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ABSTRACT

While autoregressive models excel at image compression, their sample quality is
often lacking. Although not realistic, generated images often have high likelihood
according to the model, resembling the case of adversarial examples. Inspired by a
successful adversarial defense method, we incorporate randomized smoothing into
autoregressive generative modeling. We first model a smoothed version of the data
distribution, and then reverse the smoothing process to recover the original data
distribution. This procedure drastically improves the sample quality of existing
autoregressive models on several synthetic and real-world image datasets while
obtaining competitive likelihoods on synthetic datasets.

1 INTRODUCTION

Autoregressive models have exhibited promising results in a variety of downstream tasks. For
instance, they have shown success in compressing images (Minnen et al., 2018), synthesizing
speech (Oord et al., 2016a) and modeling complex decision rules in games (Vinyals et al., 2019).
However, the sample quality of autoregressive models on real-world image datasets is still lacking.

Poor sample quality might be explained by the manifold hypothesis: many real world data distri-
butions (e.g. natural images) lie in the vicinity of a low-dimensional manifold (Belkin & Niyogi,
2003), leading to complicated densities with sharp transitions (i.e. high Lipschitz constants), which
are known to be difficult to model for density models such as normalizing flows (Cornish et al.,
2019). Since each conditional of an autoregressive model is a 1-dimensional normalizing flow
(given a fixed context of previous pixels), a high Lipschitz constant will likely hinder learning of
autoregressive models.

Another reason for poor sample quality is the “compounding error” issue in autoregressive model-
ing. To see this, we note that an autoregressive model relies on the previously generated context to
make a prediction; once a mistake is made, the model is likely to make another mistake which com-
pounds (Kääriäinen, 2006), eventually resulting in questionable and unrealistic samples. Intuitively,
one would expect the model to assign low-likelihoods to such unrealistic images, however, this is not
always the case. In fact, the generated samples, although appearing unrealistic, often are assigned
high-likelihoods by the autoregressive model, resembling an “adversarial example” (Szegedy et al.,
2013; Biggio et al., 2013), an input that causes the model to output an incorrect answer with high
confidence.

Inspired by the recent success of randomized smoothing techniques in adversarial defense (Cohen
et al., 2019), we propose to apply randomized smoothing to autoregressive generative modeling.
More specifically, we propose to address a density estimation problem via a two-stage process.
Unlike Cohen et al. (2019) which applies smoothing to the model to make it more robust, we apply
smoothing to the data distribution. Specifically, we convolve a symmetric and stationary noise distri-
bution with the data distribution to obtain a new “smoother” distribution. In the first stage, we model
the smoothed version of the data distribution using an autoregressive model. In the second stage,
we reverse the smoothing process—a procedure which can also be understood as “denoising”—by
either applying a gradient-based denoising approach (Alain & Bengio, 2014) or introducing another
conditional autoregressive model to recover the original data distribution from the smoothed one. By
choosing an appropriate smoothing distribution, we aim to make each step easier than the original
learning problem: smoothing facilitates learning in the first stage by making the input distribution
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Figure 1: Overview of our method. From a data distribution (x) we inject noise (q(x̃|x)) which
makes the distribution smoother (x̃); then we model the smoothed distribution (pθ(x̃)) as well as the
denoising step (pθ(x|x̃)), forming a two-step model.

fully supported without sharp transitions in the density function; generating a sample given a noisy
one is easier than generating a sample from scratch.

We show with extensive experimental results that our approach is able to drastically improve the
sample quality of current autoregressive models on several synthetic datasets and real-world image
datasets, while obtaining competitive likelihoods on synthetic datasets. We empirically demonstrate
that our method can also be applied to density estimation, image inpainting, and image denoising.

2 BACKGROUND

We consider a density estimation problem. Given D-dimensional i.i.d samples {x1,x2, ...,xN}
from a continuous data distribution pdata(x), the goal is to approximate pdata(x) with a model pθ(x)
parameterized by θ. A commonly used approach for density estimation is maximum likelihood
estimation (MLE), where the objective is to maximize L(θ) , 1

N

∑N
i=1 log pθ(xi).

2.1 AUTOREGRESSIVE MODELS

An autoregressive model (Larochelle & Murray, 2011; Salimans et al., 2017) decomposes a joint
distribution pθ(x) into the product of univariate conditionals:

pθ(x) =

D∏
i=1

pθ(xi|x<i), (1)

where xi stands for the i-th component of x, and x<i refers to the components with indices smaller
than i. In general, an autoregressive model parameterizes each conditional pθ(xi|x<i) using a pre-
specified density function (e.g. mixture of logistics). This bounds the capacity of the model by
limiting the number of modes for each conditional.

Although autoregressive models have achieved top likelihoods amongst all types of density based
models, their sample quality is still lacking compared to energy-based models (Du & Mordatch,
2019) and score-based models (Song & Ermon, 2019). We believe this can be caused by the follow-
ing two reasons.

2.2 MANIFOLD HYPOTHESIS

Several existing methods (Roweis & Saul, 2000; Tenenbaum et al., 2000) rely on the manifold
hypothesis, i.e. that real-world high-dimensional data tends to lie on a low-dimensional mani-
fold (Narayanan & Mitter, 2010). If the manifold hypothesis is true, then the density of the data
distribution is not well defined in the ambient space; if the manifold hypothesis holds only approx-
imately and the data lies in the vicinity of a manifold, then only points that are very close to the
manifold would have high density, while all other points would have close to zero density. Thus we
may expect the data density around the manifold to have large first-order derivatives, i.e. the density
function has a high Lipschitz constant (if not infinity).

