
Under review as a conference paper at ICLR 2018

TRAINING RNNS AS FAST AS CNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Common recurrent neural network architectures scale poorly due to the intrinsic
difficulty in parallelizing their state computations. In this work, we propose the
Simple Recurrent Unit (SRU) architecture, a recurrent unit that simplifies the
computation and exposes more parallelism. In SRU, the majority of computation
for each step is independent of the recurrence and can be easily parallelized. SRU
is as fast as a convolutional layer and 5-10x faster than an optimized LSTM
implementation. We study SRUs on a wide range of applications, including
classification, question answering, language modeling, translation and speech
recognition. Our experiments demonstrate the effectiveness of SRU and the trade-
off it enables between speed and performance. We open source our implementation
in PyTorch and CNTK.

1 INTRODUCTION

Recurrent neural networks (RNN) are at the core of state-of-the-art approaches for a large number of
natural language tasks, including machine translation (Cho et al., 2014; Bahdanau et al., 2015; Jean
et al., 2015; Luong et al., 2015), language modeling (Zaremba et al., 2014; Gal & Ghahramani, 2016;
Zoph & Le, 2016), opinion mining (Irsoy & Cardie, 2014), situated language understanding (Mei
et al., 2016; Misra et al., 2017), and question answering (Seo et al., 2016a; Chen et al., 2017). Key
to many of these advancements are architectures of increasing capacity. However, these networks
are difficult to scale. During learning, the sequential dependencies that are central to recurrent
architectures limit parallelization potential. This results in slow development and makes rigorous
parameter tuning intractable. Similar problems occur during deployment when slow inference creates
challenges for real-time systems at scale. In this paper, we describe the Simple Recurrent Unit (SRU),
a recurrent architecture that balances serial and parallelized computation. We evaluate SRU and
show the speed gains it provides generalize across a set of core tasks, while maintaining and even
improving overall performance over common architectures.

Recurrent networks process sequences of symbols (e.g., words in a sentence) one symbol at a
time. In commonly used architectures, including Long Short-term Memory (LSTM; Hochreiter &
Schmidhuber, 1997) and Gated Recurrent Units (GRU; Cho et al., 2014), the computation in each step
depends on completing the previous step. As a result, in contrast to operations such as convolution
and attention, recurrent computations are less amenable to parallelization. We propose to do the
majority of the computation for each step without depending on completing previous computations,
which allows for to easily parallelize it. The result of this computation are then combined via a fast
recurrent structure. Figure 1 illustrates the difference between the approaches.

While even a naive implementation of our approach leads to improvements in performance, one
of its key advantage is enabling optimization particularly fitting to existing hardware architectures.
Removing the dependencies between time steps for the most expensive operations allows to parallelize
across different dimensions and time steps. We also perform a CUDA-level optimization by compiling
element-wise operations of the computations into a single kernel function call. Figure 2 compares
our architecture’s runtimes to common architectures.

We experiment with a diverse set of core problems to evaluate our architecture, including text
classification, question answering, language modeling, machine translation, and speech recognition.
Our approach is competitive and even outperforms common recurrent and convolutional architectures,
while delivering significant speedups. We also study the relation between speed and performance,
and show SRU provides fine-grained control of the tradeoff between the two.

1



Under review as a conference paper at ICLR 2018

x1 x2 x3 x4 xn x1 x2 x3 x4 xn

Figure 1: Illustration of the difference between common RNN architectures (left) and our approach
(right). In common architectures, the entire computation (gray block) for each step xt, t = 1, . . . , n
depends on completing the previous step. This impedes any parallelization between steps. In contrast,
we propose to process the input at each step independently of the other inputs (larger gray block)
and do the recurrent combination with relatively lightweight computation (small gray block). The
majority of the computation (surrounded by the dashed line) can then be easily parallelized.

0 2 4 6

cuDNN LSTM

conv2d (k=3)

conv2d (k=2)

proposed

l = 32, d = 256

0 10 20 30 40

l = 128, d = 512

forward
backward

Figure 2: Average processing time (in milliseconds) of a batch of 32 samples using cuDNN LSTM,
word-level convolution conv2d, and the proposed SRU. l number of tokens per sequence, d: feature
dimension and k: feature width. See Section 4 for details of the setup used.

2 METHOD

2.1 SIMPLE RECURRENT UNITS

Most recurrent architectures, including LSTM and GRU, use gating to control the information flow
to alleviate vanishing and exploding gradient problems. We define a gate to be composed of a
single-layer feed-forward network with a sigmoid activation.The gate output is used in a point-wise
multiplication operation to combine two inputs, for example the current and previous time stamps.
The computation of the feed-forward network, especially the matrix multiplication, is the most
expensive operation in this process, while the point-wise multiplication is relatively lightweight. The
key design decision in SRU is making the gate computation dependent only on the current input of
the recurrence. This leaves only the point-wise multiplication computation as dependent on previous
steps. The matrix multiplications involved in the feed-forward network can then be easily parallelized.

The basic form of SRU includes a single forget gate. Given an input xt at time t, we compute a linear
transformation x̃t (Lei et al., 2017; Lee et al., 2017) and the forget gate ft:

x̃t = Wxt

ft = σ(Wfxt + bf ) .

This computation depends on xt only, which enables computing it in parallel across all time steps.
The forget gate is used to modulate the internal state ct, which is used to compute the output state ht:

ct = ft � ct−1 + (1− ft)� x̃t

ht = g(ct) ,

where g(·) is an activation function used to produce the output state ht.

