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ABSTRACT

Network quantization is one of network compression techniques to reduce the re-
dundancy of deep neural networks. It reduces the number of distinct network pa-
rameter values by quantization in order to save the storage for them. In this paper,
we design network quantization schemes that minimize the performance loss due
to quantization given a compression ratio constraint. We analyze the quantitative
relation of quantization errors to the neural network loss function and identify that
the Hessian-weighted distortion measure is locally the right objective function for
the optimization of network quantization. As a result, Hessian-weighted k-means
clustering is proposed for clustering network parameters to quantize. When opti-
mal variable-length binary codes, e.g., Huffman codes, are employed for further
compression, we derive that the network quantization problem can be related to
the entropy-constrained scalar quantization (ECSQ) problem in information the-
ory and consequently propose two solutions of ECSQ for network quantization,
i.e., uniform quantization and an iterative solution similar to Lloyd’s algorithm.
Finally, using the simple uniform quantization followed by Huffman coding, we
show from our experiments that the compression ratios of 51.25, 22.17 and 40.65
are achievable for LeNet, 32-layer ResNet and AlexNet, respectively.

1 INTRODUCTION

Deep neural networks have emerged to be the state-of-the-art in the field of machine learning for
image classification, object detection, speech recognition, natural language processing, and machine
translation (LeCun et al., 2015). The substantial progress of neural networks however comes with
high cost of computations and hardware resources resulting from a large number of parameters. For
example, Krizhevsky et al. (2012) came up with a deep convolutional neural network consisting of
61 million parameters and won the ImageNet competition in 2012. It is followed by deeper neural
networks with even larger numbers of parameters, e.g., Simonyan & Zisserman (2014).

The large sizes of deep neural networks make it difficult to deploy them on resource-limited devices,
e.g., mobile or portable devices, and network compression is of great interest in recent years to
reduce computational cost and memory requirements for deep neural networks. Our interest in this
paper is mainly on curtailing the size of the storage (memory) for network parameters (weights and
biases). In particular, we focus on the network size compression by reducing the number of distinct
network parameters by quantization.

Besides network quantization, network pruning has been studied for network compression to remove
redundant parameters permanently from neural networks (Mozer & Smolensky, 1989; LeCun et al.,
1989; Hassibi & Stork, 1993; Han et al., 2015b; Lebedev & Lempitsky, 2016; Wen et al., 2016).
Matrix/tensor factorization and low-rank approximation have been investigated as well to find more
efficient representations of neural networks with a smaller number of parameters and consequently
to save computations (Sainath et al., 2013; Xue et al., 2013; Jaderberg et al., 2014; Lebedev et al.,
2014; Yang et al., 2015; Liu et al., 2015; Kim et al., 2015; Tai et al., 2015; Novikov et al., 2015).
Moreover, similar to network quantization, low-precision network implementation has been exam-
ined in Vanhoucke et al. (2011); Courbariaux et al. (2014); Anwar et al. (2015); Gupta et al. (2015);
Lin et al. (2015a). Some extremes of low-precision neural networks consisting of binary or ternary
parameters can be found in Courbariaux et al. (2015); Lin et al. (2015b); Rastegari et al. (2016). We
note that these are different types of network compression techniques, which can be employed on
top of each other.
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The most related work to our investigation in this paper can be found in Gong et al. (2014); Han et al.
(2015a), where a conventional quantization method using k-means clustering is employed for net-
work quantization. This conventional approach however is proposed with little consideration for the
impact of quantization errors on the neural network performance loss and no effort to optimize the
quantization procedure for a given compression ratio constraint. In this paper, we reveal the subop-
timality of this conventional method and newly design quantization schemes for neural networks. In
particular, we formulate an optimization problem to minimize the network performance loss due to
quantization given a compression ratio constraint and find efficient quantization methods for neural
networks.

The main contribution of the paper can be summarized as follows:

• It is derived that the performance loss due to quantization in neural networks can be quan-
tified approximately by the Hessian-weighted distortion measure. Then, Hessian-weighted
k-means clustering is proposed for network quantization to minimize the performance loss.