To see this, let us consider a 2-d example where the data distribution is a thin ring distribution (almost
a unit circle) formed by rotating the 1-d Gaussian distribution N (1, 0.012) around the origin. The
density function of the ring has a high Lipschitz constant near the “boundary”. Let us focus on a data
point travelling along the diagonal as shown in the leftmost panel in figure 2. We plot the first-order
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Figure 2: Manifold hypothesis illustration. The data point is travelling along the diagonal as shown
in the leftmost panel. The white arrow stands for the direction and magnitude of the derivative of
density at the data point. The data location for each figure is (

√
0.5 + c,

√
0.5 + c), where c is the

number below each figure and (
√

0.5,
√

0.5) is the upper right intersection of the trajectory with the
unit circle.

directional derivatives of the density for the point as it approaches the boundary from the inside,
then lands on the ring, and finally moves outside the ring (see figure 2). As we can see, when the
point is far from the boundary, the derivative has a small magnitude. When the point moves closer to
the boundary, the magnitude increases and changes significantly near the boundary even with small
displacements in the trajectory. However, once the point has landed on the ring, the magnitude starts
to decrease. As it gradually moves off the ring, the magnitude first increases and then decreases
just like when the point approached the boundary from the inside. It has been observed that certain
likelihood models, such as normalizing flows, exhibit pathological behaviors on data distributions
whose densities have high Lipschitz constants (Cornish et al., 2019). Since each conditional of an
autoregressive model is a 1-d normalizing flow given a fixed context, a high Lipschitz constant on
data density could also hinder learning of autoregressive models.

2.3 COMPOUNDING ERRORS IN AUTOREGRESSIVE MODELING

Autoregressive models can also be susceptible to compounding errors from the conditional distri-
butions (Lamb et al., 2016) during sampling time. We notice that an autoregressive model pθ(x)
learns the joint density pdata(x) by matching each of the conditional pθ(xi|x<i) with pdata(xi|x<i).
In practice, we typically have access to a limited amount of training data, which makes it hard for an
autoregressive model to capture all the conditional distributions correctly due to the curse of dimen-
sionality. During sampling, since a prediction is made based on the previously generated context,
once a mistake is made at a previous step, the model is likely to make more mistakes in the later
steps, eventually generating a sample x̂ that is far from being an actual image, but is mistakenly
assigned a high-likelihood by the model.

The generated image x̂, being unrealistic but assigned a high-likelihood, resembles an adversarial
example, i.e., an input that causes the model to make mistakes. Recent works (Cohen et al., 2019) in
adversarial defense have shown that random noise can be used to improve the model’s robustness to
adversarial perturbations — a process during which adversarial examples that are close to actual data
are generated to fool the model. We hypothesize that such approach can also be applied to improve
an autoregressive modeling process by making the model less vulnerable to compounding errors
occurred during density estimation. Inspired by the success of randomized smoothing in adversarial
defense (Cohen et al., 2019), we propose to apply smoothing to autoregressive modeling to address
the problems mentioned above.

3 GENERATIVE MODELS WITH DISTRIBUTION SMOOTHING

In the following, we propose to decompose a density estimation task into a smoothed data modeling
problem followed by an inverse smoothing problem where we recover the true data density from the
smoothed one.

3.1 RANDOMIZED SMOOTHING PROCESS

Unlike Cohen et al. (2019) where randomized smoothing is applied to a model, we apply smoothing
directly to the data distribution pdata(x). To do this, we introduce a smoothing distribution q(x̃|x) —
a distribution that is symmetric and stationary (e.g. a Gaussian or Laplacian kernel) — and convolve
it with pdata(x) to obtain a new distribution q(x̃) ,

∫
q(x̃|x)pdata(x)dx. When q(x̃|x) is a normal

distribution, this convolution process is equivalent to perturbing the data distribution with Gaussian
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(a) Data (b) Smoothed data

Figure 3: Visualization of a 1-d data distribution without smoothing (a) or with smoothing (b),
modeled by the same mixture of logistics model.

noise, which, intuitively, will make the data distribution smoother. In the following, we formally
prove that convolving a 1-d distribution pdata(x) with a suitable noise can indeed “smooth” pdata(x).
Theorem 1. Given a continuous and bounded 1-d distribution pdata(x) that is supported on R,
for any 1-d distribution q(x̃|x) that is symmetric (i.e. q(x̃|x) = q(x|x̃)), stationary (i.e. transla-
tion invariant) and satisfies limx→∞ pdata(x)q(x|x̃) = 0 for any given x̃, we have Lip(q(x̃)) ≤
Lip(pdata(x)), where q(x̃) ,

∫
q(x̃|x)pdata(x)dx and Lip(·) denotes the Lipschitz constant of the

given 1-d function.

Theorem 1 shows that convolving a 1-d data distribution pdata(x) with a suitable noise distribution
q(x̃|x) (e.g.N (x̃|x, σ2)) can reduce the Lipschitzness (i.e. increase the smoothness) of pdata(x). We
provide the proof of Theorem 1 in Appendix A.

Given pdata(x) with a high Lipschitz constant, we empirically verify that density estimation becomes
an easier task on the smoothed distribution q(x̃) than directly on pdata(x). To see this, we visualize
a 1-d example in figure 3a, where we want to model a ten-mode data distribution with a mixture of
logistics model. If our model has three logistic components, there is almost no way for the model,
which only has three modes, to perfectly fit this data distribution, which has ten separate modes
with sharp transitions. The model, after training (see figure 3a), mistakenly assigns a much higher
density to the low density regions between nearby modes. If we convolve the data distribution with
q(x̃|x) = N (x̃|x, 0.52), the new distribution becomes smoother (see figure 3b) and can be captured
reasonably well by the same mixture of logistics model with only three modes (see figure 3b).
Comparing the same model’s performance on the two density estimation tasks, we can see that the
model is doing a better job at modeling the smoothed version of the data distribution than the original
data distribution, which has a high Lipschitz constant.

