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ABSTRACT

We examine how learning from unaligned data can improve both the data effi-
ciency of supervised tasks as well as enable alignments without any supervision.
For example, consider unsupervised machine translation: the input is two corpora
of English and French, and the task is to translate from one language to the other
but without any pairs of English and French sentences. To address this, we de-
velop feature matching auto-encoders (FMAEs). FMAEs ensure that the marginal
distribution of feature layers are preserved across forward and inverse mappings
between domains. We show that FMAEs achieve state of the art for data efficiency
and alignment across three tasks: text decipherment, sentiment transfer, and neu-
ral machine translation for English-to-German and English-to-French. Most com-
pellingly, FMAEs achieve state of the art for semi-supervised neural machine trans-
lation with significant BLEU score differences of up to 5.7 and 6.3 over traditional
supervised models. Furthermore, on English-to-German, FMAEs outperform last
year’s best models such as ByteNet (Kalchbrenner et al., 2016) while using only
half as many supervised examples.

1 INTRODUCTION

Massive collections of supervised data have been essential to deep learning advances such as image
classification (Krizhevsky et al., 2012), neural machine translation (Sutskever et al., 2014), and more
recently, cross-domain and intra-domain alignments such as text-to-image synthesis (Reed et al.,
2016) and image-to-image translation (Isola et al., 2017). However, perception-based domains most
often arise without explicitly aligned pairs. Supervised examples are human-labelled, which presents
a fundamental bottleneck in learning from natural images or language.

In this paper, we examine how learning from unaligned data can improve both the data efficiency
of supervised tasks as well as enable alignments without any supervision. For example, consider
unsupervised machine translation: the input is simply two corpora of English and French, and the
task is to translate from one language to the other but without any pairs of English and French
sentences. More generally in text, tasks often involve taking a source sentence as input and returning
a target sentence with a shared representation as the input but with target-specific properties; other
examples include text decipherment and “style transfer” of sentiment, authors, and/or genres.

Data efficiency and alignment have seen most success for dense, continuous data such as images.
Namely, generative adversarial networks (GANs) and deep latent variable models have led to promis-
ing progress in semi-supervised image classification (Kingma et al., 2014; Salimans et al., 2016) and
unaligned image-to-image translation (Zhu et al., 2017). However, there has been limited success
for sparse, discrete data such as text. We outline two key challenges.

One challenge is in designing and training generative models of text. With GANs, an immediate
problem is that the generator returns discrete output which prevents backpropagation for training.
While recent work has considered workarounds such as policy gradients (Yu et al., 2017) and con-
tinuous relaxations (Zhang et al., 2016), no approach has shown convincing empirical success over
well-tuned LSTMs (Melis et al., 2017). On the other hand, deep latent variable models face chal-
lenges in utilizing the latent code with a flexible decoder such as an LSTM. While there have also
been attempts at this problem (Bowman et al., 2016; Chen et al., 2017), autoregressive models with-
out latent variables remain state of the art for language modeling (Shazeer et al., 2017).
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Figure 1: Latent variable model where z represents invariant structure across domains. Dotted lines
represent inference. With unaligned data, we only observe individual x’s and y’s and not pairs.

Another challenge arises in the task of alignment with few or even zero supervised examples:
namely, it is open how to place inductive biases in our model and learning dynamics. For inductive
biases in the learning dynamics, current approaches apply shared layers across forward and inverse
mappings (Sutskever et al., 2015; Liu & Tuzel, 2016) and cycle consistency (Kim et al., 2017; Zhu
et al., 2017; Yi et al., 2017). The latter is most successful but is not applicable to discrete data.
For inductive biases in the model, convolutional filters prove crucial: unaligned image translation
typically learns local morphologies such as the skin color of zebras and horses (Zhu et al., 2017).
Unlike images, spatial invariance does not hold for language.

In this work, we develop FMAEs. FMAEs are motivated from a latent variable model which asserts
that for each example, there exists a latent, structural code representing content that is shared across
domains. Instead of a latent variable, FMAEs share the marginal distribution of feature layers across
domains. This implicitly places an inductive bias based on constraints in the objective and network
architecture, rather than explicitly with a prior. FMAEs involve training with an adversarial penalty
which enables learning on a dense, lower-dimensional continuous feature space rather than directly
on the sparse, discrete data.