• It is identified that the optimization problem for network quantization provided a compres-
sion ratio constraint can be reduced to an entropy-constrained scalar quantization (ECSQ)
problem when optimal variable-length binary coding is employed after quantization. Two
efficient heuristic solutions for ECSQ are proposed for network quantization, i.e., uniform
quantization and an iterative solution similar to Lloyd’s algorithm.

• As an alternative of Hessian, it is proposed to utilize some function (e.g., square root) of
the second moment estimates of gradients when the Adam (Kingma & Ba, 2014) stochastic
gradient decent (SGD) optimizer is used in training. The advantage of using this alterna-
tive is that it is computed while training and can be obtained at the end of training at no
additional cost.

• It is shown how the proposed network quantization schemes can be applied for quantizing
network parameters of all layers together at once, rather than layer-by-layer network quan-
tization in Gong et al. (2014); Han et al. (2015a). This follows from our investigation that
Hessian-weighting can handle the different impact of quantization errors properly not only
within layers but also across layers. Moreover, quantizing network parameters of all layers
together, one can even avoid layer-by-layer compression rate optimization.

The rest of the paper is organized as follows. In Section 2, we define the network quantization prob-
lem and review the conventional quantization method using k-means clustering. Section 3 discusses
Hessian-weighted network quantization. Our entropy-constrained network quantization schemes
follow in Section 4. Finally, experiment results and conclusion can be found in Section 5 and Sec-
tion 6, respectively.

2 NETWORK QUANTIZATION

We consider a neural network that is already trained, pruned if employed and fine-tuned before quan-
tization. If no network pruning is employed, all parameters in a network are subject to quantization.
For pruned networks, our focus is on quantization of unpruned parameters.

The goal of network quantization is to quantize (unpruned) network parameters in order to reduce the
size of the storage for them while minimizing the performance degradation due to quantization. For
network quantization, network parameters are grouped into clusters. Parameters in the same cluster
share their quantized value, which is the representative value (i.e., cluster center) of the cluster they
belong to. After quantization, lossless binary coding follows to encode quantized parameters into
binary codewords to store instead of actual parameter values. Either fixed-length binary coding or
variable-length binary coding, e.g., Huffman coding, can be employed to this end.

2.1 COMPRESSION RATIO

Suppose that we have total N parameters in a neural network. Before quantization, each parameter
is assumed to be of b bits. For quantization, we partition the network parameters into k clusters.
Let Ci be the set of network parameters in cluster i and let bi be the number of bits of the codeword
assigned to the network parameters in cluster i for 1 ≤ i ≤ k. For a lookup table to decode quantized
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values from their binary encoded codewords, we store k binary codewords (bi bits for 1 ≤ i ≤ k)
and corresponding quantized values (b bits for each). The compression ratio is then given by

Compression ratio =
Nb

∑k

i=1(|Ci|+ 1)bi + kb
. (1)

Observe in (1) that the compression ratio depends not only on the number of clusters but also on the
sizes of the clusters and the lengths of the binary codewords assigned to them, in particular, when
a variable-length code is used for encoding quantized values. For fixed-length codes, however, all
codewords are of the same length, i.e., bi = ⌈log2 k⌉ for all 1 ≤ i ≤ k, and thus the compression
ratio is reduced to only a function of the number of clusters, i.e., k, assuming that N and b are given.

2.2 K-MEANS CLUSTERING

Provided network parameters {wi}
N
i=1 to quantize, k-means clustering partitions them into k dis-

joint sets (clusters), denoted by C1, C2, . . . , Ck, while minimizing the mean square quantization error
(MSQE) as follows:

argmin
C1,C2,...,Ck

k∑

i=1

∑

w∈Ci

|w − ci|
2, where ci =

1

|Ci|

∑

w∈Ci

w. (2)

We observe two issues with employing k-means clustering for network quantization.

• First, although k-means clustering minimizes the MSQE, it does not imply that k-means
clustering minimizes the performance loss due to quantization as well in neural networks.
K-means clustering treats quantization errors from all network parameters with equal im-
portance. However, quantization errors from some network parameters may degrade the
performance more significantly that the others. Thus, for minimizing the loss due to quan-
tization in neural networks, one needs to take this dissimilarity into account.

