE [28], XProNet [48], CvT-
212DistilGPT2 [27] and DCL [21]. To ensure a fair comparison, we rerun the
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publicly released code of these methods on our curated MIMIC-CXR dataset.
Note that 5 SOTA models (PPKER [23], ContrastiveAttention [25], AlignTrans-
former [55], KIUT [16], and METransformer [50]) lack publicly available source
code, thus results are cited from their original papers for reference. However,
we note that these can’t directly compared to our results due to our additional
dataset preprocessing. Additionally, the results in the RGRG [42] paper, employ-
ing the Chest ImaGenome [53] split instead of the official MIMIC-CXR split, are
also for reference only but not directly comparable. On the Longitudinal MIMIC-
CXR dataset, we compare our model with both single-image based baselines, i.e.,
R2Gen [10], R2CMN [9], CvT-212DistilGPT2 [27], etc. and longitudinal image-
based baseline, i.e., Prefilling [59].

Temporal Image Classification. The temporal image classification task is
evaluated on the MS-CXR-T dataset [4]. This evaluation serves as an additional
task to assess how well our model can understand and process disease progression
in medical images. We compare our approach with both temporal image-based
vision language pretraining methods (e.g ., BioViL-T) and single image pretrain-
ing methods (e.g ., BioViL). More information about this experiment is available
in the Supplementary Material.

Evaluation Metrics. In line with previous studies [10,27,31,42], we employed
a combination of Natural Language Generation (NLG) and Clinical Efficiency
(CE) metrics to evaluate our report generation performance. For NLG, we used
established metrics including BLEU-n [30], which measures n-gram overlap, ME-
TEOR [3], that accounts for recall through an Fβ score, ROUGE-L [22], based on
the longest common subsequence. Recognizing that NLG metrics may not fully
reflect clinical accuracy, we further integrated CE metrics following previous
work [9, 10, 16, 50]. Specifically, we apply CheXbert [40] to label the generated
reports into 14 categories (related to thoracic diseases and support devices),
and then compute precision, recall, and F1 scores against ground truths. The
macro-averaged results over 14 classes are reported, given the susceptibility of
micro-averaged metrics to minor class imbalances [41]. As for the temporal image
classification, we predict one of “improving", “stable", and “worsening" for each
one of the 5 findings: Consolidation, Pleural Effusion, Pneumonia, Pneumoth-
orax and Edema. Following BioViL-T [5], we use macro-accuracy across the 5
classes to evaluate the performance.

4.2 Implementation Details

We set the minibatch size to 16 for single image-text pair training and to 4 for
temporal training. Our model training was limited to a maximum of 5 studies
per patient to accommodate resource limitations. We employed the AdamW [24]
optimizer for model optimization. The learning rate was adjusted according to
the training stage, with detailed strategies provided in the Supplementary Ma-
terials. The training was early stopped if the validation BLEU-4 score did not
improve over 10 consecutive epochs. All experiments were conducted using two
Nvidia GeForce RTX 3090 GPUs.
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Table 1: Natural Language Generation (NLG) and Clinical Efficacy (CE) metrics on
MIMIC-CXR. The Best and second-best results of each metric are shown in bold and
underline, respectively. † indicates the results are cited from their original papers. Since
our study involves necessary data cleaning for longitudinal analysis, these results are
not strictly comparable to ours. Results without † were obtained by re-running publicly
available code on the same preprocessed dataset used in our study.