This smoothing process can also be understood as a regularization term for the original maximum
likelihood objective (on the un-smoothed data distribution), encouraging the learned model to be
smooth, as formalized by the following statement:
Proposition 1 (Informal). Assume that the symmetric and stationary smoothing distribution q(x̃|x)
has small variance and negligible higher order moments, then

Epdata(x)Eq(x̃|x)[log pθ(x̃)] ≈ Epdata(x)

[
log pθ(x) +

η

2

∑
i

∂2 log pθ
∂x2i

]
,

for some constant η.

Proposition 1 shows that our smoothing process provides a regularization effect on the original
objective Epdata(x)[log pθ(x)] when no noise is added, where the regularization aims to maximize
η
2

∑
i
∂2 log pθ
∂x2
i

. Since samples from pdata should be close to a local maximum of the model, this en-
courages the second order gradients computed at a data point x to become closer to zero (if it were
positive then x will not be a local maximum), creating a smoothing effect. This extra term is also the
trace of the score function (up to a multiplicative constant) that can be found in the score matching
objective (Hyvärinen, 2005), which is closely related to many denoising methods (Vincent, 2011;
Hyvärinen, 2008). This regularization effect can, intuitively, increase the generalization capability
of the model. In fact, it has been demonstrated empirically that training with noise can lead to im-
provements in network generalization (Sietsma & Dow, 1991; Bishop, 1995). Our argument is also
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similar to that used in (Bishop, 1995) except that we consider a more general generative modeling
case as opposed to supervised learning with squared error. We provide the formal statement and
proof of Proposition 1 in Appendix A.

3.2 AUTOREGRESSIVE DISTRIBUTION SMOOTHING MODELS

Motivated by the previous 1-d example, instead of directly modeling pdata(x), which can have a high
Lipschitz constant, we propose to first train an autoregressive model on the smoothed version of
the data distribution q(x̃). Although the smoothing process makes the distribution easier to learn, it
also introduces bias. Thus, we need an extra step to debias the learned distribution by reverting the
smoothing process.

If our goal is to generate approximate samples for pdata(x), when q(x̃|x) = N (x̃|x, σ2I) and σ is
small, we can use the gradient of pθ(x̃) for denoising (Alain & Bengio, 2014). More specifically,
given smoothed samples x̃ from pθ(x̃), we can “denoise” samples via:

x̄ = x̃ + σ2∇x̃ log pθ(x̃), (2)
which only requires the knowledge of pθ(x̃) and the ability to sample from it. However, this ap-
proach does not provide a likelihood estimate and Eq. (2) only works when q(x̃|x) is Gaussian
(though alternative denoising updates for other smoothing processes could be derived under the Em-
pirical Bayes framework (Raphan & Simoncelli, 2011)). Although Eq. (2) could provide reasonable
denoising results when the smoothing distribution has a small variance, x̄ obtained in this way is
only a point estimation of x̄ = E[x|x̃] and does not capture the uncertainty of p(x|x̃).

To invert more general smoothing distributions (beyond Gaussians) and to obtain likelihood es-
timations, we introduce a second autoregressive model pθ(x|x̃). The parameterized joint den-
sity pθ(x, x̃) can then be computed as pθ(x, x̃) = pθ(x|x̃)pθ(x̃). To obtain our approximation
of pdata(x), we need to integrate over x̃ on the joint distribution pθ(x, x̃) to obtain pθ(x) =∫
pθ(x, x̃)dx̃, which is in general intractable. However, we can easily obtain an evidence lower

bound (ELBO):
log pθ(x) ≥ Eq(x̃|x)[log pθ(x̃)]− Eq(x̃|x)[log q(x̃|x)] + Eq(x̃|x)[log pθ(x|x̃)]. (3)

Note that when q(x̃|x) is fixed, the entropy term Eq(x̃|x)[log q(x̃|x)] is a constant with respect to the
optimization parameters. Maximizing ELBO on pdata(x) is then equivalent to maximizing:

J(θ) = Epdata(x)

[
Eq(x̃|x)[log pθ(x̃)] + Eq(x̃|x)[log pθ(x|x̃)]

]
. (4)

From equation 4, we can see that optimizing the two models pθ(x̃) and pθ(x|x̃) separately via
maximum likelihood estimation is equivalent to optimizing J(θ).

3.3 TRADEOFF IN MODELING

In general, there is a trade-off between the difficulty of modeling pθ(x̃) and pθ(x|x̃). To see this,
let us consider two extreme cases for the variance of q(x̃|x) — when q(x̃|x) has a zero variance
and an infinite variance. When q(x̃|x) has a zero variance, q(x̃|x) is a distribution with all its
probability mass at x, meaning that no noise is added to the data distribution. In this case, modeling
the smoothed distribution would be equivalent to modeling pdata(x), which can be hard as discussed
above. The reverse smoothing process, however, would be easy since pθ(x|x̃) can simply be an
identity map to perfectly invert the smoothing process. In the second case when q(x̃|x) has an
infinite variance, modeling p(x̃) would be easy because all the information about the original data
is lost, and p(x̃) would be close to the smoothing distribution. Modeling p(x|x̃), on the other hand,
is equivalent to directly modeling pdata(x), which can be challenging.

Thus, the key here is to appropriately choose a smoothing level so that both q(x̃) and p(x|x̃) can
be approximated relatively well by existing autoregressive models. In general, the optimal variance
might be hard to find. Although one can train q(x̃|x) by jointly optimizing ELBO, in practice, we
find this approach often assigns a very large variance to q(x̃|x), which can trade-off sample quality
for better likelihoods on high dimensional image datasets. We find empirically that a pre-specified
q(x̃|x) chosen by heuristics (Saremi & Hyvarinen, 2019; Garreau et al., 2017) is able to generate
much better samples than training q(x̃|x) via ELBO. In this paper, we will focus on the sample
quality and leave the training of q(x̃|x) for future work.
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Figure 4: Density estimation on 1-d synthetic dataset. In the second figure, the digit in the paren-
thesis denotes the number of mixture components used in the baseline mixture of logistics model.
In comparison, our model in the third figure uses only 2 mixture of logistics components for each
univariate conditional distribution.