• Second, k-means clustering does not consider any compression ratio constraint. It simply
minimizes its distortion measure for a given number of clusters, i.e., for k clusters. This is
however suboptimal when variable-length coding follows since the compression ratio de-
pends not only on the number of clusters but also on the sizes of the clusters and assigned
codeword lengths to them, which are determined by the binary coding scheme employed af-
ter clustering. Therefore, for the optimization of network quantization given a compression
ratio constraint, one need to take the impact of binary coding into account, i.e., we need to
solve the quantization problem under the actual compression ratio constraint imposed by
the specific binary coding scheme employed after clustering.

3 HESSIAN-WEIGHTED NETWORK QUANTIZATION

In this section, we analyze the impact of quantization errors on the neural network loss function
and derive that the Hessian-weighted distortion measure is a relevant objective function for network
quantization in order to minimize the quantization loss locally. Moreover, from this analysis, we pro-
pose Hessian-weighted k-means clustering for network quantization to minimize the performance
loss due to quantization in neural networks.

3.1 NETWORK MODEL

We consider a general non-linear neural network that yields outputy = f(x;w) from input x, where
w = [w1 · · · wN ]T is the vector consisting of all trainable network parameters in the network; N
is the total number of trainable parameters in the network. A loss function loss(y, ŷ) is defined as
the objective function that we aim to minimize in average, where ŷ = ŷ(x) is the expected (ground-
truth) output for input x. Cross entropy or mean square error are typical examples of a loss function.
Given a training data set Xtrain, we optimize network parameters by solving the following problem,
e.g., approximately by using a stochastic gradient descent (SGD) method with mini-batches:

ŵ = argmin
w

L(Xtrain;w), where L(X ;w) =
1

|X |

∑

x∈X

loss(f(x;w), ŷ(x)).
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3.2 HESSIAN-WEIGHTED QUANTIZATION ERROR

The average loss function L(X ;w) can be expanded by Taylor series with respect to w as follows:

δL(X ;w) = g(w)T δw +
1

2
δwTH(w)δw +O(‖δw‖3), (3)

where

g(w) =
∂L(X ;w)

∂w
, H(w) =

∂2L(X ;w)

∂w2
;

the square matrix H(w) consisting of second-order partial derivatives is called as Hessian matrix
or Hessian. Assume that the loss function has reached to one of its local minima, at w = ŵ, after
training. At local minima, gradients are all zero, i.e., we have g(ŵ) = 0, and thus the first term in
the right-hand side of (3) can be neglected at w = ŵ. The third term in the right-hand side of (3)
is also ignored under the assumption that the average loss function is approximately quadratic at the
local minimum w = ŵ. Finally, for simplicity, we approximate the Hessian matrix as a diagonal
matrix by setting its off-diagonal terms to be zero. Then, it follows from (3) that

δL(X ; ŵ) ≈
1

2

N∑

i=1

hii(ŵ)|δŵi|
2, (4)

where hii(ŵ) is the second-order partial derivative of the average loss function with respect to wi

evaluated at w = ŵ, which is the i-th diagonal element of the Hessian matrix H(ŵ).

Now, we connect (4) with the problem of network quantization by treating δŵi as the quantization
error of network parameter wi at its local optimum wi = ŵi, i.e.,

δŵi = w̄i − ŵi, (5)

where w̄i is a quantized value of ŵi. Finally, combining (4) and (5), we derive that the local impact
of quantization on the average loss function at w = ŵ can be quantified approximately as follows:

δL(X ; ŵ) ≈
1

2

N∑

i=1

hii(ŵ)|ŵi − w̄i|
2. (6)

At a local minimum, the diagonal elements of Hessian, i.e., hii(ŵ)’s, are all non-negative and thus
the summation in (6) is always additive, implying that the average loss function either increases or
stays the same. Therefore, the performance degradation due to quantization of a neural network can
be measured approximately by the Hessian-weighted distortion as shown in (6). Further discussion
on the Hessian-weighted distortion measure can be found in Appendix A.1.