We show empirically that FMAEs enable powerful data efficiency and alignment across three tasks:
text decipherment, sentiment transfer, and neural machine translation. FMAEs are state of the art
on all three. Most compellingly, FMAEs achieve state of the art for semi-supervised neural machine
translation with significant BLEU score differences of up to 5.7 and 6.3 over traditional supervised
models. Furthermore, on English-to-German, FMAEs outperform last year’s best models such as
ByteNet (Kalchbrenner et al., 2016) while using only half as many supervised examples.

2 LATENT VARIABLE MODEL FOR ALIGNMENT

We formally describe the problem and then derive an approach from probabilistic models. There
are two data sets of i.i.d observations {x} ∼ pdata(x) and {y} ∼ pdata(y). Each data point is a
variable-length sequence of discrete values, x = (x1, . . . , xT ), and similarly for y.1 The goal is to
learn a mapping between the domains G : X → Y , or conversely, F : Y → X . Given a test input
in one domain, this lets us predict the output in the other.

With probabilistic generative models, a natural approach is to posit a generative process according
to the factorization p(z)p(x | z)p(y | z) (Figure 1). The latent variable z has a fixed prior, and each
domain’s observations are drawn conditionally independent given z via a neural network. This
model has been studied as a principle for one shot learning and domain adaptation (Sutskever et al.,
2015), and has also been revisited for multimodal learning (Suzuki et al., 2016; Wang et al., 2016;
Higgins et al., 2017; Vedantam et al., 2017).

Under the maximum likelihood principle, we maximize the objective

Epdata(x)[log p(x)] + Epdata(y)[log p(y)]

with respect to model parameters. Maximizing is equivalent to minimizing the negative marginal
density. Standard variational methods posit an upper bound on the loss (Jordan et al., 1999),

Epdata(x)q(z | x)[− log p(x | z)] + Epdata(y)q(z | y)[− log p(y | z)] +
Epdata(x)[KL(q(z |x) ‖ p(z)]) + Epdata(y)[KL(q(z | y) ‖ p(z)]).

(1)

The first two terms in the objective are reconstruction errors which determine the average number of
bits to capture a data point x (y) under noisy encodings. The last two terms are divergences which

1For now, assume there are no supervised examples, which are paired observations {(x, y)} ∼ pdata(x, y).
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Figure 2: Feature matching auto-encoders (FMAEs). Each alignment mapping (top and bottom) is
written as a composition of feature maps with embedding layersEx andEy and a sequence of hidden
layersH`. FMAEs minimize reconstruction error alongside an adversarial penalty which matches the
marginal distributions over feature layers; in experiments, we only matched the embedding layers.

regularize the individual encoders; it shares information across domains via shrinkage toward the
prior. After training, the model performs alignments by composing encoders with decoders: given
an input x, map x→ z via q(z |x) and z → y via p(y | z); the converse holds for an input y.

Empirically (§ 4), we found that a latent variable model trained with Equation 1 fails to learn align-
ments. From a statistical point of view, selecting the right prior is the key success for sharing across
domains, and it is difficult to specify our assumptions about alignment this way. From a computa-
tional point of view, difficulties exist in optimizing the variational objective while utilizing the latent
code. We consider alternatives using this model as motivation.

3 FEATURE MATCHING AUTO-ENCODER

The latent variable model in § 2 defines alignment mappings as a composition of encoder-to-
decoders X → Z → Y and Y → Z → X . Here, we consider alignment mappings under finer
granularity as a sequence of feature maps. Figure 2 displays a composition of two embedding layers
and L hidden layers for each alignment mapping G : X → Y and F : Y → X . For layer indices
` = 0, . . . , L + 1, denote individual feature maps as g` : H`−1 → H` for G and f` : H`−1 → H`

for F ; ` = 0 and L+ 1 include the embeddings as domain and range respectively.

For a layer ` ∈ {0, . . . , L+ 1}, consider the invariance property

p(g`(x)) = p(fL+1−`(y)). (2)

Equation 2 says that the marginal distribution of a feature layer should be the same regardless of
whether the layer is induced by the data distribution on x (left hand side) or if the layer is induced
by the data distribution on y (right hand side).

If the number of hidden layers L = 1, this invariance reduces to matching the distribution of the
middle layer in the mappings X → Z → Y and Y → Z → X . This mimicks the distribution
invariance in § 2 where two KL divergences penalize deviations from a fixed prior distribution;
however, Equation 2 posits a single divergence which penalizes deviation from each other. This pulls
information across domains with an implicit, learnable density on the features. It indirectly posits a
prior over the shared space without the need to specify a fixed, tractable prior density.