Table 1: Negative log-likelihoods on 2-d synthetic datasets (lower is better). We compare with
MADE (Germain et al., 2015), RealNVP (Dinh et al., 2016), CIF-RealNVP (Cornish et al., 2019).

Dataset RealNVP CIF-RealNVP MADE (3 mixtures) MADE (6 mixtures) Ours (3 mixtures)

Rings 2.81 2.81 3.26 2.81 2.71
Olympics 1.80 1.74 1.27 0.80 0.80

4 EXPERIMENTS

In this section, we demonstrate empirically that by appropriately choosing the smoothness level
of randomized smoothing, our approach is able to drastically improve the sample quality of exist-
ing autoregressive models on several synthetic and real-world datasets while retaining competitive
likelihoods on synthetic datasets. We also present results on image inpainting in Appendix C.2.

4.1 CHOOSING THE SMOOTHING DISTRIBUTION

To help us build insights into the selection of the smoothing distribution q(x̃|x), we first focus on
a 1-d multi-modal distribution (see figure 4 leftmost panel). We use model-based methods to invert
the smoothed distribution and provide analysis on “single-step denoising” in Appendix B.1. We
start with the exploration of three different types of smoothing distributions – Gaussian distribution,
Laplace distribution, and uniform distribution. For each type of distribution, we perform a grid
search to find the optimal variance. Since our approach requires the modeling of both pθ(x̃) and
pθ(x|x̃), we stack x̃ and x together, and use a MADE model (Germain et al., 2015) with a mixture
of two logistic components to parameterize pθ(x̃) and pθ(x|x̃) at the same time. For the baseline
model, we train a mixture of logistics model directly on pdata(x). We compare the results in the
middle two panels in figure 4.

We find that although the baseline with eight logistic components has the capacity to perfectly model
the multi-modal data distribution, which has six modes, the baseline model still fails to do so. We
believe this can be caused by optimization or initialization issues for modeling a distribution with
a high Lipschitz constant. Our method, on the other hand, demonstrates more robustness by suc-
cessfully modeling the different modes in the data distribution even when using only two mixture
components for both pθ(x̃) and pθ(x|x̃).

For all the three types of smoothing distributions, we observe a reverse U-shape correlation between
the variance of q(x̃|x) and ELBO values — with ELBO first increasing as the variance increases
and then decreasing as the variance grows beyond a certain point. The results match our discussion
on the trade-off between modeling pθ(x̃) and pθ(x|x̃) in Section 3.3. We notice from the empirical
results that Gaussian smoothing is able to obtain better ELBO than the other two distributions. Thus,
we will use q(x̃|x) = N (x̃|x, σ2I) for the later experiments.

4.2 2-D SYNTHETIC DATASETS
In this section, we consider two challenging 2-d multi-modal synthetic datasets (see figure 5). We
focus on model-based denoising methods and present discussion on “single-step denoising” in Ap-
pendix B.2. We use a MADE model with comparable number of total parameters for both the
baseline and our approach. For the baseline, we train the MADE model directly on the data. For
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(a) Rings (b) MADE (6) (c) Ours (3) (d) Olympics (e) MADE (6) (f) Ours (3)

Figure 5: Samples on 2-d synthetic datasets. We use a MADE model with comparable number of
parameters for both our method and the baseline. Our model uses 3 mixture of logistics, while the
baseline uses 6 (more) mixture of logistics.

Column 1 Column 2 Column 3 Column 4

Figure 6: From left to right: Column 1: samples from pθ(x̃). Column 2: “single-step denoising”
samples from pθ(x̃). Column 3: samples from pθ(x|x̃). Column 4: samples from the baseline
PixelCNN++ model. Samples in Column 2 (“single-step denoising”) contain wild pixels and are
less realistic compared to samples in Column 3 (modeled by another PixelCNN++). None of the
samples are conditioned on class labels.

our randomized smoothing model, we choose q(x̃|x) = N (x̃|x, 0.32I) to be the smoothing distri-
bution. We observe that with this randomized smoothing approach, our model is able to generate
better samples than the baseline (according to a human observer) even when using less logistic com-
ponents (see figure 5). We provide more analysis on the model’s performance in Appendix B.2. We
also provide the negative log-likelihoods in Tab. 1.