The complete architecture also includes skip connections, which have been shown to improve training
of deep networks with a large number of layers (He et al., 2016; Srivastava et al., 2015; Wu et al.,
2016a). We use highway connections (Srivastava et al., 2015), and add a reset gate rt computed
similar to the forget gate ft. The reset gate is used to compute the output state ht as a combination of

2



Under review as a conference paper at ICLR 2018

the internal state g(ct) and the input xt. The complete architecture is:

x̃t = Wxt (1)
ft = σ(Wfxt + bf ) (2)
rt = σ(Wrxt + br) (3)
ct = ft � ct−1 + (1− ft)� x̃t (4)
ht = rt � g(ct) + (1− rt)� xt (5)

2.2 RELATION TO COMMON ARCHITECTURES

Existing RNN architectures use the previous output state ht−1 in the recurrence computation. For
example, in LSTM, the forget gate vector is computed by ft = σ(Wfxt +Rfht−1 +bf ). Including
Rht−1 breaks independence and parallelization: each dimension of the hidden state ht depends on
ht−1, and the computation of ht has to wait until ht−1 is fully computed. Similar design choices are
present in GRU and other RNN variants, where ht−1 is used throughout the computation.

We propose to completely drop the connection between the gating computations of step t and the
states of step t− 1, ht−1 and ct−1. Given a sequence of input vectors {x1, · · · ,xn}, {x̃t, ft, rt} for
different t = 1 · · ·n are independent and can be computed in parallel. The computation bottleneck of
our architecture is the three matrix multiplications in Equations 1-3. After computing x̃t, ft and rt,
Equations 4 and 5, where all operations are element-wise, are fast to compute.

2.3 CUDA-LEVEL OPTIMIZATION

Optimizing SRU is similar to how LSTM is optimized in cuDNN LSTM (Appleyard et al., 2016). The
SRU formulation permits two optimizations. First, matrix multiplications across all time steps can be
batched, which significantly improves the computation intensity and GPU utilization. Grouping the
matrix multiplications in Equations 1-3 into a single batch is formulated as

U> =

(
W
Wf

Wr

)
[x1,x2, · · · ,xn] ,

where n is the sequence length, U ∈ Rn×3d is the resulting matrix, and d is the hidden state size.
When the input is a mini-batch of k sequences, U would be a tensor of size (n, k, 3d). Second,
all element-wise operations of the sequence can be fused into one kernel function and parallelized
across the dimensionality of the hidden state d. Without the fusion, operations such as addition +
and sigmoid activation σ() would each invoke a separate function call, and incur additional kernel
launching latency and data moving costs. Algorithm 1 shows the pseudocode of the fused kernel
function. The implementation of a bidirectional SRU is similar: the matrix multiplications of both
directions are batched, and a fused kernel is created to handle and parallelize both directions.

3 RELATED WORK

Improving on common architectures for sequence processing has recently received significant at-
tention (Greff et al., 2015; Balduzzi & Ghifary, 2016; Miao et al., 2016; Zoph & Le, 2016; Lee
et al., 2017; Vaswani et al., 2017). Our approach is closely related to recent work on recurrent
convolutions (RCNN; Lei et al., 2015; 2016), kernel networks (KNN; Lei et al., 2017), and Quasi-
RNN (Bradbury et al., 2017). Both RCNN and Quasi-RNN incorporate word-level convolutions into
recurrent unit with sequential gated pooling. KNN generalizes RCNN and provides a theoretical
view by linking the model class to sequence kernels. SRU can be viewed as a simplified version, or
a special case, of RCNN, KNN, and Quasi-RNN, where the window size is set to 1 and highway
connections Srivastava et al. (2015) are added to facilitate increased network depth. We discuss the
relation of SRU to Quasi-RNN in more detail and evaluate the effect of the differences in Appendix A.

Various strategies have been proposed to scale network training (Goyal et al., 2017) or specifically
to speed up recurrent networks (Diamos et al., 2016; Kuchaiev & Ginsburg, 2017; Shazeer et al.,
2017). Our CUDA-level optimization for SRU is inspired by cuDNN LSTM (Appleyard et al., 2016).
While cuDNN LSTM requires six optimization steps, SRU only requires two optimizations to produce

3



Under review as a conference paper at ICLR 2018

Algorithm 1 Mini-batch version of the forward pass defined in Equations 1-5.

Indices: Sequence length n, l = 1, · · · , n; mini-batch size k, i = 1, · · · , k; hidden state dimension
d, j = 1, · · · , d; and j′ = 1, · · · , 3d.

Input: Input sequences batch x[l, i, j]; grouped matrix multiplication result U[l, i, j′]; bias terms
bf [j] and br[j]; and initial state c0[i, j].

Output: Output h[·, ·, ·] and internal c[·, ·, ·] states.
Initialize h[·, ·, ·] and c[·, ·, ·] as two n× k × d tensors.
for i = 1, · · · , k; j = 1, · · · , d do // Parallelize over i and j

c′ = c0[i, j]
for l = 1, · · · , n do

f = σ (U[l, i, j + d] + bf [j] ) // Forget gate
r = σ (U[l, i, j + d× 2] + br[j] ) // Reset gate
c = f × c+ (1− f)×U[l, i, j] // Current internal state
h = f × g(c) + (1− r)× x[l, i, j] // Current output state
c[l, i, j] = c
h[l, i, j] = h

return h[·, ·, ·] and c[·, ·, ·]

significant speed-up. The convolution-based Quasi-RNN architecture (Bradbury et al., 2017) uses
similar CUDA-level optimizations such as conv2d operation or batched matrix multiplications. The
topic of improving learning times was also studied. For example, Goyal et al. (2017) addressed
stability issues of distributed training with large mini-batches to improve training time. Our approach
can be combined with such training procedures.

The design of simple recurrent architectures, such as SRU and other related architectures, raises
questions about representational power. Balduzzi & Ghifary (2016) applies type-preserving trans-
formations to the discuss the capacity of various simplified RNN architectures. Recent work has
demonstrated the connection between neural networks and kernels (Anselmi et al., 2015; Daniely
et al., 2016; Zhang et al., 2016). In particular, Lei et al. (2017) shows that a broad model class,
including SRU and word-level CNN, can be seen as embedding sequence similarity functions, such
as string kernels (Lodhi et al., 2002), into a hidden space. Layer stacking can then be interpreted as
using higher-order sequence similarities, which introduces more non-linearity and representational
power. We empirically show SRU can achieve compelling results by stacking multiple layers.