Unlike the latent variable model, feature matching also matches across arbitrary layers in a neural
network. This lets us perform matching on feature layers closest to data space (namely, the embed-
ding layers) while still avoiding the difficulties of adversarial training directly on discrete sequences.
Note this also avoids the issue of latent code utilization in the decoder: matching embedding layers
forces the decoder to use the encoder output in order to marginally match the distribution of the
outputted embedding layer.

To enforce Equation 2, we apply an adversarial penalty jointly over the desired feature layers.
Namely, to match the two embedding layers, consider the penalty

Epdata(x)pdata(y)[f(ex, ey)]− Epdata(x)pdata(y)[f(ex, ey)], (3)

where in the first term, ex is set via the input embedding layer X → Ex and ey is set to the output
embedding via X → Ex → · · · → Ey; in the second term, the converse holds where ex is set to the
output embedding via Y → Ey → · · · → Ex and ey is set via the input embedding layer X → Ex.
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With an infinite capacity discriminator, the max over f is equal to a Wasserstein distance between
the marginal embedding distributions (Kantorovich & Rubinstein, 1958).

Using the penalty of Equation 3, FMAEs minimize an objective with reconstruction terms,

Epdata(x)[− log p(x | ey)] + Epdata(y)[− log p(y | ex)]+

λ
(
Epdata(x)pdata(y)[f(ex, ey)]− Epdata(x)pdata(y)[f(ex, ey)]

)
.

(4)

We minimize Equation 4 with respect to encoder-decoder parameters and we maximize it with re-
spect to the discriminator f . Both enable backpropagation.

Inuitively, while the penalty of Equation 3 encourages that the marginal distribution of embedding
layers match across domains, it can be easy to satisfy this by trivially returning a fixed distribution.
The first two reconstruction terms prevent this by forcing the dual mappings to reconstruct each
other up to the last feature layer.

Equation 4 can also be interpreted as a CycleGAN for text (Zhu et al., 2017), which is a method for
unaligned image translation. It defines mappings G : X → Y and F : Y → X enforcing four prop-
erties: “cycle consistency” of F (G(x)) = x and G(F (y)) = y per data point, and matching output
distributions of p(G(x)) = pdata(y) and p(F (y)) = pdata(x). FMAEs relax cycle consistency to
hold up to inverting the embedding output rather than the data output, and it matches the marginal
distributions over features. This enables adversarial training over a dense, lower dimensional conti-
nous space rather than directly on the discrete sequences.

3.1 SEMI-SUPERVISED LEARNING

FMAEs extend to learn from supervised examples in addition to unaligned (unsupervised) ones.
This has the advantage of improving the data effiency of supervised problems by incorporating
the massive amount of unaligned data in the real world. Namely, to learn from paired examples
{(x, y)} ∼ pdata(x, y), we include the typical likelihood terms in the objective to encourageG(x) =
y and F (y) = x per data point,

λsup Epdata(x,y)[− log p(x |y)− log p(y |x)], (5)

where λsup ∈ R+ balances how much we weigh aligned examples over unaligned examples.

An appealing property of FMAEs is that they formally handle the bridge between unsupervised and
supervised learning. Strictly unaligned data results in unsupervised learning; unaligned and aligned
data results in semi-supervised learning; and strictly aligned data results in supervised learning with
dual mappings (Xia et al., 2017). FMAEs also extend to alignment over multiple domains. The
divergence measures encouraging Equation 2 may hold pairwise or may be defined over multiple
distributions (Garcia-Garcia & Williamson, 2012).

3.2 ARCHITECTURE: ATTENTION

For the network architectures, we primarily follow the Transformer of Vaswani et al. (2017), which
has seen strong success for sequence-to-sequence modeling. The Transformer uses only attention
layers for both the encoder and decoder; see Figure 3. The encoder applies an embedding layer to
inputs followed by L layers of self-attention. The decoder applies an embedding layer followed by L
alternations of a self-attention layer and a layer which attends over the encoder hidden states.