4.3 IMAGE EXPERIMENTS

In this section, we focus on three common image datasets, namely MNIST, CIFAR-10 (Krizhevsky
et al., 2009) and CelebA (Liu et al., 2015). We select q(x̃|x) = N (x̃|x, σ2I) to be the smoothing
distribution. We use PixelCNN++ (Salimans et al., 2017) as the model architecture for both pθ(x̃)
and pθ(x|x̃). We provide more details about settings in Appendix C.
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Image generation. For image datasets, we select the σ of q(x̃|x) = N (x̃|x, σ2I) according to
analysis in (Saremi & Hyvarinen, 2019) (see Appendix C for more details). Since q(x̃|x) is a
Gaussian distribution, we can apply “single-step denoising” to reverse the smoothing process for
samples drawn from pθ(x̃). In this case, the model pθ(x|x̃) is not required for sampling since the
gradient of pθ(x̃) can be used to denoise samples (also from pθ(x̃)) (see equation 2). We present
smoothed samples from pθ(x̃), reversed smoothing samples processed by “single-step denoising”
and processed by pθ(x|x̃) in figure 6. For comparison, we also present samples from a PixelCNN++
with parameters comparable to the sum of total parameters of pθ(x̃) and pθ(x|x̃). We find that by
using this randomized smoothing approach, we are able to drastically improve the sample quality
of PixelCNN++ (see the rightmost panel in figure 6). We note that with only pθ(x̃), a PixelCNN++
optimized on the smoothed data, we already obtain more realistic samples compared to the original
PixelCNN++ method. However, pθ(x|x̃) is needed to compute the likelihood lower bounds. We
report the sample quality evaluated by Fenchel Inception Distance (FID (Heusel et al., 2017)), Kernel
Inception Distance (KID (Bińkowski et al., 2018)), and Inception scores (Salimans et al., 2016)
in Tab. 2. Although our method obtains better samples compared to the original PixelCNN++,
our model has worse likelihoods as evaluated in BPDs. We believe this is because likelihood and
sample quality are not always directly correlated as discussed in Theis et al. (2015). We also tried
training the variance for q(x̃|x) by jointly optimizing ELBO. Although training the variance can
produce better likelihoods, it does not generate samples with comparable quality as our method (i.e.
choosing variance by heuristics). Thus, it is hard to conclusively determine what is the best way of
choosing q(x̃|x). We provide more image samples in Appendix C.4 and nearest neighbors analysis
in Appendix C.5.

Model Inception ↑ FID ↓ KID ↓ BPD ↓
PixelCNN (Oord et al., 2016b) 4.60 65.93 - 3.14
PixelIQN (Ostrovski et al., 2018) 5.29 49.46 - -
PixelCNN++ (Salimans et al., 2017) 5.30 54.25 0.046 2.92
EBM (Du & Mordatch, 2019) 6.02 40.58 - -
i-ResNet (Behrmann et al., 2019) - 65.01 - 3.45
MADE (Germain et al., 2015) - - - 5.67
Glow (Kingma & Dhariwal, 2018) - 46.90 - 3.35
Single-step (Ours) 7.50± .08 57.53 0.052 -
Two-step (Ours) 7.84± .07 29.83 0.022 ≤ 3.53

Table 2: Inception, FID and KID scores for unconditional CIFAR-10. “Single-step” samples are
generated solely by pθ(x̃). “Two-step” samples are generated by sampling from pθ(x̃) and then
denoised by pθ(x|x̃). Although samples from “single-step” might appear visually similar to samples
from the “two-step” method, there is still a gap between their Inception, FID and KID scores.

5 ADDITIONAL EXPERIMENTS ON NORMALIZING FLOWS

In this section, we demonstrate empirically on 2-d synthetic datasets that randomized smoothing
techniques can also be applied to improve the sample quality of normalizing flow models (Rezende
& Mohamed, 2015). We focus on RealNVP (Dinh et al., 2016). We compare the RealNVP model
trained with randomized smoothing, where we use pθ(x|x̃) (also a RealNVP) to revert the smoothing
process, with a RealNVP trained with the original method but with comparable number of parame-
ters. We observe that smoothing is able to improve sample quality on the datasets we consider (see
figure 7) while also obtaining competitive likelihoods. On the checkerboard dataset, our method
has negative log-likelihoods 3.64 while the original RealNVP has 3.72; on the Olympics dataset,
our method has negative log-likelihoods 1.32 while the original RealNVP has 1.80. This example
demonstrates that randomized smoothing techniques can also be applied to normalizing flow models.

6 RELATED WORK

Our approach shares some similarities with denoising autoencoders (DAE, Vincent et al. (2008))
which recovers a clean observation from a corrupted one. However, unlike DAE which has a train-
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(a) Data (b) RealNVP (c) Ours (d) Data (e) RealNVP (f) Ours

Figure 7: RealNVP samples on 2-d synthetic datasets. The RealNVP model trained with randomized
smoothing is able to generate better samples according to human observers.

able encoder and a fixed prior distribution, our approach fixes the encoder and models the prior using
an autoregressive model. Generative stochastic networks (GSN, Bengio et al. (2014)) use DAEs to
train a Markov chain whose equilibrium distribution matches the data distribution. However, GSN
needs to start the chain from a sample that is very close to the training distribution. Denoising
diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020) and NCSN (Song & Ermon (2019;
2020)) address the issue of GSNs by considering a sequence of distributions corresponding to data
corrupted with various noise levels. By setting multiple noise levels that are close to each other, the
sample from the previous level can serve as a proper initialization for the sampling process at the
next level. This way, the model can start from a distribution that is easy to model and gradually
move to the desired distribution. However, due to the large number of noise levels, such approaches
require many steps for the chain to converge to the right data distribution.

In this paper, we instead propose to use only one level of smoothing by modeling each step with
a powerful autoregressive model instead of deterministic autoencoders. Motivated by the success
of “randomized smoothing” techniques in adversarial defense (Cohen et al., 2019), we perform
randomized smoothing directly on the data distribution. Unlike denoising score matching (Vincent,
2011), a technique closely related to denoising diffusion models and NCSN, which requires the
perturbed noise to be a Gaussian distribution, we are able to work with different noise distributions.

Our smoothing method is also relevant to “dequantization” approaches that are common in normal-
izing flow models, where the discrete data distribution is converted to a continuous one by adding
continuous noise (Uria et al., 2013; Ho et al., 2019). However the added noise for “dequantization”
in flows is often indistinguishable to human eyes, and the reverse “dequantization” process is of-
ten ignored. In contrast, we consider noise scales that are significantly larger and thus a denoising
process is required.