4 EXPERIMENTS

We evaluate SRU with text classification, question answering, language modeling, machine translation,
and speech recognition tasks. This set of tasks provides broad coverage of application and computation
challenges. Training time on these benchmarks ranges from minutes (classification) to days (speech).

Unless noted otherwise, timing experiments are performed on PyTorch and a desktop machine with a
single Nvidia GeForce GTX 1070 GPU, Intel Core i7-7700K Processor, CUDA 8 and cuDNN 6021.
We use variational dropout (Gal & Ghahramani, 2016) in addition to the standard dropout for RNN
regularization. We set g(·) = tanh for all our experiments, unless specified otherwise.

The main question we study is the performance-speed trade-off SRU provides in comparison to other
recurrent architectures. We stack multiple layers of SRU to directly substitute other recurrent or
convolutional modules. We minimize hyper-parameter tuning and architecture engineering for a fair
comparison. Such efforts have a non-trivial impact on the results, which are beyond the scope of our
experiments. As much as possible, the model configurations are identical to prior work.

4.1 CLASSIFICATION

Dataset We use six classification tasks from Kim (2014):1 movie review sentiment (MR; Pang
& Lee, 2005), subjectivity (SUBJ; Pang & Lee, 2004), customer reviews polarity (CR; Hu & Liu,
2004), TREC question type (TREC; Li & Roth, 2002), MPQA opinion polarity (MPQA; Wiebe et al.,

1https://github.com/harvardnlp/sent-conv-torch

4



Under review as a conference paper at ICLR 2018

Model CR SUBJ MR TREC MPQA SST

CNN (Kim, 2014) 82.2±2.2 92.9±0.7 79.1±1.5 93.2±0.5 88.8±1.2 85.3±0.4
LSTM 82.7±2.9 92.4±0.6 80.3±1.5 93.1±0.9 89.2±1.0 87.9±0.6
SRU 84.8±1.3 93.4±0.8 82.2±0.9 93.9±0.6 89.7±1.1 89.1±0.3

Table 1: Classification (Section 4.1) test accuracies on six benchmarks.

0 50 100 150 200

70

75

80

85

CR

0 25 50 75 100 125 150

75

80

85

90

TREC

0 100 200 300 400 500

88

90

92

94

96

SUBJ

0 25 50 75 100 125 150

86

88

90

92

94
MPQA

0 100 200 300 400
72

74

76

78

80

82

84
MR

0 250 500 750 1000 1250
80

82

84

86

88

90

92
SST

cuDNN LSTM
SRU
CNN

Table 2: Mean validation accuracies (y-axis) of LSTM, CNN, and SRU for the first 100 epochs on
the six classification benchmarks. X-axis: training time used (in seconds).

2005), and the Stanford sentiment treebank (SST; Socher et al., 2013).2 Following (Kim, 2014),
we use word2vec embeddings trained on 100 billion Google News tokens. Word embeddings are
normalized to unit vectors and are fixed during training.

Setup We train RNN encoders and use the last output state to predict the class label for a given
sentence. We use a two-layer RNN encoder with 128 hidden dimensions. For SST, which provides
more data, we use a four-layer RNN. We also compare to the CNN model of Kim (2014), with the
same filter windows of 3, 4, and 5 as the original work. We use Adam (Kingma & Ba, 2014) with
default 0.001 learning rate and 0 weight decay. We train for 100 epochs, and perform 10-fold cross
validation when no standard split is specified. The result on SST is averaged over five independent
trials. We tune dropout probability among {0.1, 0.3, 0.5, 0.7} and report the best results.

Results Table 1 presents test results on the six benchmarks. Our model consistently outperforms
the other models across the datasets. Figure 2 shows validation performance relative to training
time for SRU, cuDNN LSTM, and the CNN model. Our SRU implementation is significantly faster
than cuDNN LSTM. For example, on the movie review task (MR), our model completes 100 training
epochs within 40 seconds, while cuDNN LSTM takes more than 450 seconds.

2We use the binary version of the Stanford sentiment treebank.

5



Under review as a conference paper at ICLR 2018

Model # layers Dim. Size Dev Dev Time per epoch
EM F1 RNN Total

Chen et al. (2017) 3 128 4.1m 69.5 78.8 - -
Bi-LSTM 3 128 4.1m 69.6 78.7 534s 670s
Bi-LSTM 4 128 5.8m 69.6 78.9 729s 872s

Bi-SRU 3 128 2.0m 69.1 78.4 60s 179s
Bi-SRU 4 128 2.4m 69.7 79.1 74s 193s
Bi-SRU 5 128 2.8m 70.3 79.5 88s 207s
State-of-the-art Results
BiDAF (Seo et al., 2016b) - - - 81.0 87.4 - -
R-net (Wang et al., 2017) - - - 82.1 88.1 - -

Table 3: Exact match (EM) and F1 scores of various models on SQuAD (Section 4.2). We also report
the total processing time per epoch and the time spent in RNN computations. SRU outperforms the
LSTM models, and is more than six times faster than cuDNN LSTM. We also list the state-of-the-
art test results for the EM and F1 metrics as listed on the leaderboard on December, 2017. Both
state-of-the-art methods use RNNs, and can potentially benefit from our approach.

4.2 QUESTION ANSWERING

Dataset We use the Stanford Question Answering Dataset (SQuAD; Rajpurkar et al., 2016).
SQuAD is one of the largest machine comprehension datasets, and includes over 100K question-
answer pairs extracted from Wikipedia articles. We use the standard train and development sets.

Setup We experiment with the Document Reader model (Chen et al., 2017), and compare variants
that use LSTM, as in the original setup, and SRU. We use the open source re-implementation.3 Due
to minor differences, this version performs 1% worse compared to the reported results when using the
same training options. Following the author suggestions, we use a learning rate of 0.001 instead of
0.002, the Adamax (Kingma & Ba, 2014) optimizer, and separately tuned dropout rates for the RNN
and word embeddings. This gives results comparable to the original paper. All models are trained for
up to 50 epochs, batch size 32, a fixed learning rate of 0.001, and hidden dimensionality of 128. We
use a dropout of 0.5 for input word embeddings, 0.2 for SRU layers, and 0.3 for LSTM layers.