3.3 HESSIAN-WEIGHTED K-MEANS CLUSTERING

For notational simplicity, we use wi ≡ ŵi and hii ≡ hii(ŵ) from now on. The optimal clustering
that minimizes the Hessian-weighted distortion measure is given by

argmin
C1,C2,...,Ck

k∑

j=1

∑

wi∈Cj

hii|wi − cj |
2, where cj =

∑

wi∈Cj
hiiwi

∑

wi∈Cj
hii

. (7)

We call this as Hessian-weighted k-means clustering. Observe in (7) that we give a larger penalty for
a network parameter in defining the distortion measure for clustering when its second-order partial
derivative is larger, in order to avoid a large deviation from its original value, since the impact on
the loss function due to quantization is expected to be larger for that parameter.

Hessian-weighted k-means clustering is locally optimal in minimizing the quantization loss when
fixed-length binary coding follows, where the compression ratio solely depends on the number of
clusters as shown in Section 2.1. Similar to the conventional k-means clustering, solving this op-
timization is not easy, but Lloyd’s algorithm is still applicable as an efficient heuristic solution for
this problem if Hessian-weighted means are used as cluster centers instead of non-weighted regular
means.
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3.4 HESSIAN COMPUTATION

For obtaining Hessian, one needs to evaluate the second-order partial derivative of the average loss
function with respect to each of network parameters, i.e., we need to calculate

hii(ŵ) =
∂2L(X ;w)

∂w2
i

∣
∣
∣
∣
w=ŵ

=
1

|X |

∂2

∂w2
i

∑

x∈X

loss(f(x;w), ŷ(x))

∣
∣
∣
∣
w=ŵ

. (8)

Recall that we are interested in only the diagonal elements of Hessian. An efficient way of computing
the diagonal of Hessian is presented in Le Cun (1987); Becker & Le Cun (1988) and it is based on
the back propagation method that is similar to the back propagation algorithm used for computing
first-order partial derivatives (gradients). That is, computing the diagonal of Hessian is of the same
order of complexity as computing gradients.

Hessian computation and our network quantization are performed after completing network training.
For the data set X used to compute Hessian in (8), we can either reuse a training data set or use some
other data set, e.g., validation data set. We observed from our experiments that even using a small
subset of the training or validation data set is sufficient to yield good approximation of Hessian for
network quantization.

3.5 ALTERNATIVE OF HESSIAN

Although there is an efficient way to obtain the diagonal of Hessian as discussed in the previous sub-
section, Hessian computation is not free. In order to avoid this additional Hessian computation, we
propose to use an alternative metric instead of Hessian. In particular, we consider neural networks
trained with the Adam SGD optimizer (Kingma & Ba, 2014) and propose to use some function (e.g.,
square root) of the second moment estimates of gradients as an alternative of Hessian.

The Adam algorithm computes adaptive learning rates for individual network parameters from the
first and second moment estimates of gradients. We compare the Adam method to Newton’s op-
timization method using Hessian and notice that the second moment estimates of gradients in the
Adam method act like the Hessian in Newton’s method. This observation leads us to use some func-
tion (e.g., square root) of the second moment estimates of gradients as an alternative of Hessian.

The advantage of using the second moment estimates from the Adam method is that they are com-
puted while training and we can obtain them at the end of training at no additional cost. It makes
Hessian-weighting more feasible for deep neural networks, which have millions of parameters.
We note that similar quantities can be found and used for other SGD optimization methods using
adaptive learning rates, e.g., AdaGrad (Duchi et al., 2011), Adadelta (Zeiler, 2012) and RMSProp
(Tieleman & Hinton, 2012).

3.6 QUANTIZATION OF ALL LAYERS

We propose quantizing the network parameters of all layers in a neural network together at once
by taking Hessian-weight into account. Layer-by-layer quantization was examined in the previous
work (Gong et al., 2014; Han et al., 2015a). However, e.g., in Han et al. (2015a), a larger number of
bits (a larger number of clusters) are assigned to convolutional layers than fully-connected layers,
which implies that they heuristically treat convolutional layers more importantly. This follows from
the fact that the impact of quantization errors on the performance varies significantly across layers;
some layers, e.g., convolutional layers, may be more important than the others. This concern is
exactly what we can address by Hessian-weighting.