Our method is also related to “quantization” approaches which reduce the number of “significant”
bits that are modeled by a generative model (Kingma & Dhariwal, 2018; Menick & Kalchbrenner,
2018). For instance, Glow (Kingma & Dhariwal, 2018) only models the 5 most significant bits of
an image, which improves the visual quality of samples but decreases color fidelity. SPN (Menick
& Kalchbrenner, 2018) introduces another network to predict the remaining bits conditioned on the
3 most significant bits already modeled. Modeling the most significant bits can be understood as
capturing a data distribution perturbed by bit-wise correlated noise, similar to modeling smoothed
data in our method. Modeling the remaining bits conditioned on the most significant ones in SPN is
then similar to denoising. However, unlike these quantization approaches which process an image
at the “significant” bits level, we apply continuous data independent Gaussian noise to the entire
image with a different motivation to smooth the data density function.

7 DISCUSSION

In this paper, we propose to incorporate randomized smoothing techniques into autoregressive mod-
eling. By choosing the smoothness level appropriately, this seemingly simple approach is able to
drastically improve the sample quality of existing autoregressive models on several synthetic and
real-world datasets while retaining reasonable likelihoods. Our work provides insights into how
recent adversarial defense techniques can be leveraged to building more robust generative models.
Since we apply randomized smoothing technique directly to the target data distribution other than
the model, we believe our approach is also applicable to other generative models such as variational
autoencoders (VAEs) and generative adversarial networks (GANs).
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oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

12



Published as a conference paper at ICLR 2021

A PROOFS

Theorem 1. Given a continuous and bounded 1-d distribution pdata(x) that is supported on R,
for any 1-d distribution q(x̃|x) that is symmetric (i.e. q(x̃|x) = q(x|x̃)), stationary (i.e. transla-
tion invariant) and satisfies limx→∞ pdata(x)q(x|x̃) = 0 for any given x̃, we have Lip(q(x̃)) ≤
Lip(pdata(x)), where q(x̃) ,

∫
q(x̃|x)pdata(x)dx and Lip(·) denotes the Lipschitz constant of the

given 1-d function.

Proof. First, we have that:

|∇xp(x)| = |p(x)∇x log p(x)| ≤ Lip(p) (5)

and if we assume symmetry, i.e. q(x|x̃) = q(x̃|x) then by integration by parts we have:

∇x̃q(x̃) = Ep(x)[∇x̃q(x̃|x)] = Ep(x)[∇xq(x|x̃)] = −Ep(x)[q(x|x̃)∇x log p(x)] (6)

Therefore,

Lip(q) = max
x̃
|−Ep(x)[q(x|x̃)∇x log p(x)]| = max

x̃
|
∑
x

q(x|x̃)p(x)∇x log p(x)| (7)

≤ max
x̃
|
∑
x

q(x|x̃)Lip(p)| = Lip(p) max
x̃
|
∑
x

q(x|x̃)| = Lip(p) (8)

which proves the result.

Proposition 1 (Formal). Given a D-dimensional data distribution pdata(x) and model distribution
pθ(x), assume that the smoothing distribution q(x̃|x) satisfies:

• log pθ is infinitely differentiable on the support of pθ(x)

• q(x̃|x) is symmetric (i.e. q(x̃|x) = q(x|x̃))

• q(x̃|x) is stationary (i.e. translation invariant)

• q(x̃|x) is bounded and fully supported on RD

• q(x̃|x) is element-wise independent

• Eq(x̃|x)[(x̃− x)2] is bounded, and Eq(x̃|x)[(x̃i − xi)2] = η at each dimension i.

Denote ε = x̃− x, then

Epdata(x)Eq(x̃|x)[log pθ(x̃)] = Epdata(x)

[
log pθ(x) +

η

2

∑
i

∂2 log pθ
∂x2i

]
+

∫ ∫
o(ε2)pdata(x)p(ε)dxdε,

where o(ε2) : RD → R is a function of ε such that limε→0
o(ε2)
ε2 = 0. Thus when∫ ∫

o(ε2)pdata(x)p(ε)dxdε→ 0, we have

Epdata(x)Eq(x̃|x)[log pθ(x̃)]→ Epdata(x)

[
log pθ(x) +

η

2

∑
i

∂2 log pθ
∂x2i

]
. (2)

Proof. To see this, we first note that the new training objective for the smoothed data distribution is
Epdata(x)Eq(x̃|x)[log pθ(x̃)]. Let ε = x̃ − x, because of the assumptions we have, the PDF function
q(x̃|x) can be reparameterized as p(ε) which satisfies: p is bounded and fully supported on RD; p is
element-wise independent and Ep(ε)[ε2i ] = Ep(εi)[ε2i ] = η at each dimension i (i = 1, ..., D). Then
we have

Epdata(x)Eq(x̃|x)[log pθ(x̃)] =

∫ ∫
log pθ(x + ε)pdata(x)p(ε)dxdε, (9)

Using Taylor expansion, we have:

log pθ(x + ε) = log pθ(x) +
∑
i

εi
∂ log pθ
∂xi

+
1

2

∑
i,j

εiεj
∂2 log pθ
∂xi∂xj

+ o(ε2).
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Since ε is independent of x and∫ ∞
−∞

εidεi = 0,

∫ ∞
−∞

∫ ∞
−∞

εiεjdεidεj = δi,jη,

where δi,j is the Kronecker delta function, the right hand side of Equation 9 becomes

Epdata(x)[log pθ(x)] +

∫ ∫ (
1

2

∑
i

ε2i
∂2 log pθ
∂x2i

+ o(ε2)

)
pdata(x)p(ε)dxdε (10)

= Epdata(x)

[
log pθ(x) +

η

2

∑
i

∂2 log pθ
∂x2i

]
+

∫ ∫
o(ε2)pdata(x)p(ε)dxdε. (11)

When ∫ ∫
o(ε2)pdata(x)p(ε)dxdε→ 0, (12)

we have

Epdata(x)Eq(x̃|x)[log pθ(x̃)]→ Epdata(x)

[
log pθ(x) +

η

2

∑
i

∂2 log pθ
∂x2i

]
. (13)

where the second term on the right hand side serves as a regularization for the original objective
Epdata(x)[log pθ(x)].