We make three adjustments which we found improved our experiments. First, we add noise to
attention layers in order to sparsify the locations to attend to; we provide detail in the next subsection
(§ 3.3). Second, we apply layer norm to the input of each residual block instead of afterwards. Third,
we use learnable positional encodings rather than fixed sinusoidal embeddings as a way to impose
ordering in the sequences (Gehring et al., 2017). Namely, the embedding layers take input elements
x = (x1, . . . , xT ), perform a table look-up to obtain its word embedding free parameters w =
(w1, . . . , wT ), and sums it with positional free parameters (p1, . . . , pT ) to return the embedding,
ex = (w1 + p1, . . . , wT + pT ).

For the discriminator, we also apply L self-attention layers and clip weights following Arjovsky
et al. (2017). As the matching distributions assume independence among features, we parameterize
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Figure 3: The Transformer network. We apply it twice with minor changes, once for each mapping
in Figure 2. Figure from Vaswani et al. (2017).

the discriminator to not include interactions among its inputs. A problem when training Equation 4
is that we are matching the discriminator across two distributions with free parameters. This pro-
duces difficulties because the mappings can constantly scale the output of f so long as the relative
difference remains the same. To address this, we simply L2-normalize the inputs to f .

3.3 ADDING NOISE TO ATTENTION

An attention function can be described as taking a query and memory as input and returning a
weighted sum over the memory states. The query and each memory state are vectors such as a
decoder hidden state and the set of encoder hidden states respectively. This is also known as “soft
attention,” which is equivalent to taking an expectation over a categorical variable z ∈ {1, . . . , T}
which attends to a specific memory state,

Ep(z |M,q)[Mz] =

T∑
t=1

πtMt,

where z’s distribution is a function of the matrix of memory states M and query vector q.

Soft attention produces dense weights where all states have a nonzero probability. Many tasks only
require attending over few inputs such as machine translation, which often only requires finding the
corresponding word to translate and its context. In order to sparsify the attended locations, we add
noise to the softmax inputs: given a T -dimensional vector of logits inputs, return

π = softmax((logits+g)/τ), g = (g1, . . . , gT ), gt ∼ Gumbel(0, 1).

We use τ = 0.1 in experiments. This forces the inputs to robustify against noise by taking on large
positive or negative values (Frey, 1997). It is equivalent to a sample from the Gumbel-Softmax
distribution and admits backpropagation (Jang et al., 2017; Maddison et al., 2017). It can be inter-
preted as a relaxation of “hard attention” (Xu et al., 2015), which requires score function gradients
to handle the discrete variable. Adding noise augments each attention layer as a stochastic layer in
a deep latent variable model; the temperature parameter bridges from hard to soft attention.2

2Empirically we find setting the temperature τ arbitrary close to 0 is undesirable; the model benefits from
attending to few but multiple locations, whereas hard attention assumes one.
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Method Substitution Cipher (BLEU)
20% 40% 60% 80% 100%

No transfer 56.4 21.4 6.3 4.5 0
Unigram matching 74.3 48.1 17.8 10.7 1.2
Latent variable model (§ 2) 79.8 59.6 44.6 34.4 0.9
Latent variable matching 81.0 68.9 50.7 45.6 7.2
Shen et al. (2017) 83.8 79.1 74.7 66.1 57.4
Feature matching auto-encoder 90.3 84.2 78.7 65.4 60.5
Supervision 99.6 99.5 99.7 99.2 97.5

Table 1: BLEU scores for a word deciphering task. A varying percentage of words are substituted
(ciphered) in each sentence. FMAEs outperform all methods across percentages.

4 EXPERIMENTS

We described the challenges of alignment for language and developed feature matching auto-
encoders (FMAEs), an approach which ensures that the marginal distribution of feature layers are
preserved across forward and inverse mappings. In experiments, we show that FMAEs enable pow-
erful data efficiency and alignment across three tasks: text decipherment (§ 4.1), sentiment transfer
(§ 4.2), and neural machine translation (§ 4.3). FMAEs are state of the art on all three. Most com-
pellingly, FMAEs are not only state of the art for neural machine translation with limited supervision
on EN-DE and EN-FR. They also outperform last year’s best fully supervised models on EN-DE
while using only half as many supervised examples.