Hessian-weighting properly handles the different impact of quantization errors not only within layers
but also across layers and thus it can be employed for quantizing all layers of a network together.
The impact of quantization errors may vary more substantially across layers than within layers.
Thus, Hessian-weighting may show more benefit in deeper neural networks. We note that Hessian-
weighting can still provide gain even for layer-by-layer quantization since it can address the different
impact of the quantization errors of network parameters within each layer as well.

Recent neural networks are getting deeper, e.g., see Szegedy et al. (2015a;b); He et al. (2015). For
such deep neural networks, quantizing network parameters of all layers together is even more advan-
tageous since we can avoid layer-by-layer compression rate optimization. Optimizing compression
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ratios jointly across all individual layers (to maximize the overall compression ratio for a network)
requires exponential time complexity with respect to the number of layers. This is because the total
number of possible combinations of compression ratios for individual layers increases exponentially
as the number of layers increases.

4 ENTROPY-CONSTRAINED NETWORK QUANTIZATION

In this section, we investigate how to solve the network quantization problem under a constraint on
the compression ratio. In designing network quantization schemes, we not only want to minimize
the performance loss but also want to maximize the compression ratio. In Section 3, we explored
how to quantify and minimize the loss due to quantization. In this section, we investigate how to
take the compression ratio into account properly in the optimization of network quantization.

4.1 ENTROPY CODING

After quantizing network parameters by clustering, lossless data compression by variable-length bi-
nary coding can be followed for compressing quantized values. There is a set of optimal codes that
achieve the minimum average codeword length for a given source. Entropy is the theoretical limit of
the average codeword length per symbol that we can achieve by lossless data compression, proved
by Shannon (see, e.g., Cover & Thomas (2012, Section 5.3)). It is known that optimal codes achieve
this limit with some overhead less than 1 bit when only integer-length codewords are allowed. So
optimal coding is also called as entropy coding. Huffman coding is one of entropy coding schemes
commonly used when the source distribution is provided (see, e.g., Cover & Thomas (2012, Sec-
tion 5.6)), or can be estimated.

4.2 ENTROPY-CONSTRAINED SCALAR QUANTIZATION (ECSQ)

Considering a compression ratio constraint in network quantization, we need to solve the clustering
problem in (2) or (7) under the compression ratio constraint given by

Compression ratio =
b

b̄+ (
∑k

i=1 bi + kb)/N
> C, where b̄ =

1

N

k∑

i=1

|Ci|bi, (9)

which follows from (1). This optimization problem is too complex to solve for any arbitrary variable-
length binary code since the average codeword length b̄ can be arbitrary. However, we identify that
it can be simplified if optimal codes, e.g., Huffman codes, are assumed to be used. In particular,
optimal coding closely achieves the lower limit of the average source code length, i.e., entropy, and
then we approximately have

b̄ ≈ H = −

k∑

i=1

pi log2 pi, (10)

where H is the entropy of the quantized network parameters after clustering (i.e., source), given
that pi = |Ci|/N is the ratio of the number of network parameters in cluster Ci to the number of all
network parameters (i.e., source distribution). Moreover, assuming that N ≫ k, we have

1

N

(
k∑

i=1

bi + kb

)

≈ 0, (11)

in (9). From (10) and (11), the constraint in (9) can be altered to an entropy constraint given by

H = −

k∑

i=1

pi log2 pi < R,

where R ≈ b/C. In summary, assuming that optimal coding is employed after clustering, one can
approximately replace a compression ratio constraint with an entropy constraint for the clustering
output. The network quantization problem is then translated into a quantization problem with an en-
tropy constraint, which is called as entropy-constrained scalar quantization (ECSQ) in information
theory. Two efficient heuristic solutions for ECSQ are proposed for network quantization in the fol-
lowing subsections, i.e., uniform quantization and an iterative solution similar to Lloyd’s algorithm
for k-means clustering.
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4.3 UNIFORM QUANTIZATION

It is shown in Gish & Pierce (1968) that the uniform quantizer is asymptotically optimal in mini-
mizing the mean square quantization error for any random source with a reasonably smooth density
function as the resolution becomes infinite, i.e., as the number of clusters k → ∞. This asymptotic
result leads us to come up with a very simple but efficient network quantization scheme as follows:

1. We first set uniformly spaced thresholds and divide network parameters into clusters.

2. After determining clusters, their quantized values (cluster centers) are obtained by taking
the mean of network parameters in each cluster.

