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ABSTRACT

Adversarial feature learning has been successfully applied to censor the repre-
sentations of neural networks; for example, AFL could help to learn anonymized
representations to avoid privacy issues by constraining the representations with
adversarial gradients that confuse the external discriminators that try to discern
and extract sensitive information from the activations. In this paper, we propose
the ensemble approach for the design of the discriminator based on the intuition
that the discriminator need to be robust to the success of the AFL. The empirical
validations on three user-anonymization tasks show that our proposed method
achieves state-of-the-art performances in all three datasets without significantly
harming the utility of data. We also provide initial theoretical results about the
generalization error of the adversarial gradients, which suggest that the accuracy of
the discriminator is not a deterministic factor for the design of the discriminator.

1 INTRODUCTION

When we apply deep neural networks or more general machine learning techniques to real-world
data, one of the key challenges is how to systematically incorporate the desired constraints (such as
privacy (Edwards & Storkey, 2016; Iwasawa et al., 2017)) or fairness constrains(Zemel et al., 2013;
Louizos et al., 2016)) into the learned representations in a controllable manner. One of the recently
proposed approaches for censoring representation is adversarial feature learning (AFL) (Edwards &
Storkey, 2016; Iwasawa et al., 2017; Xie et al., 2017), which considers an adversarial classifier that
attempts to discern sensitive variables from the data representations in a DNN and simultaneously
trains the DNN to deceive the classifier. Formally, AFL constrains the output of an encoder z = E(x)
to reduce the approximated likelihood about a sensitive variable s while maintaining the classification
performance about the label y:

min
E,M

max
D

E[− log qM (y|z = E(x)) + λ log qD(s|z = E(x))],

where λ is a weighting parameter, and qM and qD are conditional distributions parameterized by
the label classifier M and the adversarial classifier D respectively. By alternatively or jointly (using
gradient reversal layer Ganin & Lempitsky (2015)) training the adversary and DNN in such a manner,
AFL ensures that there is little information about the sensitive variables in the representations.

In this paper, we seek to answer the following questions: what property should the adversary possess
to improve the performance of AFL? Although some previous studies report superior performance of
the AFL, the success of the AFL depends on the choice of the adversarial classifier. For example, if
we use logistic regression as the adversarial classifier, AFL cannot remove any non-linear dependency
by their notion. It is also possible that deceiving some classifiers might be relatively easy, resulting
in poor performance improvements. This paper makes the following contributions to the design
of discriminator. (1) This paper proposes a novel design for the adversary, multiple-adversaries
over random subspace (MARS), based on the intuition that the discriminator need to be hard to
deceive. (2) This paper provides theoretical analysis about the generalization error on the effect of the
adversarial gradients, suggesting that the accuracy of the discriminator is not a deterministic factor
for the design of the discriminator. (3) Empirical validations show that proposed method could learn
better-anonymized representation without performance drop on the label-classification.
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2 ROBUSTNESS OF DISCRIMINATOR IN AFL
2.1 MULTIPLE ADVERSARIES OVER RANDOM SUBSPACES

The proposed method, multiple-adversaries over random subspaces (MARS), considers multiple
adversaries where each adversary is in charge of different subsets of features. The MARS is motivated
by the assumption that the adversary should not be vulnerable and an ensemble of diverse classifiers
make the adversary less vulnerable, resulting in the improved performance of AFL.

Suppose that n is the number of dimensions of representation R ∈ Rn, and K is the number of
adversaries. In MARS, each adversary Dk is trained to predict S over a randomly selected subset
of features Rk, whose dimension is mk and mk < n. Each adversary is trained to maximize the
expected log-likelihood function:

max
θDk

E[log qDk
(s|hk = Subk(E(x)))], (1)

where Subk is a function that return the subset of R, which is fixed before the training. Pre-
cisely, each Subk determine whether to remove the i-th dimension of R with the probability of α.
The θDk

is the parameter of Dk. The encoder is then trained with: minθE ,θM E[− log qM (y|h) +
λ log 1

K

∑K
k qDk

(s|hk)], where θE and θM are the parameter of E and M respectively.