Results Table 3 summarizes our results and state-of-the-art results as of December, 2017. LSTM
models achieve 69.6% exact match and 78.9% F1 score. These results are comparable to the original
work (Chen et al., 2017). SRU models achieve 70.3% exact match and 79.5% F1 score, outperforming
the LSTM models. Moreover, SRU exhibits 6x to 10x speed-up, more than 69% reduction in total
training time. The most recent state-of-the-art methods both use RNNs to encode text, and can
potentially benefit from our approach.

4.3 LANGUAGE MODELING

Dataset We use the Penn Treebank corpus (PTB). The processed data and splits are taken from
Mikolov et al. (2010). The data contains about 1M tokens with a truncated vocabulary of 10k.
Following standard practice, the training data is treated as a long sequence split to mini batches, the
models are trained using truncated back-propagation-through-time (BPTT; Williams & Peng, 1990).

Setup We largely follow the configuration of prior work (Zaremba et al., 2014; Gal & Ghahramani,
2016; Zoph & Le, 2016). We use a batch size of 32 and truncated back-propagation with 35 steps.
The dropout probability is 0.75 for the input embedding and output softmax layer. The standard
dropout and variational dropout probability are 0.2 for stacked RNN layers. We use SGD with an
initial learning rate of 1.0 and gradient clipping. We train up to 300 epochs, and start to decrease the
learning rate by a factor of 0.98 after 175 epochs. We use the identity activation function for g(·).

3https://github.com/hitvoice/DrQA

6



Under review as a conference paper at ICLR 2018

Model # layers Size Dev Test Time per epoch
RNN Total

LSTM (Zaremba et al., 2014) 2 66m 82.2 78.4
LSTM (Press & Wolf, 2017) 2 51m 75.8 73.2
LSTM (Inan et al., 2016) 2 28m 72.5 69.0
RHN (Zilly et al., 2017) 10 23m 67.9 65.4
KNN (Lei et al., 2017) 4 20m - 63.8
NAS (Zoph & Le, 2016) - 25m - 64.0
NAS (Zoph & Le, 2016) - 54m - 62.4

cuDNN LSTM 2 24m 73.3 71.4 53s 73s
cuDNN LSTM 3 24m 78.8 76.2 64s 79s

SRU 3 24m 68.0 64.7 21s 44s
SRU 4 24m 65.8 62.5 23s 44s
SRU 5 24m 63.9 61.0 27s 46s
SRU 6 24m 63.4 60.3 28s 47s

Table 4: Language modeling perplexities on the PTB dataset. Models in comparison are trained using
similar regularization and learning strategy: variational dropout is used except for (Zaremba et al.,
2014), (Press & Wolf, 2017) and cuDNN LSTM; input and output word embeddings are tied except
for (Zaremba et al., 2014); SGD with learning rate decay is used for all models.(Section 4.3). We
also report time per training epoch, including for the entire architecture (Total) and for the RNN only.

Results Table 4 shows perplexity results. We use a parameter budget of 24 million for a fair
comparison. cuDNN LSTM obtains a perplexity of 71.4 with 73-79 seconds per epoch. This result is
worse than most prior work. We attribute this difference to the lack of variational dropout support
in the cuDNN implementation. SRU obtains better perplexity compared to cuDNN LSTM and prior
work, reaching 64.7 with three recurrent layers and 60.3 with six layers.4 SRU also provides better
speed-perplexity trade-off: training a six-layer RNN takes 47 seconds per epoch.

4.4 MACHINE TRANSLATION

Dataset We use the WMT 2014 English→German translation task. We pre-process the training
corpus following standard practice (Peitz et al., 2014; Li et al., 2014; Jean et al., 2015). About 4M
translation pairs are left after processing. The news-test-2014 data is used as the test set and the
concatenation of news-test-2012 and news-test-2013 is used as the development set.

Setup We use OpenNMT (Klein et al., 2017), and extend the Pytorch version5 with our SRU
implementation. OpenNMT uses a seq2seq model in a recurrent encoder-decoder architecture with
attention (Luong et al., 2015). By default, the model provides ht−1, the hidden state of decoder at
step t− 1, as input to step t. Although this can potentially improve translation quality, it impedes
parallelization and slows down training. We disable this option. All models are trained with hidden
state and word embedding size of 500, 15 epochs, SGD with initial learning rate of 1.0, and batch
size 64. We modify the default of OpenNMT, and use a dropout rate of 0.1 and a weight decay of
10−5. This leads to better results for both RNN implementations.

Results Table 5 shows the translation results. We obtain better BLEU scores compared to the
reports OpenNMT results (Klein et al., 2017). SRU with 10 stacked layers achieves a BLEU score of
20.7 while cuDNN LSTM achieves 20.45 using more parameters and more training time. SRU scales
better, and we can stack many layers of SRU without significant time increase. Each additional SRU
layer in encoder and decoder adds four minutes per training epoch, while adding an LSTM layer adds
23 minutes. In comparison, the other operations (e.g., attention and output softmax) take about 95
minutes. We do not observe over-fitting on the development set, even when using 10 layers.

4Melis et al. (2017) recently demonstrated that LSTM models can achieve a perplexity of 58 via careful
regularization and hyper-parameter tuning. We leave these optimizations for future work.