Note that one can use Hessian-weighted mean instead of non-weighted mean in computing clus-
ter centers in the second step above in order to take the benefit of Hessian-weighting. A perfor-
mance comparison of uniform quantization with non-weighted mean and uniform quantization with
Hessian-weighted mean can be found in Appendix A.2.

Although uniform quantization is a straightforward method, it has never been shown before in the
literature that it is actually one of the most efficient quantization schemes for neural networks when
optimal variable-length coding, e.g., Huffman coding, follows. We note that uniform quantization is
not always good; it is inefficient for fixed-length coding, which is also first shown in this paper.

4.4 ITERATIVE ALGORITHM TO SOLVE ECSQ

Another scheme proposed to solve the ECSQ problem for network quantization is an iterative algo-
rithm, which is similar to Lloyd’s algorithm for k-means clustering. Although this iterative solution
is more complicated than the uniform quantization in Section 4.3, it finds a local optimum for a
given discrete source. An iterative algorithm to solve the general ECSQ problem is provided in
Chou et al. (1989). We derive a similar iterative algorithm to solve the ECSQ problem for network
quantization. The main difference from the method in Chou et al. (1989) is that we minimize the
Hessian-weighted distortion measure instead of the non-weighted regular distortion measure for op-
timal quantization. The detailed algorithm and further discussion can be found in Appendix A.3.

5 EXPERIMENTS

This section presents our experiment results for the proposed network quantization schemes in three
exemplary convolutional neural networks: (a) LeNet (LeCun et al., 1998) for the MNIST data set,
(b) ResNet (He et al., 2015) for the CIFAR-10 data set, and (c) AlexNet (Krizhevsky et al., 2012)
for the ImageNet ILSVRC-2012 data set. Our experiments can be summarized as follows:

• We employ the proposed network quantization methods to quantize all of network param-
eters in a network together at once, as discussed in Section 3.6.

• We evaluate the performance of the proposed network quantization methods with and with-
out network pruning. For a pruned model, we need to store not only the values of unpruned
parameters but also their respective indexes (locations) in the original model. For the index
information, we compute index differences between unpruned network parameters in the
original model and further compress them by Huffman coding as in Han et al. (2015a).

• For Hessian computation, 50,000 samples of the training set are reused. We also evaluate
the performance when Hessian is computed with 1,000 samples only.

• Finally, we evaluate the performance of our network quantization schemes using Hessian
when its alternative is used instead, as discussed in Section 3.5. To this end, we retrain the
considered neural networks with the Adam SGD optimizer and obtain the second moment
estimates of gradients at the end of training. Then, we use the square roots of the second
moment estimates instead of Hessian and evaluate the performance.

5.1 EXPERIMENT MODELS

First, we evaluate our network quantization schemes for the MNIST data set with a simplified ver-
sion of LeNet5 (LeCun et al., 1998), consisting of two convolutional layers and two fully-connected
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(a) Fixed-length coding
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(b) Fixed-length coding + fine-tuning
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(c) Huffman coding
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(d) Huffman coding + fine-tuning

Figure 1: Accuracy versus average codeword length per network parameter after network quantiza-
tion for 32-layer ResNet.

layers followed by a soft-max layer. It has total 431,080 parameters and achieves 99.25% accuracy.
For a pruned model, we prune 91% of the original network parameters and fine-tune the rest.

Second, we experiment our network quantization schemes for the CIFAR-10 data set (Krizhevsky,
2009) with a pre-trained 32-layer ResNet (He et al., 2015). The 32-layer ResNet consists of 464,154
parameters in total and achieves 92.58% accuracy. For a pruned model, we prune 80% of the original
network parameters and fine-tune the rest.