In all experiments, we used the Adam optimizer with an initial step-size of one of
{0.001, 0.0005, 0.0001}; we set β1 = 0.9, β2 = 0.98, and ε = 10−8. For machine translation,
we followed the learning rate schedule of Vaswani et al. (2017) which increases the learning rate
linearly for a fixed number of warm-up steps during training followed by a decrease proportional to
the inverse square root of the step number. For text decipherment and sentiment transfer, we used
a batch size of 256 unaligned input and output sequences. Sequences were batched together by ap-
proximate sequence length. Convolutional filters and weight matrices were initialized with Glorot
uniform; embeddings initialized uniformly between [−0.1, 0.1]; biases initialized at 0.

4.1 TEXT DECIPHERMENT

For the first experiment, we provide intuitions behind alignment using a text cipher problem. We
took Yelp restaurant reviews in 2017 and filtered out sentences exceeding 15 words. The training
set consists of a corpus X of 200,000 randomly selected sentences and a corpus Y of a separate
set of 200,000 sentences where we applied a word substitution cipher f . The cipher is a dictionary
of key-value pairs which takes words in X and returns a specific word in Y ; the dictionary was
generated at random and the two corpuses share the same vocabulary. We use test and validation
sets of 100,000 supervised examples of paired sentences {(x, f(x)}.
Table 1 reports BLEU scores, a measurement of accuracy for sequence translations (Papineni et al.,
2002), over levels of task difficulty. A fixed percentage of words in each sentence were replaced ac-
cording to the cipher to generate the encrypted corpus Y . All models perform worse as the difficulty
increases (higher percentage of substitution). The latent variable model of § 2 performs reason-
ably on low percentages of substitution but quickly worsens as the performance hinges on the latent
structure. FMAEs outperform all methods, including the cross-aligned auto-encoder of Shen et al.
(2017); this is the only recent work we’re familiar with that has also studied this problem.

4.2 SENTIMENT TRANSFER

We also study sentiment transfer, a task which generally falls under the umbrella of “style transfer”
in which the text’s “content” is shared across domains and the “style” per domain is negative or
positive sentiment. Unlike text decipherment which is a one-to-one mapping—each input has a
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It is n’t scary .
The script is smart and dark - hallelujah for small favors .

That ’s its first sign of trouble .
‘ Blue Crush ’ swims away with the Sleeper Movie of the Summer award .

Bring tissues .
This , sad nonsense .

It is depressing , ruthlessly pained and depraved , the movie equivalent of
staring into an open wound .

Her performance moves between heartbreak and rebellion as she continually
tries to accommodate to fit in and gain the unconditional love she seeks .

A solid , spooky entertainment worthy of the price of a ticket .
Of all the Halloween ’s , this is the most visually unappealing .

Poetry in motion captured on film .
An imponderably stilted and self-consciously arty movie .

Steers refreshingly clear of the usual cliches .
A profoundly stupid affair , populating its hackneyed and meanspirited storyline

with cardboard characters and performers who value cash above credibility .

A visual spectacle full of stunning images and effects .
An annoying orgy of excess and exploitation that has no point and goes nowhere .

Table 2: Sentiment transfer on Stanford Sentiment Treebank. (top) Negative to positive sentiment.
(bot) Positive to negative sent. The top in each pair is test input; bottom is a draw from the model.

true (de)ciphered output—sentiment transfer is a many-to-many mapping in that there exist multiple
plausible outputs for any input. This makes learning from unaligned data more plausible.

We use the Stanford Sentiment Treebank (Socher et al., 2013), which consists of roughly 8,500
sentences, 2,200 test sentences, 1,100 validation sentences, and a total of 21,700 word tokens. Each
sentence has a sentiment label of 0-4. We partitioned the data into a corpus of positive sentiment
(labels 0-1) and a corpus of negative sentiment (labels 3-4); we dropped neutral sentences. We
initialized the embedding layers with GloVe embeddings and randomly elsewhere.

Table 2 displays sentiment transfer on sentences. The top in each pair of sentences is a unseen test
input; the bottom represents a draw from the model. The results show powerful sentiment transfer:
instead of trivial matching such as adjectives with their antonyms, the model indeed captures the
general meaning of the sentence while stylizing it under a new sentiment. For example, it often does
not use the same word during transfer but recognizes similar words in feature space: “scary” and
“dark”, “tissues” and “sad”, “poetry” and “arty”.