2.2 GENERALIZATION ERROR OF THE EFFECT OF ADVERSARIAL GRADIENTS

Suppose∇advD is the adversarial gradients of the current discriminator D. After one iteration of the
above optimization process, we can measure the extent to which the adversarial gradients decrease
the predictability of s: VD(∇advD) = log qD(s|E(x);D)− log qD(s|E′(x);D), where E and E′ is
the pre/post updated encoder. The adversarial gradients ∇advD apparently increase the VD; however,
what we want to do is decrease the possibility for correctly classifying the data of encoder with
any possible classifier De ∈ H where H is hypothesis set of the discriminator. Formally, the true
objective is

min sup
De∈H

[log qDe(s|E(x))]. (2)

Alternatively, the problem could be rewritten by the function of the adversarial gradients. Suppose
D∗ is the best possible classifier given the encoder E, and D′∗ is the best possible classifier given the
encoder E′. Then adversarial gradients need to maximize the difference between the log qD∗(s|E(x))
and log qD′∗ :

V ∗(∇advD) = log qD∗(s|E(x))− log qD′∗(s|E′(x)). (3)
Then, the following theorem holds.
Theorem 1. The mean square error between V ∗ and VD is zero if the expected bias and standard
deviation of qD are equal between the samples of E′(x) and E(x).

The proof is followed in the appendix. It is worth mentioning that the theorem implies that neither
the bias nor the variance of the discriminator over z ∼ E(X) is not the deterministic factor of the
generalization error. Instead, the generalization error is determined by the difference of the statistical
property of the discriminator at two different data points.

3 EXPERIMENT

Datasets: Following the previous work Iwasawa et al. (2017), the empirical validation uses three
user-anonymization tasks on the data of wearables, OppG, OppL (Sagha et al., 2011) and USC (Zhang
& Sawchuk, 2012). In all tasks, the neural networks require to learn representations that help activity
classification and at the same time, prevent to access the information about users (userID).
Network Architecture and Training Procedure: We parameterized the encoderE by convolutional
neural networks (CNN) with three convolution-ReLU-pooling repeats followed by one fully connected
layer and M by logistic regression, following a previous study Yang et al. (2015); Iwasawa et al.
(2017). For all experiments, we apply the post-processing procedures for censoring representation.
Specifically, we first trained the encoder E and classifier M with Adam algorithm (Kingma & Ba,
2015) whose learning rate is 0.0001 (150 epochs). Subsequentially, we proceed to the alternative
training of D and E+M . For the censoring phase, we used RMSprop and we pre-trained the
discriminator D for five epochs.

Baselines: (1) None: w/o adversary (correspond to standard CNN), (2) Adv: w/ a single adversary,
(3) MA: w/ multiple adversaries where each adversary tries to predict from the entire space, and (4)
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Table 1: Performance comparison against various feva. Parentheses of value means that the method
violates the constrains about accuracy on Y . The best performance is shown in bold and underlined.

OppG OppL USC
D LR MLP1 MLP2 DNN LR MLP1 MLP2 DNN LR MLP1 MLP2 DNN Avg

None 0.889 0.973 0.991 0.989 0.901 0.969 0.987 0.988 0.679 0.789 0.859 0.854 0.906
Adv-MLP 0.529 0.801 0.927 0.929 0.476 0.617 0.352 0.353 0.647 0.784 0.847 0.829 0.674

Adv (0.546) (0.781) (0.902) (0.918) 0.353 0.352 0.294 0.352 0.647 0.778 0.846 0.846 (0.634)∗
MA-MLP 0.567 0.805 0.945 0.938 0.353 0.353 0.792 0.353 0.624 0.775 0.846 0.843 0.683

MA 0.547 0.809 0.941 0.936 0.294 0.294 0.583 0.353 0.623 0.770 0.847 0.839 0.653
MARS-MLP 0.486 0.786 0.945 0.910 0.352 0.353 0.353 0.294 0.620 0.771 0.841 0.836 0.629

MARS 0.476 0.720 0.915 0.904 0.294 0.294 0.294 0.353 0.622 0.766 0.844 0.824 0.609
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Figure 1: (a, b)Performance comparison on balance between user-classification accuracy and
label-classification accuracy between Adv and MARS with different terminated epoch and λ.
(c)Generalization error of the effect of the adversarial gradients.