NLG CE

Method Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L Precision Recall F1

M2Transformer [11] 2019 0.352 0.211 0.138 0.096 0.128 0.263 0.239 0.173 0.173
R2Gen [10] 2020 0.339 0.211 0.143 0.103 0.138 0.279 0.297 0.189 0.193

R2GenCMN [9] 2021 0.345 0.213 0.143 0.101 0.140 0.274 0.354 0.271 0.275
M2TR.PROGRESSIVE [28] 2021 0.349 0.204 0.132 0.091 0.124 0.255 0.220 0.209 0.236

XProNet [48] 2022 0.303 0.188 0.127 0.091 0.128 0.268 0.419 0.230 0.242
CvT-212DistilGPT2 [27] 2022 0.372 0.231 0.155 0.111 0.149 0.280 0.417 0.295 0.306

DCL [21] 2023 0.263 0.153 0.099 0.071 0.117 0.211 0.303 0.232 0.229

HERGen(Ours) 2024 0.395 0.248 0.169 0.122 0.156 0.285 0.415 0.301 0.317

Results below are not strictly comparable due to our dataset preprocessing. For reference only.

PPKED† [23] 2021 0.360 0.224 0.149 0.106 0.149 0.284 − − −
ContrastiveAttention† [25] 2021 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303

AlignTransformer† [55] 2021 0.378 0.235 0.156 0.112 0.158 0.283 − − −
RGRG† [42] 2023 0.373 0.249 0.175 0.126 0.168 0.264 − − −
KIUT† [16] 2023 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321

METransformer† [50] 2023 0.386 0.250 0.169 0.124 0.152 0.291 0.364 0.309 0.311

4.3 Results of Radiology Report Generation

Results on MIMIC-CXR. Our model exhibits excellent radiology report gen-
eration capabilities, outperforming state-of-the-art models in both Natural Lan-
guage Generation (NLG) and Clinical Efficiency (CE) metrics, as shown in Ta-
ble 1. For NLG metrics, it notably surpasses all baseline models, notably im-
proving over the second-best model, CvT-212DistilGPT2, by significant mar-
gins. Specifically, compared with CvT-212DistilGPT2, our model achieves a
∆+5.9% overall improvement on the averaged NLG metrics compared with CvT-
212DistilGPT2. In CE metrics, our model enhances recall and F1 by ∆+ 2.0%
and ∆+ 3.6%, respectively, compared to the second-best results. Our precision
score of 0.415 closely approaches the best score of 0.419. Additionally, we incor-
porate micro-based metrics for five common observations, following the method-
ologies of other studies [26, 42], to provide further evaluation of our method.
These results are available in the Supplementary Material. Furthermore, our
statistical analysis verifies that our model significantly outperforms the second-
best approach, as detailed in Table 4.

Results on Longitudinal MIMIC-CXR. Table 2 presents a comparison of
our model against various baseline methods in terms of Natural Language Gener-
ation (NLG) and Clinical Efficiency (CE) metrics. Our model outperforms both
single-image and longitudinal-image-based methods in all evaluated NLG and
CE metrics. Notably, our model achieves an increase of ∆+6.5% on the averaged
NLG metrics compared with the second-best approach CvT-212DistilGPT2. In
terms of CE metrics, our model also outperforms CvT-212DistilGPT2 in all
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Table 2: Results of NLG metrics (BLEU (BL), METEOR (M), ROUGE-L (RL))
and CE metrics (Precision, Recall and F1) on the Longitudinal MIMIC-CXR dataset.
Results marked with a dagger (†) are cited from published literature Prefilling [59].
Since our curation of the Longitudinal-MIMIC dataset aligns with the approach in
Prefilling [59], these results are directly comparable to ours.

NLG CE

Method BL-1 BL-2 BL-3 BL-4 M RL Precision Recall F1

Baselines based on single images
AoANet† [14] 0.272 0.168 0.112 0.080 0.115 0.249 - - -
CNN+ Trans† 0.299 0.186 0.124 0.088 0.120 0.263 - - -
Transformer† 0.294 0.178 0.119 0.085 0.123 0.256 - - -
R2Gen† [10] 0.302 0.183 0.122 0.087 0.124 0.259 - - -
R2CMN† [9] 0.305 0.184 0.122 0.085 0.126 0.265 - - -