B DENOISING EXPERIMENTS

B.1 ANALYSIS ON 1-D DENOISING

To provide more insights into denoising, we first study “single-step denoising” (see equation 2)
on a 1-d dataset. We choose the data distribution to be a two mixture of Gaussian distribution
0.5N (−0.3, 0.12) + 0.5N (0.3, 0.12) and the smoothing distribution to be q(x̃|x) = N (x̃|x, 0.32)
(see figure 8a). Since the convolution of two Gaussian distributions is also a Gaussian distribu-
tion, the smoothed data is a mixture of Gaussian distribution given by 0.5N (−0.3, 0.12 + 0.32) +
0.5N (0.3, 0.12 + 0.32). The ground truth of ∇x̃ log p(x̃) can then be calculated in closed form.
Thus, given the smoothed data x̃, we can calculate the ground truth ∇x̃ log p(x̃) in equation 2 and
obtain x̄ using “single-step denoising”. We visualize the denoising results in figure 8b. We find that
the low density region between the two modes in pdata(x) are not modeled properly in figure 8b.
However, this is very expected since “single-step denosing” uses x̄ = E[x|x̃] as the substitute for
the denoised result. When the smoothing distribution has a large variance (like in figure 8a where
the smoothed data has merged into a one mode distribution), datapoints like x̃0 in the middle low
density region of pdata(x) can have high density in the smoothed distribution. Since x̃0, as well as
other points in the middle low density region of pdata(x), can come from both modes of pdata(x)
with high probability before the smoothing process (see figure 11a), the denoised x̄ = E[x|x̃ = x̃0]
can still be located in the middle low density region (see figure 8b). Since a large proportion of the
smoothed data is located in the middle low density region of pdata(x), we would expect certain pro-
portion of the density to remain in the low density region after “single-step denoising” just as shown
in figure 8b. However, when the smoothing distribution has a smaller variance, “single-step denois-
ing” can achieve much better denoising results (see figure 9, where we use q(x̃|x) = N (x̃|x, 0.12)).
Although denoising can be easier when the smoothing distribution has a smaller variance, modeling
the smoothed distribution could be harder as we discussed before.

In general, the right denoising results should be samples coming from p(x|x̃), which is the reason
why samples from pθ(x|x̃) (i.e. introducing the model pθ(x|x̃)) is more ideal than using Eθ[x|x̃] as
a denoising substitute (i.e. “single-step denoising”). In general, the capacity of the denoising model
pθ(x|x̃) also matters in terms of denoising results. Let us again consider the datapoint x̃0 shown in
figure 8a. If the invert smoothing model pθ(x|x̃) is a one mode logistic distribution, due to the mode
covering property of maximum likelihood estimation, given the smoothed observation x̃0, the best
the model can do is to center its only mode at x̃0 for approximating p(x|x̃ = x̃0) (see figure 10c).
Thus, like x̃0, the smoothed datapoints at the low density region between the two modes of pdata(x)
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are still likely to remain between the two modes after denoising (see figure 10b). To solve this issue,
we can increase the capacity of pθ(x|x̃) by making it a two mixture of logistics. In this case, the
distribution pθ(x|x̃ = x̃0) can be captured in a better way (see figure 11c and figure 11a). After the
invert smoothing process, like x̃0, most smoothed datapoints in the low density can be mapped to
one of the two high density modes (see figure 11b), resulting in much better denoising effects.

(a) Data distribution (q(x̃|x) = N (x̃|x, 0.32)). (b) Single-step denoising results.

Figure 8: 1-d single-step (gradient based) denoising.

(a) Data distribution (q(x̃|x) = N (x̃|x, 0.12)). (b) Single-step denoising results.

Figure 9: 1-d single-step (gradient based) denoising.

(a) Data distribution. (b) Denoised with pθ(x|x̃). (c) Distribution of pθ(x|x̃ = x̃0).

Figure 10: Denoising with pθ(x|x̃), which is modeled by one mixture of logistics.
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(a) Data (b) MADE (n = 5) (c) MADE (n = 6) (d) MADE (n = 7)

(e) Ours (n = 2) (f) Ours (n = 3) (g) Ours (n = 4)

Figure 12: Samples on 2-d synthetic datasets. We use a MADE model with comparable number of
parameters for both our method and the baseline. The models have n mixture of logistics for each
dimension. Our method is able to obtain reasonable samples when using fewer mixture components,
while the baseline still has trouble modeling the two sides of the rings when n = 7.

(a) Ground truth p(x|x̃ = x̃0). (b) Denoising with pθ(x|x̃). (c) Distribution of pθ(x|x̃ = x̃0).

Figure 11: Denoising with pθ(x|x̃), which is modeled by two mixtures of logistics.

B.2 ANALYSIS ON 2-D DENOISING

On the 2-d Olympics dataset in section 4.2, we find that the intersections between rings can be poorly
modeled with the proposed smoothing approach when only two mixture of logistics are used (see
figure 12e). We believe this can be caused if the denoising model is not flexible enough to capture
the distribution p(x|x̃). More specifically, we note that the ground truth distribution for p(x|x̃) at the
intersections of the rings is a highly complicated distribution and can be hard to capture using our
model which only has two mixtures of logistics for each dimension. If we increase the flexibility
of pθ(x|x̃) by using three or four mixtures of logistics components (note that we still use fewer
mixture components than the MADE baseline and we use comparable number of parameters), the
intersection of the rings can be modeled in an improved way (see figure 12).