5https://github.com/OpenNMT/OpenNMT-py

7



Under review as a conference paper at ICLR 2018

OpenNMT default setup # layers Size Size Test Time
all w/o Emb. BLEU in RNNs

Klein et al. (2017) 2 - - 17.60
Klein et al. (2017) + BPE 2 - - 19.34
cuDNN LSTM (wd = 0) 2 85m 10m 18.04 149 min
cuDNN LSTM (wd = 10−5) 2 85m 10m 19.99 149 min

Our setup
cuDNN LSTM 2 84m 9m 19.67 46 min
cuDNN LSTM 3 88m 13m 19.85 69 min
cuDNN LSTM 5 96m 21m 20.45 115 min

SRU 3 81m 6m 18.89 12 min
SRU 5 84m 9m 19.77 20 min
SRU 6 85m 10m 20.17 24 min
SRU 10 91m 16m 20.70 40 min
State-of-the-art Results
GNMT Ensemble (Wu et al., 2016b) 8 - 26.3 -
ConvS2S Ensemble (Gehring et al., 2017) 20 - 26.4 -
Transformer (Vaswani et al., 2017) 6 64m 27.3 -
Transformer (Vaswani et al., 2017) 6 213m 28.4 -

Table 5: English-German translation results (Section 4.4). We list the total number of parameters
(Size all) and the number excluding word embeddings (Size w/o Emb.). Our setup disables ht−1
input, which significantly reduces the training time. Timings are performed on a single Nvidia Titan
X Pascal GPU. We also list recent state-of-the-art results.

We also include the most recent state-of-the-art results in Table 5. In our experiments, we use
the default model provided by OpenNMT as our baseline architecture. Both RNN and non-RNN
architectures have achieved significantly better BLEU scores on the En-Ge translation task than the
OpenNMT default model. Combining SRU with state-of-the-art architectures such as Transformer is
an important research direction, which we plan to explore in future work. For instance, with SRU only
4 minutes are spent per recurrent layer. This reduction in RNN time enables introducing recurrent
computations into the Transformer architecture.

4.5 SPEECH RECOGNITION

Dataset We use the Switchboard-1 corpus (Godfrey et al., 1992). The training data includes about
300 hours of speech from 4, 870 sides of conversations between 520 speakers. The test data includes
about two hours of speech from 40 sides of conversations from the 2000 Hub5 evaluation.

Setup We use Kaldi (Povey et al., 2011) for feature extraction, decoding, and training of initial
HMM-GMM models. We use the standard Kaldi recipes to train maximum likelihood-criterion
context-dependent speaker adapted acoustic models with Mel-Frequency Cepstral Coefficient
(MFCC). We apply forced alignment to generate labels for neural network acoustic model training.
We use the Computational Network Toolkit (CNTK; Yu et al., 2014) instead of PyTorch. We experi-
ment with uni-directional and bi-directional models, with and without state-level Minimum Bayes
Risk (sMBR) training (Kingsbury et al., 2012). We use a trigram based language model instead
of a RNN based language model on top of the acoustic model. Word error rates are reported after
4-gram LM rescoring of lattices generated using a trigram LM as described in Povey et al. (2016).
See Appendix B for the complete setup details.

Results Table 6 summarizes the results. CNTK uses a special batching algorithms for RNNs,
and hence we were not able to use our customized SRU kernel. However, even without any kernel
optimization, the SRU is faster than an LSTM using the same number of parameters. SRU also
achieves better results on WER. Adding the highway connections Srivastava et al. (2015) to the
LSTM performs slightly worse than the baseline. Removing the dependency on the internal state h in

8



Under review as a conference paper at ICLR 2018

Model # layers # Parameters WER Time
per epoch

LSTM 5 47M 11.9 136 min
LSTM + Seq 5 47M 10.8 -
Bi-LSTM 5 60M 11.2 273 min
Bi-LSTM + Seq 5 60M 10.4 -

LSTM with highway (remove h) 12 56M 12.5 210 min
LSTM with highway 12 56M 12.2 296 min

SRU 12 56M 11.6 113 min
SRU + sMBR 12 56M 10.0 -
Bi-SRU 12 74M 10.5 220 min
Bi-SRU + sMBR 12 74M 9.5 -

Very Deep CNN + sMBR (Saon et al., 2016) 10 10.5 -
LSTM + LF-MMI (Povey et al., 2016) 3 10.3 -
Bi-LSTM + LF-MMI (Povey et al., 2016) 3 9.6 -

Table 6: Word error rate (WER) for speech recognition (Section 4.5). The timing numbers are based
on a naive implementation of SRU in CNTK. No CUDA-level optimizations are performed.

the LSTM can improve the speed but causes a slight decrease in performance. Appendix C includes
further experiments with different highway structures and number of layers.

5 CONCLUSION

We present Simple Recurrent Unit (SRU), a recurrent architecture that is as fast as CNN and easily
scales to over 10 layers. Our evaluation on a variety of NLP and speech recognition tasks demonstrates
the effectiveness of SRU. We open source our implementation to facilitate future research.

REFERENCES

Fabio Anselmi, Lorenzo Rosasco, Cheston Tan, and Tomaso Poggio. Deep convolutional networks
are hierarchical kernel machines. preprint arXiv:1508.01084, 2015.

Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. Optimizing performance of recurrent neural
networks on gpus. arXiv preprint arXiv:1604.01946, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on Learning
Representations, 2015.

David Balduzzi and Muhammad Ghifary. Strongly-typed recurrent neural networks. In Proceedings
of 33th International Conference on Machine Learning (ICML), 2016.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. In ICLR, 2017.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer
open-domain questions. In Association for Computational Linguistics (ACL), 2017.

Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. CoRR, abs/1602.05897, 2016.

9



Under review as a conference paper at ICLR 2018

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Proceedings of the 34th International Conference on Machine Learning,
2017.

Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam Coates, Erich Elsen,
Jesse Engel, Awni Hannun, and Sanjeev Satheesh. Persistent rnns: Stashing recurrent weights
on-chip. In International Conference on Machine Learning, pp. 2024–2033, 2016.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information Processing Systems 29 (NIPS), 2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. Switchboard: Telephone speech corpus for research
and development. In Proc. International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 517–520, 1992.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmidhuber.
Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. In arXiv, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

W. Hsu, Y. Zhang, and J. Glass. A prioritized grid long short-term memory rnn for speech recognition.
In Proc. SLT, 2016.

Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 168–177.
ACM, 2004.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. arXiv preprint arXiv:1611.01462, 2016.

Ozan Irsoy and Claire Cardie. Opinion mining with deep recurrent neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
720–728. Association for Computational Linguistics, 2014. doi: 10.3115/v1/D14-1080. URL
http://aclanthology.coli.uni-saarland.de/pdf/D/D14/D14-1080.pdf.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), 2015.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2014.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP 2014), 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2014.

10



Under review as a conference paper at ICLR 2018

Brian Kingsbury, Tara Sainath, and Hagen Soltau. Scalable Minimum Bayes Risk Training of Deep
Neural Network Acoustic Models Using Distributed Hessian-free Optimization. In INTERSPEECH,
2012.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. Opennmt: Open-
source toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations,
2017.

Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for lstm networks. arXiv preprint
arXiv:1703.10722, 2017.

Kenton Lee, Omer Levy, and Luke Zettlemoyer. Recurrent additive networks. arXiv preprint
arXiv:1705.07393, 2017.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2015.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Tymoshenko, Alessandro
Moschitti, and Lluís Màrquez. Semi-supervised question retrieval with gated convolutions. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. Association for Computational Linguistics,
2016.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural architectures from
sequence and graph kernels. ICML, 2017.

Liangyou Li, Xiaofeng Wu, Santiago Cortes Vaillo, Jun Xie, Andy Way, and Qun Liu. The dcu-ictcas
mt system at wmt 2014 on german-english translation task. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, 2014.

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1. Association for Computational Linguistics,
2002.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2(Feb):419–444, 2002.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation. In Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2015.

Hongyuan Mei, Mohit Bansal, and R. Matthew Walter. What to talk about and how? selective
generation using lstms with coarse-to-fine alignment. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2016. doi: 10.18653/v1/N16-1086. URL http://aclweb.org/anthology/
N16-1086.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, 2017.

Yajie Miao, Jinyu Li, Yongqiang Wang, Shi-Xiong Zhang, and Yifan Gong. Simplifying long short-
term memory acoustic models for fast training and decoding. In Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on, pp. 2284–2288. IEEE, 2016.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In INTERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30,
2010, pp. 1045–1048, 2010.

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to
actions with reinforcement learning. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2017.
Arxiv preprint: https://arxiv.org/abs/1704.08795.

11



Under review as a conference paper at ICLR 2018

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of the 42nd annual meeting on Association for
Computational Linguistics, pp. 271. Association for Computational Linguistics, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd annual meeting on association for
computational linguistics, pp. 115–124. Association for Computational Linguistics, 2005.

Stephan Peitz, Joern Wuebker, Markus Freitag, and Hermann Ney. The rwth aachen german-english
machine translation system for wmt 2014. In Proceedings of the Ninth Workshop on Statistical
Machine Translation, 2014.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannenmann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer,
and Karel Vesely. The Kaldi Speech Recognition Toolkit. In Automatic Speech Recognition and
Understanding Workshop, 2011.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal Manohar, Xingyu Na,
Yiming Wang, and Sanjeev Khudanpur. Purely sequence-trained neural networks for asr based on
lattice-free mmi. In INTERSPEECH, pp. 2751–2755, 2016.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics
(EACL), 2017.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine compre-
hension of text. In Empirical Methods in Natural Language Processing (EMNLP), 2016.

Tara N. Sainath, Oriol Vinyals, Andrew Senior, and Hasim Sak. Convolutional, Long Short-Term
Memory, Fully Connected Deep Neural Networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2015.

Hasim Sak, Andrew Senior, and Francoise Françoise. Long Short-Term Memory Recurrent Neural
Network Architectures for Large Scale Acoustic Modeling. In INTERSPEECH, 2014.

George Saon, Tom Sercu, Steven Rennie, and Hong-Kwang J. Kuo. The ibm 2016 english conversa-
tional telephone speech recognition system. In https://arxiv.org/abs/1604.08242, 2016.

Frank Seide, Gang Li, Xie Chen, and Dong Yu. Feature engineering in context-dependent deep
neural networks for conversational speech transcription. In Automatic Speech Recognition and
Understanding (ASRU), 2011 IEEE Workshop on, pp. 24–29. IEEE, 2011.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. In International Conference on Learning Representations,
2016a.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016b.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, October 2013.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Advances in neural information processing systems, pp. 2377–2385, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

12



Under review as a conference paper at ICLR 2018

Mingxuan Wang, Zhengdong Lu, Hang Li, Wenbin Jiang, and Qun Liu. gencnn: A convolutional
architecture for word sequence prediction. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), 2015.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching networks
for reading comprehension and question answering. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, 2017.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions
in language. Language resources and evaluation, 2005.

Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural computation, 2(4):490–501, 1990.

Huijia Wu, Jiajun Zhang, and Chengqing Zong. An empirical exploration of skip connections
for sequential tagging. In Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, December 2016a.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016b.

D. Yu, A. Eversole, M. Seltzer, K. Yao, B. Guenter, O. Kuchaiev, F. Seide, H. Wang, J. Droppo,
Z. Huang, Y. Zhang, G. Zweig, C. Rossbach, J. Currey, J. Gao, A. May, A. Stolcke, and M. Slaney.
An introduction to computational networks and the computational network toolkit. Technical
Report MSR, Microsoft Research, 2014. http://cntk.codeplex.com.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

Yu Zhang, Dong Yu, Michael L Seltzer, and Jasha Droppo. Speech recognition with prediction-
adaptation-correction recurrent neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pp. 5004–5008. IEEE, 2015.