CvT-212DistilGPT2 [27] 0.365 0.226 0.151 0.107 0.143 0.275 0.367 0.258 0.261

Baselines based on longitudinal images
Prefilling† [59] 0.343 0.210 0.140 0.099 0.137 0.271 - - -

HERGen(Ours) 0.389 0.242 0.163 0.117 0.155 0.282 0.421 0.289 0.295

cases, achieving the improvements of ∆ + 14.7% in precision, ∆ + 12.0% in re-
call, and ∆+13.0% in F1 score, respectively. Notably, our model also significantly
surpasses longitudinal-image-based baseline [59], which also utilizes prior images
and reports for current report generation, underscoring the effectiveness of our
proposed temporal data integration strategy.

4.4 Results of Temporal Image Classification

The temporal image classification performance on MS-CXR-T is shown in Ta-
ble. 3. We divided the dataset into training, validation, and test sets with a 70%
/ 10% / 20% ratio. In the finetuning phrase, we employ our pretrained image en-
coder and group causal transformer (these two modules remain frozen) to extract
representations from pairs of images, and then only train a linear layer to make
predictions. It is observed that HERGen achieves the best performance across
4 diseases and achieves the second-best performance on edema. Specifically, our
model improve the macro-accuracy than the second best results by ∆+ 11.1%,
∆+4.9%, ∆+14.7% and ∆+3.7% on consolidation, pleural effusion, pneumonia,
pneumothorax, respectively. These advancements further underscore the effec-
tiveness of our proposed group causal transformer in capturing the progression
of diseases and extracting semantics from longitudinal studies.

4.5 Ablated Analysis of Our Framework

Effect of Auxiliary Contrastive Alignment. We delve into the impacts of
incorporating our auxiliary contrastive alignment module, as delineated in Ta-
ble 5. It is observed that incorporating the contrastive learning objective yields
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Table 3: Temporal medical image classification performance on MS-CXR-T. Macro-
accuracy ([%]) are used as the metric. The Best and second-best results are shown in
bold and underline, respectively. Note that Pl.effusion denotes pleural effusion.

Method Pre-train Consolidation Pl. effusion Pneumonia Pneumothorax Edema

Random - 32.3 31.6 30.3 39.0 34.9
ResNet ImageNet 37.5 39.0 48.4 45.3 42.5

BioViL [7] Static 42.9 41.4 47.9 42.8 40.7
BioViL-T [5] Temporal 45.0 46.3 52.0 50.1 52.0

HERGen(Ours) Temporal 56.1 51.2 66.7 54.8 48.1

Table 4: Comparison of CvT-212DistilGPT2 and HERGen with 95% confidence in-
tervals, which are computed using non-parametric bootstrap.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

CvT-212DistilGPT2 0.372 0.231 0.155 0.111 0.280 0.149
(0.367, 0.377) (0.227, 0.235) (0.151, 0.158) (0.107, 0.114) (0.276, 0.283) (0.147, 0.151)

HERGen(Ours) 0.396 0.248 0.168 0.122 0.285 0.156
(0.392, 0.400) (0.244, 0.252) (0.164, 0.172) (0.118, 0.125) (0.281, 0.288) (0.154, 0.157)

Gains +0.023 +0.017 +0.014 +0.011 +0.005 +0.006
(+0.017, +0.030) (+0.011, +0.023) (+0.008, +0.019) (+0.005, +0.016) (0.0, +0.01) (+0.003, +0.009)

improvements in all NLG metrics compared to the baseline for both datasets,
suggesting enhanced consistency in report generation. Notably, we observed a
augmentation of +3.3% in average NLG metrics for the MIMIC-CXR dataset
and a +2.3% improvement for the Longitudinal MIMIC-CXR dataset, under-
scoring the value of our contrastive alignment module in report generation.