We also provide “single-step denoising” results for the experiments in Section 4.2 (see figure 13),
where we use the same smoothing distribution, and the MADE model with three mixture compo-
nents as used in section 4.2. We note that “single-step denoising” results are not very good, which
is also expected. As discussed in section B.1, when the smoothing distribution has a relatively
large variance, Eθ[x|x̃] is not a good approximation for the denoised result, and we want the de-
noised sample to come from the distribution pθ(x|x̃), in which case introducing a denoising model
pθ(x|x̃) could be a better option. Although we could select q(x̃|x) to have a smaller variance so that
“single-step denoing” could work reasonably well, but modeling p(x̃) in this case could be more
challenging.
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(a) Data (b) Smoothed data distribution (c) Single-step denoising results

(d) Data (e) Smoothed data distribution (f) Single-step denoising results

Figure 13: Single-step denoising results on 2-d synthetic datasets. We use the same MADE model
with three mixture components and the same smoothing distribution as mentioned in Section 4.2.

C IMAGE EXPERIMENTS

C.1 SETTINGS

For the image experiments, we first rescale images to [−1, 1] and then perturb the images with
q(x̃|x) = N (x̃|x, σ2I). We use σ = 0.5 for MNIST and σ = 0.3 for both CIFAR-10 and CelebA.
The selection of σ is mainly based on analysis in (Saremi & Hyvarinen, 2019). More specifically,
given an image, we consider the median value of the Euclidean distance between two data points
in a dataset, and then divide it by 2

√
D, where D is the dimension of the data. This provides

us with a way of selecting the variance of q(x̃|x), when q(x̃|x) is a Gaussian distribution. We
find this selection of variance able to generate reasonably well samples in practice. We train all
the models with Adam optimizer with learning rate 0.0002. To model pθ(x|x̃), we stack x̃ and x
together at the second dimension to obtain x̂ = [x̃,x], which ensures that x̃ comes before x in the
pixel ordering. For instance, this stacking would provide an image x̂ with size 1 × (2 × 28) × 28
on a MNIST image, and an image with size 3 × (2 × 32) × 32 on a CIFAR-10 image. Since
PixelCNN++ consists of convolutional layers, we can directly feed x̂ into the default architecture
without modifying the model architecture. As the latter pixels of the input only depend on the
previous pixels in an autoregressive model and x̃ comes before x, we can parameterize pθ(x|x̃) by
computing the likelihoods only on x using the outputs from the autoregressive model.

C.2 IMAGE INPAINTING

Since both pθ(x̃) and pθ(x|x̃) are parameterized by an autoregressive model, we can also perform
image inpainting using our method. We present the inpainting results on CIFAR-10 in figure 14a
and CelebA in figure 14b, where the bottom half of the input image is being inpainted.
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(a) CIFAR10 inpainting (b) CelebA inpainting

Figure 14: Inpainting results from our two-step method. The bottom half of the images are masked
for inpainting.

C.3 IMAGE DENOISING

We notice that the reverse smoothing process can also be understood as a denoising process. Besides
the “single-step denoising” approach shown above, we can also apply pθ(x|x̃) to denoise images.
To visualize the denoising performance, we sample xtest from the test set and perturb xtest with
q(x̃|x) to obtain a noisy sample x̃test. We feed x̃test into pθ(x|x̃ = x̃test) and draw samples from the
model. We visualize the results in figure 15. As we can see, the model exhibits reasonable denoising
results, which shows that the autoregressive model is capable of learning the data distribution when
conditioned on the smoothed data.

(a) Noisy MNIST (b) MNIST denoising (c) Noisy CIFAR10 (d) CIFAR10 denoising

Figure 15: Denoising with pθ(x|x̃)
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C.4 MORE SAMPLES

Figure 16: CIFAR-10 samples from pθ(x̃) (unconditioned on class labels).
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Figure 17: CIFAR-10 samples from pθ(x|x̃) (unconditioned on class labels).
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Figure 18: CIFAR-10 samples from the original PixelCNN++ method (unconditioned on class la-
bels).
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Figure 19: CelebA samples from pθ(x̃) (unconditioned on class labels).

22



Published as a conference paper at ICLR 2021

Figure 20: CelebA samples from pθ(x|x̃) (unconditioned on class labels).
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Figure 21: CelebA samples from the original PixelCNN++ method (unconditioned on class labels).

C.5 NEAREST NEIGHBORS
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Figure 22: Nearest neighbors measured by the `2 distance between images. Images on the left of
the red vertical line are samples from our model. Images on the right are nearest neighbors in the
training dataset.
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Figure 23: Nearest neighbors measured by the `2 distance in the feature space of an Inception V3
network pretrained on ImageNet. Images on the left of the red vertical line are samples from our
model. Images on the right are nearest neighbors in the training dataset.
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Figure 24: Nearest neighbors measured by the `2 distance between images. Images on the left of
the red vertical line are samples from our model. Images on the right are nearest neighbors in the
training dataset.

27



Published as a conference paper at ICLR 2021

Figure 25: Nearest neighbors measured by the `2 distance in the feature space of an Inception V3
network pretrained on ImageNet. Images on the left of the red vertical line are samples from our
model. Images on the right are nearest neighbors in the training dataset.
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C.6 ABLATION STUDIES

In this section, we show that gradient-based “single-step denoising” will not improve sample quali-
ties without performing randomized smoothing. To see this, we draw samples from a PixelCNN++
pθ(x) trained directly on pdata(x) (i.e. without smoothing). We perform “single-step denoising”
update defined as

x = x + σ2∇x log pθ(x). (14)
We explore various values for σ, and report the results in figure 26. This shows that “single-step
denoising” alone (without randomized smoothing) will not improve sample quality of PixelCNN++.

(a) σ = 0 (Original) (b) σ = 0.01 (c) σ = 0.05 (d) σ = 0.1

Figure 26: “Single-step denoising” on PixelCNN++ trained on un-smoothed data. σ = 0 corre-
sponds to the original samples.
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