The second pair of sentences in Table 2 (top) shows an occasional failure mode where the model
ignores the input and simply draws a random sentence that matches the output distribution. This
happens when reconstruction error isn’t precisely balanced with the adversarial penalty in the objec-
tive (Equation 4). Note an interesting effect is that because the training data is fairly small, the model
overfits in that generations from the model can reproduce sentences it was trained on. For example,
the sentence, “Of all the Halloween ’s , this is the most visually unappealing .” exists in the training
data. This means the alignment model essentially performed a nearest neighbors in feature space to
find the closest sentence in content to the input but with opposite sentiment. (For the purpose of this
experiment, this isn’t a problem because we’re more interested in the alignment transfer.)

4.3 NEURAL MACHINE TRANSLATION

For machine translation, we used the standard data sets of WMT 2014 EN-DE and WMT 2014
EN-FR. The WMT 2014 EN-DE data set consists of roughly 4.5 million sentence pairs. Following
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Method on EN-DE # of Supervised Examples (BLEU)
500K 1M 2M 4.5M

Transformer (≈65M params) 12.3 14.6 20.3
Transformer (≈130M params) 10.3 18.5 21.5
Feature matching auto-encoder 16.0 21.4 24.0
Transformer (“big”) (Vaswani et al., 2017) 28.4
Conv Seq2Seq (Gehring et al., 2017) 25.16
Google NMT (Wu et al., 2016) 24.6
ByteNet (Kalchbrenner et al., 2016) 23.75
RNN Enc-Dec-Att (Luong et al., 2015) 20.9
RNN Enc-Dec (Luong et al., 2015) 14.0

Method on EN-FR # of Supervised Examples (BLEU)
500K 1M 2M 36M

Transformer (≈65M params) 12.1 15.1 18.9
Transformer (≈130M params) 10.8 14.6 21.3
Feature matching auto-encoder 17.1 23.1 26.7
Transformer (“big”) (Vaswani et al., 2017) 41.0
Conv Seq2Seq(Gehring et al., 2017) 40.46
Google NMT (Wu et al., 2016) 39.92

Table 3: (top) BLEU scores on EN-DE newstest2014 test set while trained over a fixed number of
supervised examples. (bottom) BLEU scores on EN-FR newstest2014 test set while trained over
a fixed number of supervised examples. FMAEs outperform existing methods for semi-supervised
translation with significant BLEU score differences.

Vaswani et al. (2017), we encoded sentences using byte-pair encoding, producing a shared source-
target vocabulary of about 37,000 tokens. The WMT 2014 EN-FR data set consists of a much
larger corpus of 36 million sentence pairs. We split tokens into a 32,000 word-piece vocabulary
(Wu et al., 2016). To simulate a semi-supervised task, we partitioned both data sets into a fixed
number of supervised pairs and made the rest unaligned. In both tasks, we evaluate performance
with newstest2014 as test set and newstest2013 as validation set.

Table 3 displays results using FMAEs as well as current state-of-the-art translation models. For
comparison on limited supervision, we also trained the Transformer network (with same modified
architecture as the FMAE’s); it only uses the available supervised examples.3 In one version we used
the same architecture and hyperparameters as one mapping in the FMAE (thus it has half the total
number of parameters); in another version, we doubled the attention layer sizes to have comparable
size in its single mapping to FMAE’s dual mappings. The FMAE significantly outperforms the Trans-
former network. The BLEU scores have a dramatic difference from 2.5 and 5.4 on 2M supervised
examples to up to 5.7 and 6.3 on 500K supervised examples.

Given the equivalent amount of supervision, the unaligned data set size in EN-FR (roughly 34-35M
sentences per corpus) enables the FMAE to have improved BLEU scores in EN-FR over EN-DE.
Most compellingly, we also note that our results for EN-DE outperformed last year’s results of
ByteNet (Kalchbrenner et al., 2016) while using only half as many supervised examples.

5 DISCUSSION

We developed feature matching auto-encoders (FMAEs), a method for learning from unaligned data
in order to improve both the data efficiency of supervised tasks as well as to enable alignments with-
out supervision. FMAEs achieved state of the art on three language tasks; most compellingly, FMAEs
outperformed last year’s best fully supervised models while using only half as many supervised ex-
amples. We believe our work is a compelling application of probabilistic generative models, where

3To the best of our knowledge, there are no approaches beyond FMAEs for semi-supervised machine trans-
lation.
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data efficiency is crucial in supervised problems with high-dimensional input and output spaces.
While we focused on neural machine translation, this is an important real-world problem for addi-
tional tasks such as summarization and on multimodal domains such as image captioning.
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