Effect of Temporal Aggregation Module. We evaluate the impact of in-
tegrating our temporal aggregation module in Table 5. It is observed that this
module significantly enhances the NLG metrics across the MIMIC-CXR and
Longitudinal MIMIC-CXR datasets. Specifically, on the Longitudinal MIMIC-
CXR dataset, it achieves +4.9% improvement in the averaged NLG metrics,
compared to the baseline upon integrating this module. When combined with
a model trained using contrastive learning, the improvement on the averaged
NLG metrics compared with baseline further increases to +6.5%, which marks a
significant enhancement than +2.3% (Row 2). This pattern is consistent across
datasets, underscoring the temporal aggregation module’s effectiveness in lever-
aging patient histories for generating more accurate reports.

Effect of Curriculum Learning Strategy. We evaluate the impact of our cur-
riculum learning strategy on model performance in Table 5. Our analysis reveals
that, across both the MIMIC-CXR and Longitudinal MIMIC-CXR datasets, the
models incorporating contrastive learning alignment consistently outperform the
baseline. Furthermore, our final model, which integrates both contrastive learn-
ing and temporal aggregation module, shows the best performance across the
majority of metrics, highlighting the combined benefits of these approaches. For
a detailed comparison between joint and curriculum-based training, please refer
to the Supplementary Material.
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Table 5: Ablation study of different components (“CL" represents the auxiliary con-
trastive alignment module, and “Temporal" denotes the group causal transformer for
capturing longitudinal information). On each dataset, the row 1, 2 and 4 corresponds
to the Stage 1, Stage 2, and Stage 3 of our curriculum learning strategy, respectively.
Row 3 showcases a variant trained using our temporal approach without the contrastive
learning component for comparison. The relative improvements in the average of all
NLG metrics compared with baseline is presented in the “AVG.∆" column.

Dataset CL Temporal BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L AVG.∆

MIMIC-CXR

0.372 0.231 0.155 0.111 0.149 0.280 −
✓ 0.390 0.239 0.161 0.117 0.153 0.280 +3.3%

✓ 0.388 0.240 0.162 0.116 0.153 0.283 +3.4%
✓ ✓ 0.395 0.248 0.169 0.122 0.156 0.285 +5.9%

Lon-MIMIC

0.365 0.225 0.151 0.107 0.143 0.275 −
✓ 0.375 0.232 0.155 0.110 0.146 0.277 +2.3%

✓ 0.380 0.237 0.160 0.115 0.153 0.283 +4.9%
✓ ✓ 0.389 0.242 0.163 0.117 0.155 0.282 +6.5%

Cardiomegaly
Lung Opacity
Pneumonia
Pleural Effusion
Atelectasis

(a) CvT-212DistilGPT2

Cardiomegaly
Lung Opacity
Pneumonia
Pleural Effusion
Atelectasis

(b) Our approach

Fig. 5: Embedding visualization of MIMIC-CXR images in CvT-212DistilGPT2 and
our model with t-SNE.

4.6 Qualitative Results

Case Study of Generated Reports. Fig. 6 presents a case study comparing
reports generated by our model with those from CvT-212DistilGPT2 for a given
patient. The comparison shows that reports from our model align more clinical
findings with the ground truth. Moreover, our model correctly generates more
comparative statements, such as “appear stable" or “appear unchanged", suggest-
ing its superiority to capture temporal information. These findings underscore
our model’s proficiency in report generation by (1) identifying disease-specific
features through consistent anatomical structures in patient-level CXRs and (2)
generating time-comparative sentences.
Visualization of Learned Embeddings. Fig. 5 shows T-SNE visualization
of image embeddings from a dataset constructed following 5× 200 MIMIC-CXR
dataset proposed in MedCLIP [51]. We calculated the 50-th percentile of the
cosine similarity matrix within each class, revealing that our model achieves a
higher average similarity (0.0919) compared to CvT-212DistilGPT2 (0.0245),
indicating better disease-specific feature extraction.
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as compared to the previous radiograph, 
there is complete resolution of the pre-
existing pleural effusions. unchanged 
moderate cardiomegaly without evidence 
of pulmonary edema. small basal 
parenchymal scars but no evidence of 
recent pneumonia. moderate tortuosity of 
the thoracic aorta. calcified bronchial walls.