Third, we evaluate our network quantization schemes with AlexNet (Krizhevsky et al., 2012) for the
ImageNet ILSVRC-2012 data set (Russakovsky et al., 2015). We obtain a pre-trained AlexNet Caffe
model, which achieves 57.16% top-1 accuracy. For a pruned model, we prune 89% parameters and
fine-tune the rest. In fine-tuning, the Adam SGD optimizer is used in order to avoid the computation
of Hessian by utilizing its alternative (see Section 3.5). However, the pruned model does not recover
the original accuracy after fine-tuning with the Adam method; the top-1 accuracy recovered after
pruning and fine-tuning is 56.00%. We are able to find a better pruned model achieving the original
accuracy by pruning and retraining iteratively (Han et al., 2015b), which is however not used here.

5.2 EXPERIMENT RESULTS

We first present the quantization results without pruning for 32-layer ResNet in Figure 1, where
the accuracy of 32-layer ResNet is plotted against the average codeword length per network pa-
rameter after quantization. When fixed-length coding is employed, the proposed Hessian-weighted
k-means clustering method performs the best, as expected. Observe that Hessian-weighted k-means
clustering yields better accuracy than others even after fine-tuning. On the other hand, when Huff-
man coding is employed, uniform quantization and the iterative algorithm for ECSQ outperform
Hessian-weighted k-means clustering and k-means clustering. However, these two ECSQ solutions
underperform Hessian-weighted k-means clustering and even k-means clustering when fixed-length
coding is employed since they are optimized for optimal variable-length coding.
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(a) LeNet
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Figure 2: Accuracy versus average codeword length per network parameter after network quanti-
zation, Huffman coding and fine-tuning for LeNet and 32-layer ResNet when Hessian is computed
with 50,000 or 1,000 samples and when the square roots of the second moment estimates of gradients
are used instead of Hessian as an alternative.

Figure 2 shows the performance of Hessian-weighted k-means clustering when Hessian is computed
with a small number of samples (1,000 samples). Observe that even using the Hessian computed
with a small number of samples yields almost the same performance. We also show the performance
of Hessian-weighted k-means clustering when an alternative of Hessian is used instead of Hessian as
explained in Section 3.5. In particular, the square roots of the second moment estimates of gradients
are used instead of Hessian, and using this alternative provides similar performance to using Hessian.

In Table 1, we summarize the compression ratios that we can achieve with different network quanti-
zation methods for pruned models. The original network parameters are 32-bit float numbers. Using
the simple uniform quantization followed by Huffman coding, we achieve the compression ratios
of 51.25, 22.17 and 40.65 (i.e., the compressed model sizes are 1.95%, 4.51% and 2.46% of the
original model sizes) for LeNet, 32-layer ResNet and AlexNet, respectively, at no or marginal per-
formance loss. Observe that the loss in the compressed AlexNet is mainly due to pruning. Here, we
also compare our network quantization results to the ones in Han et al. (2015a). Note that layer-by-
layer quantization with k-means clustering is evaluated in Han et al. (2015a) while our quantization
schemes including k-means clustering are employed to quantize network parameters of all layers
together at once (see Section 3.6).

6 CONCLUSION

This paper investigates the quantization problem of network parameters in deep neural networks.
We identify the suboptimality of the conventional quantization method using k-means clustering
and newly design network quantization schemes so that they can minimize the performance loss due
to quantization given a compression ratio constraint. In particular, we analytically show that Hessian
can be used as a measure of the importance of network parameters and propose to minimize Hessian-
weighted quantization errors in average for clustering network parameters to quantize. Hessian-
weighting is beneficial in quantizing all of the network parameters together at once since it can
handle the different impact of quantization errors properly not only within layers but also across
layers. Furthermore, we make a connection from the network quantization problem to the entropy-
constrained data compression problem in information theory and push the compression ratio to the
limit that information theory provides. Two efficient heuristic solutions are presented to this end,
i.e., uniform quantization and an iterative solution for ECSQ. Our experiment results show that the
proposed network quantization schemes provide considerable gain over the conventional method
using k-means clustering, in particular for large and deep neural networks.
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A APPENDIX

A.1 FURTHER DISCUSSION ON THE HESSIAN-WEIGHTED QUANTIZATION ERROR

The diagonal approximation for Hessian simplifies the optimization problem as well as its solution
for network quantization. This simplification comes with some performance loss. We conjecture that
the loss due to this approximation is small. The reason is that the contributions from off-diagonal
terms are not always additive and their summation may end up with a small value. However, diagonal
terms are all non-negative and therefore their contributions are always additive. We do not verify this
conjecture in this paper since solving the problem without diagonal approximation is too complex;
we even need to compute the whole Hessian matrix, which is also too costly.