Yuchen Zhang, Jason D. Lee, and Michael I. Jordan. `1-regularized neural networks are improperly
learnable in polynomial time. In Proceedings of the 33nd International Conference on Machine
Learning, 2016.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. Recurrent
highway networks. In Proceedings of the 34th International Conference on Machine Learning
(ICML), 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

13



Under review as a conference paper at ICLR 2018

A COMPARISON OF MODEL VARIANTS AND QUASI-RNN

SRU and Quasi-RNN (Bradbury et al., 2017) both were developed with the goal of speeding up the
computation of recurrent neural networks. The Quasi-RNN design aims to combine k-gram con-
volutions with adaptive pooling (i.e., fo-pooling) instead of traditional order-oblivious pooling,
such as max pooling or average pooling. Similar to other convolutional architectures (Kalchbrenner
et al., 2014; Kim, 2014; Wang et al., 2015; Dauphin et al., 2017), a k-gram filter width > 1 is used
throughout the experiments reported.

While Quasi-RNN is based on adding light recurrence to convolutional network, SRU is an instance
of the recurrent architectures introduced by Lei et al. (2017). While this prior work focused on
theoretical characteristics of the networks and their generalization, we focus on the implementation
details of SRU, including practical optimizations, and on its applicability to a wide range of tasks. The
SRU computation is similar to the degenerate case of setting k = 1 in the k-gram filter in Quasi-RNN.
The computation is then reduced to a simple feed-forward transformation (matrix multiplication),
and loses the properties and quality of a convolution.

The SRU architecture and results we present also differ from Quasi-RNN in key technical decisions:

• CUDA Optimization: While the Quasi-RNN implementation of fo-pooling is done
as a CUDA kernel function. The rest of the element-wise computation is performed via
separate function calls on top of the software library (e.g., Chainer). This choice does
not allow this type of architecture to achieve its full potential. In contrast, we implement
element-wise fusion to enable further speed optimization (Section 2.3).

• Activation and Highway Connections: SRU and Quasi-RNN differ in how the non-linear
activation function is applied. Quasi-RNN follows the common practice with convolutional
models, where the non-linear activation is applied with the convolution operation before
pooling (i.e., x̃ = tanh (W ∗ x)). In contrast, in SRU the activation function g(·) is applied
to compute the internal state (i.e., ht = g(ct)) following the derivation in (Lei et al., 2017).
SRU also includes highway connections in the architecture for better generalization of deep
networks.

Effect of Element-wise Fusion We compare the speed of the fo-pooling implementation used
in Quasi-RNN and the fused kernel implementation used in SRU. We implement a version of uni-
directional and bi-directional SRU that uses fo-pooling and separate element-wise function calls
in PyTorch. Figure 3 (left) presents the speed comparison on five classification tasks (Section 4.1)
and SQuAD (Section 4.2). The fused element-wise kernel achieves 24% to 94% speed improvement
across the six benchmarks.

Effect of Activation and Highway Connection We compare the performance of SRU variants
with different activation functions and Quasi-RNN with filter width k = 1 on the classification and
SQuAD datasets. For the classification tasks, we train using using the Adam optimizer with default
0.001 learning rate, 0 weight decay, and dropout probability tuned from values {0.1, 0.3, 0.5, 0.7}.
We perform three trials for 10-fold cross validation for each model and dataset. We report the average
test accuracy of model configurations that achieve the best development results. For SQuAD, we
train all models for a maximum of 100 epochs using the Admax optimizer with learning rate 0.001.
We perform three independent trials, and report the average performance. Figure 3 (right), Table 4,
and Table 5 summarize the results:

• SRU performs at least as good as Quasi-RNN, and often outperforms it. This illustrates the
advantages of the design choices in SRU, including the highway connections and activation
implementation.

• We observe that the optimal choice of activation function varies depending on the task. For
example, we found ReLU activation to work best on the classification benchmarks, but the
identity activation performs the best on SQuAD, while ReLU performs worst.

• The effect of highway connections is best highlighted in the question answering dataset.
Without the highway connections, we observe a performance decrease when stacking more
than four recurrent layers (Table 5). In contrast, adding highway connections results in
> 1% absolute improvement of exact match score. Figure 3 (right) also shows that no

14



Under review as a conference paper at ICLR 2018

Table 1

CR 0.235834699
SUBJ 0.2364684346
MR 0.2977398607
TREC 0.6810370494 0.235834699 0.2364684346 0.2977398607 0.6810370494 0.70914788 0.9431818182
MPQA 0.70914788
SQuAD 0.9431818182

CR
SUBJ MR

TREC
MPQA

SQuAD

94%

71%68%

30%
24%24%

�1

0 50 100

66

68

70

72

Q-RNN (k=1)

SRU (tanh)

SRU (identity)

Figure 3: Left: relative speed improvement of fused kernel (SRU) over fo-pooling kernel
(Quasi-RNN) on various benchmarks. Timings are performed on a desktop machine with GeForce
GTX 1070 and Intel Core i7-7700K Processor. Right: mean exact match (EM) score of 5-layer
SRU and Quasi-RNN on SQuAD as a function of the number of epochs. Models are trained for a
maximum of 100 epochs using Admax optimizer with learning rate 0.001.

Model CR SUBJ MR TREC MPQA

Quasi-RNN (k = 1) 83.6±2.0 93.3±0.8 81.6±1.1 92.7±0.6 89.6±1.2
Quasi-RNN (k = 1) + highway 84.0±1.9 93.4±0.8 82.1±1.2 93.2±0.6 89.6±1.2

SRU (identity) 84.1±1.9 93.5±0.7 82.1±1.0 93.8±0.4 89.7±1.1
SRU (tanh) 84.2±1.7 93.5±0.8 82.1±1.1 93.9±0.6 89.8±1.0
SRU (ReLU) 84.7±1.9 93.7±0.9 82.5±1.1 93.7±0.5 89.8±1.0

Figure 4: Comparison between Quasi-RNN and SRU on classification benchmarks. We perform 3
independent trials of 10-fold cross validation (3× 10 runs) for each model and dataset. We report the
average test accuracy of model configurations that achieve the best dev result. All models are trained
using Adam optimizer with default learning rate = 0.001, weight decay = 0 and dropout probability
tuned from values {0.1, 0.3, 0.5, 0.7}.