pulmonary edema is mild and new since. 
increased opacity at left lung base is either 
atelectasis and/or combination of 
atelectasis and edema. left pleural effusion 
is presumed and small and is also new 
since. heart size is normal. 
cardiomediastinal silhouette is 
unremarkable. mild-to-moderate 
atherosclerotic calcification is present in 
the aortic arch.

portable upright view of the chest 
demonstrates low lung volumes. there is no 
pleural effusion or pneumothorax. heart size 
is top normal. hilar and mediastinal 
silhouettes are unchanged. there is perihilar 
vascular congestion. Interstitial markings 
are prominent, suggest possible mild 
interstitial pulmonary edema. right-sided 
Port-A-Cath is stable position projecting 
over cavoatrial junction.

T

T+420

T+10227

Study Date
(Days)

in comparison with the study of there is little 
overall change. again there is 
hyperexpansion of the lungs with flattening 
of the hemidiaphragms consistent with 
chronic pulmonary disease. cardiac 
silhouette is within normal limits and there is 
no evidence of acute focal pneumonia or 
vascular congestion.

as compared to the previous radiograph 
there is unchanged evidence of mild-to-
moderate pulmonary edema. the edema 
however has not increased in severity since 
the previous examination. the size of the 
cardiac silhouette has slightly increased. 
there is no evidence of pleural effusions. 
normal hilar and mediastinal contours.

as compared to the previous radiograph 
there is no relevant change. mild fluid 
overload and cardiomegaly. tortuosity of the 
thoracic aorta. no newly appeared focal 
parenchymal opacities. no larger pleural 
effusions. no pneumothorax.

as compared to the previous radiograph 
there is no relevant change. low lung 
volumes. moderate cardiomegaly with signs 
of mild-to-moderate pulmonary edema. no 
pleural effusions. no evidence of 
pneumonia. no pneumothorax. the 
observation was made at <unk> am. on and 
at the same time the referring physician. 
was paged for notification.

a port-a-cath terminates in the lower 
superior vena cava. the cardiac mediastinal 
and hilar contours appear stable. there is 
no pleural effusion or pneumothorax. the 
lungs appear clear.

a port-a-cath terminates in the lower 
superior vena cava. the cardiac mediastinal 
and hilar contours appear unchanged. the 
lungs appear clear. there are no pleural 
effusions or pneumothorax. bony structures 
are unremarkable. there has been no 
significant change.,

Ground Truth Report Baseline Generated HERGen (Ours)Chest X-rays

Fig. 6: This case study compares radiology report predictions for a patient by our
model and CvT-212DistilGPT2. Text highlighted in gray indicates words or their syn-
onyms found in both the predicted and ground truth reports. Purple highlights denote
similar matches in the baseline-generated (CvT-212DistilGPT2) reports and ground
truth, while red highlights show similar matches in our model’s reports and ground
truth. From top to bottom, the chest X-rays are chronologically ordered. Here T de-
notes the study date of the first study.

5 Conclusion

In this paper, we present a novel framework to enhance radiology report genera-
tion by utilizing the varying-size patient histories. By integrating a novel group
casual transformer, our model effectively aggregates temporal information of lon-
gitudinal data. Besides, our framework optimize an auxiliary contrastive align-
ment module to further align image and textual data. Moreover, a curriculum
learning strategy is employed to sequentially optimize these modules, thereby
progressively improving model performance. Our extensive experiments demon-
strate the model’s capability to generate clinically precise reports and extract
meaningful insights from historical data.

Limitations and Future Work. One potential limitation of our method is
that the model’s alignment operates within the embedding space without ac-
counting for anatomical consistencies in longitudinal studies. Additionally, we
plan to expand HERGen into a more comprehensive representation learning
model, thereby broadening its utility across varied downstream tasks.
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