Observe that the relation of the Hessian-weighted distortion measure to the quantization loss holds
for any model for which the objective function can be approximated as a quadratic function with
respect to the parameters to quantize in the model. Hence, the quantization methods proposed in
this paper to minimize the Hessian-weighted distortion measure are not specific to neural networks
but are generally applicable to quantization of parameters of any model whose objective function is
locally quadratic with respect to its parameters approximately.

Finally, we do not consider the interactions between quantization and retraining in our formulation
in Section 3.2. We analyze the expected loss due to quantization assuming no further retraining
and focus on finding optimal network quantization schemes that minimize the performance loss. In
our experiments, however, we further fine-tune the quantized values (cluster centers) so that we can
recover the loss due to quantization and improve the performance.

A.2 EXPERIMENT RESULTS FOR UNIFORM QUANTIZATION

We compare uniform quantization with non-weighted mean and uniform quantization with Hessian-
weighted mean in Figure 3, which shows that uniform quantization with Hessian-weighted mean
slightly outperforms uniform quantization with non-weighted mean.
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(a) Huffman coding
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Figure 3: Accuracy versus average codeword length per network parameter after network quanti-
zation, Huffman coding and fine-tuning for 32-layer ResNet when uniform quantization with non-
weighted mean and uniform quantization with Hessian-weighted mean are used.

A.3 FURTHER DISCUSSION ON THE ITERATIVE ALGORITHM FOR ECSQ

In order to solve the ECSQ problem for network quantization, we define a Lagrangian cost function:

Jλ(C1, C2, . . . , Ck) = D + λH =
1

N

k∑

j=1

∑

wi∈Cj

(hii|wi − cj |
2 − λ log2 pj)

︸ ︷︷ ︸

=dλ(i,j)

, (12)

where

D =
1

N

k∑

j=1

∑

wi∈Cj

hii|wi − cj |
2, H = −

k∑

j=1

pj log2 pj .
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Algorithm 1 Iterative solution for entropy-constrained network quantization

Initialization: n← 0
Initialize the centers of k clusters: c

(0)
1 , . . . , c

(0)
k

Initialize the proportions of k clusters (set all of them to be the same initially): p
(0)
1 , . . . , p

(0)
k

repeat
Assignment:

for all network parameters i = 1→ N do
Assign wi to the cluster j that minimizes the individual Lagrangian cost as follows:

C
(n+1)
l ← C

(n+1)
l ∪ {wi} for l = argmin

j

{

hii|wi − c
(n)
j |

2 − λ log2 p
(n)
j

}

end for
Update:

for all clusters j = 1→ k do
Update the cluster center and the proportion of cluster j:

c
(n+1)
j ←

∑

wi∈C
(n+1)
j

hiiwi

∑

wi∈C
(n+1)
j

hii

and p
(n+1)
j ←

|C
(n+1)
j |

N

end for
n← n+ 1

until Lagrangian cost function Jλ decreases less than some threshold

The entropy-constrained network quantization problem is then reduced to find k partitions (clusters)
C1, C2, . . . , Ck that minimize the Lagrangian cost function as follows:

argmin
C1,C2,...,Ck

Jλ(C1, C2, . . . , Ck).

A heuristic iterative algorithm to solve this method of Lagrange multipliers for network quantization
is presented in Algorithm 1. It is similar to Lloyd’s algorithm for k-means clustering. The key
difference is how to partition network parameters at the assignment step. In Lloyd’s algorithm, the
Euclidean distance (quantization error) is minimized. For ECSQ, the individual Lagrangian cost
function, i.e., dλ(i, j) in (12), is minimized instead, which includes both quantization error and
expected codeword length after entropy coding.
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