Model Number of recurrent layers
4 5 6

Quasi-RNN (k = 1) 70.0±0.2 69.5±0.2 69.3±0.1
Quasi-RNN (k = 1) + highway 70.1±0.1 70.7±0.2 70.6±0.1

SRU (ReLU) 70.0±0.2 70.1±0.1 70.4±0.2
SRU (tanh) 70.3±0.1 70.9±0.2 70.7±0.2
SRU (identity) 70.5±0.2 71.0±0.1 71.1±0.1

Figure 5: Comparison between Quasi-RNN and SRU on the SQuAD benchmark. We perform 3
independent trials with a maximum of 100 training epochs. We report the average exact match (EM)
score of each model configuration. Models are trained using Admax with learning rate 0.001.

15



Under review as a conference paper at ICLR 2018

over-fitting occurs on the development set within 100 training epochs. This suggests that
models with highway connections are likely to generalize better.

B SPEECH RECOGNITION EXPERIMENTAL SETUP DETAILS

Following Sainath et al. (2015), all weights are randomly initialized from the uniform distribution
with range [−0.05, 0.05], and all biases are initialized to 0 without generative or discriminative
pre-training (Seide et al., 2011). All neural network models, unless noted otherwise, are trained with
a cross-entropy criterion using truncated BPTT. No momentum is used for the first epoch, and a
momentum of 0.9 is used for subsequent epochs (Zhang et al., 2015). We apply an L2 constraint
regularization with weight 10−5 (Hinton et al., 2012) .

We experiment with uni-directional and bi-directional models. To train the uni-directional model,
we unroll 20 frames and use 80 utterances in each mini-batch. We also delayed the output of the
LSTM and SRU by 10 frames as suggested by Sak et al. (2014) to add more context. To train the
bidirectional model, we use the latency-controlled method described in Zhang et al. (2015). We
set Nc = 80 and Nr = 20 and processed 40 utterances simultaneously. In addition to our vanilla
model, we also experiment state-level Minimum Bayes Risk (sMBR) training (Kingsbury et al., 2012).
To train the recurrent model with the sMBR criterion, we adopted the two-forward-pass method
described by Zhang et al. (2015), and processed 40 utterances simultaneously.

The input features for all models are 80-dimensional log Mel filterbank features computed every ten
milliseconds, with an additional 3-dimensional pitch features. The output targets are 8802-context-
dependent triphone states, of which the numbers are determined by the last HMM-GMM training
stage.

Our setup can potentially improve if we incorporate some recent techniques that are applicable to
SRU. For example, LF-MMI for sequence training, i-vectors for speaker adaptation, and speaker
perturbation for data augmentation were applied by Povey et al. (2016). All of these techniques can
also been used for SRU. Moreover, different highway variants such as grid LSTM (Hsu et al., 2016)
can also further boost our model.

C ADDITIONAL SPEECH RECOGNITION ANALYSIS

Baseline To identify the LSTM baseline used in Section 4.5, we experiment with varying the
number of layers and parameters. Table 7 shows the performance of different settings. We follow the
setup of Sak et al. (2014).6 The best LSTM baseline is using five layers with 1024 units in each layer.

Model # layers # Parameters WER

LSTM with projection (Sak et al., 2014) 5 28M 12.2
LSTM 3 30M 12.5
LSTM (S) 5 28M 12.5
LSTM 5 47M 11.9
LSTM (L) 5 94M 12.0
LSTM 6 56M 12.3

Table 7: Word error rate (WER) for LSTM baselines on the Switchboard-1 corpus (Section 4.5).
LSTM has 1024 cells for each layer, LSTM (S) has 750 cells for each layer, and LSTM (L) has 1560
cells for each layer. LSTM with projection contains 1024 cells and a 512-node linear projection layer
is added on top of each layer output.

Effect of Highway Transform for SRU The dimensionality of the input xt and ht must be equal
in the computation of ht (Equation 5). However, when this is not the case, for example as in the
first layer of the SRU, we can use a linear projection Wl

h to match the dimensions at layer l. The

6We do not a projection layer as we found the vanilla LSTM model performs better (Table 7).

16



Under review as a conference paper at ICLR 2018

modified version of Equation 5 will then be:

ht = rt � g(ct) + (1− rt)�Wl
hxt .

We can also use a square matrix Wl
h for every layer. Table 8 shows that adding this transformation

significantly reduces the word error rate from 12.6% to 11.8% when using the same number of
parameters. This transformation is outside the recurrent loop, and can be parallelized to be computed
efficiently.

Model # layers # Parameters WER

SRU (no Wl
h, l > 1) 16 56M 12.6

SRU 12 56M 11.8

Table 8: Word error rate (WER) comparison of the effect of transformation in the highway connection.
SRU (no Wl

h, l > 1) includes the transform in the first layer only to align the dimensionality. The
second line includes the transformation for every layer.

Effect of Depth for SRU We study the effect of SRU depth on performance.7 Table 9 shows word
error rate for SRU with different number of layers. The SRU model outperforms the LSTM model
with 10 layers and the same number of parameters, while provide a 1.4x speed-up, even though it is
using a non-optimized implementation in CNTK.8 The speed gains are mainly a result of requiring
less matrix multiplications. The best performance is achieved with 12 layers.

Model # layers # Parameters WER Time per epoch

LSTM 5 47M 11.9 136 min

SRU 10 47M 11.8 97 min
SRU 12 56M 11.5 113 min
SRU 16 72M 11.5 146 min
SRU 20 89M 11.8 170 min

Table 9: Word error rate (WER) and time per training epoch as function of SRU depth for speech
recognition (Section 4.5). The timing numbers are based on a naive implementation of SRU in CNTK.
No CUDA-level optimizations are performed.

7In initial experiments, we observed that depth is more important for performance than width. Therefore,
we focus our experiments on the effect of network depth. We leave more conclusive experiments about the
trade-offs between depth and width for future work.

8The CNTK implementation does not use the customized SRU kernel.

17