MARS: w/ multiple adversaries where each adversary tries to predict from a different subspace of the
whole space. Each adversary is parametrized by deep neural networks (DNN) with 400-200 hidden
units. If we need to express the type of adversary, we denote it by a suffix 1. Without mentioning
otherwise, we optimized the λ from {0.05, 0.10, 0.20, 0.50, 1.0} for each baseline to make the fair
comparison. Individually, we select the λ that did not significantly harm Y -accuracy (specifically, 2%
or less degradation against None) and maximize the level of anonymization.

Results: Table 1 list the user classification accuracy for the three tasks with different adversarial
classifiers D and evaluator feva. The MLP denote the multi-layer perceptron with 400 hidden units.
For evaluator feva, we tested LR, multi-layer perceptron with 50 hidden units (MLP1), multi-layer
perceptron with 800 hidden units (MLP2), and deep neural networks with 400-200 hidden units. If
some method violates the constraints about accuracy on Y with all λ, we report the performance with
λ with gives minimum performance degradation on Y , and indicate it by parentheses of value. We
can make the following observations. The result shows that MARS or MARS-MLP gives best or
second best performance in almost all conditions (pairs of feva and datasets). It is worth mentioning
that Adv, OppG never meat the constraints about Y-accuracy with any λ.

Figure 1-a, b compares the performance of Adv and MARS with varied λ and the number of
training epochs (each data point represents different λ or the number of iteration). The horizontal
axis corresponds to the label-accuracy while vertical axis corresponds to the user accuracy that is
evaluated by DNN with five epochs for training. These results show that incorporating MARS is a
better strategy for improving the performance of AFL compared with merely tuning λ or the number
of training epochs. Figure 1-c shows the generalization error of the effect of adversarial gradients.
The first row of the figure shows the classification accuracy of the discriminator pre-update of encoder
E. The last two row represents the effect of the update E to the accuracy of the discriminator D and
the external evaluator De. The results show that there is enormous overfitting regarding the effect
of the adversarial gradients to the D and De, although this is somewhat alleviated by the proposed
method. Most notably, the update to deceive D gives negative effect at the beginning of the training.
The correlation between second and third rows is less than 0.06 for Adv with any λ, and 0.24 for
MARS. The result also implies that the accuracy of the discriminator is not the deterministic factor of
the success of the AFL since all method gives similar accuracy before the update of the encoder.

4 CONCLUSION

This paper proposes an ensemble approach for improving the performance of AFL in the context of
the censoring representations. The experimental results show the proposed method gives superior
performance. The empirical validations show that the AFL suffered from huge overfitting regarding
the effect of the adversarial gradients, suggesting the future assessment is required.

1For example, Adv-LR means logistic regression parametrizes an adversary.
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A PROOF OF THE THEOREM

Proof. Suppose z′ is the sample come fromE′(x), an z is the sample come fromE(x). With standard
bias-variance decomposition theorem, expected mean square error of |VD − V ∗| is equivalent to

E[{|VD − V ∗|}2] = {ED[VD]− V ∗}2 + ED[{VD − E[VD]}2]. (4)

From the definition of the VD and V ∗, the first term of eq.4 is equal to

{ED[log qD(s|z)− log qD(s|z′)]− log qD∗(s|z) + log qD′∗(s|z′)}2

= {bias(z)− bias(z′)}2,

where bias(z) = ED[log qD(s|z)] − log qD∗(s|z). The equation is equals to zero if and only if
bias(z) = bias(z′).

Similar development of the second term of eq.4 proof that the second term equals to zero if and only
if the expected standard deviation is equal between z and z′.
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