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ABSTRACT

It is a surprising fact that electronic medical records are failing at one of their pri-
mary purposes, that of tracking the set of medications that the patient is actively
taking. Studies estimate that up to 50% of such lists omit active drugs, and that
up to 25% of all active medications do not appear on the appropriate patient list.
Manual efforts to maintain these lists involve a great deal of tedious human labor,
which could be reduced by computational tools to suggest likely missing or in-
correct medications on a patient’s list. We report here an application of recurrent
neural networks to predict the likely therapeutic classes of medications that a pa-
tient is taking, given a sequence of the last 100 billing codes in their record. Our
best model was a GRU that achieved high prediction accuracy (micro-averaged
AUC 0.93, Label Ranking Loss 0.076), limited by hardware constraints on model
size. Additionally, examining individual cases revealed that many of the predic-
tions marked incorrect were likely to be examples of either omitted medications
or omitted billing codes, supporting our assertion of a substantial number of er-
rors and omissions in the data, and the likelihood of models such as these to help
correct them.

1 INTRODUCTION

The idea of exploiting the large amounts of data captured in electronic medical records for both
clinical care and secondary research holds great promise, but its potential is weakened by errors and
omissions in those records (Safran et al., 2007; de Lusignan & van Weel, 2006). Among many other
problems, accurately capturing the list of medications currently taken by a given patient is extremely
challenging (Velo & Minuz, 2009). In one study, over 50% of electronic medication lists contained
omissions (Caglar et al., 2011), and in another, 25% of all medications taken by patients were not
recorded (Kaboli et al., 2004). Even medication lists provided by the patients themselves contain
multiple errors and omissions (Green et al., 2010) .

Many efforts have been made to ensure the correctness of medication lists, most of them involving
improved communication between patients and providers (Keogh et al., 2016), but these efforts
have not yet been successful, and incorrect or incomplete medication documentation continues to
be a source of error in computational medical research. In this work we attempt to identify likely
errors and omissions in the record, predicting the set of active medications from the sequence of
most recent disease-based billing codes in the record. Predictions from such a model could be used
either in manual medication reconciliation (a common process undertaken to correct the medication
record) or to provide a prior to other models, such as an NLP model attempting to extract medication
use from the narrative clinical text.

Given the sequential nature of clinical data, we suspected that recurrent neural networks would be a
good architecture for making these predictions. In this work we investigate this potential, comparing
the performance of recurrent networks to that of similarly-configured feed forward networks.

The input for each case is a sequence of ICD-9 billing codes (Section 2.1), for which the model
produces a single, multi-label prediction of the therapeutic classes (Section 3.1) of medications
taken by the patient during the period of time covered by the billing code sequence.
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This work is designed to test how well the complete set of medications a patient is actively taking at
a given moment can be predicted by the sequence of diagnostic billing codes leading up to that mo-
ment, in the context of non-trivial label noise. It also explores whether sequence-oriented recursive
neural nets can do a better job of that prediction than standard feed-forward networks.

2 BACKGROUND

2.1 MEDICAL BILLING CODES

Each time a patient has billable contact with the healthcare system, one or more date-stamped billing
codes are attached to the patient record, indicating the medical conditions that are associated (or
suspected to be associated) with the reason for the visit. While these codes are notoriously unreliable
because they are only used for billing and not actual clinical practice (O’Malley et al., 2005), they are
nevertheless useful in a research context (Bastarache & Denny, 2011; Denny et al., 2010), especially
if they are used probabilistically (Lasko, 2014). In our institution, codes from the International
Classification of Diseases, Ninth Revision (ICD-9) have historically been used, although we have
recently transitioned to the tenth revision (ICD-10). For this project, we used ICD-9 codes.

The ICD-9 hierarchy consists of 21 chapters roughly corresponding to a single organ system or
pathologic class (Appendix B). Leaf-level codes in that tree represent single diseases or disease
subtypes. For this project, we used a subset of the two thousand most common leaf-level codes as
our input data.

2.2 RECURRENT NEURAL NETWORKS AND VARIATIONS

Most of the ICLR community are very familiar with recurrent neural networks and their variations,
but we include a conceptual description of them here for readers coming from other fields. More
thorough descriptions are available elsewhere (Graves, 2012; Olah, 2015).

A recurrent neural network is a variation in which the output of one node on input xt loops around
to become an input to another node on input xt+1, allowing information to be preserved as it iterates
over an input data sequence (Figure 1). They were introduced in the 1980s (Rumelhart et al., 1986),
but achieved explosive popularity only recently, after the development of methods to more reliably
capture long-term dependencies, which significantly improved their performance on sequence-to-
sequence mapping (Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014).

The basic RNN unit has a simple internal structure (Figure 2a). Output from the previous iteration
ht−1 and the next input in a sequence xt are both fed to the network on the next iteration. The
Long Short-Term Memory configuration (LSTM) introduces new, more complex internal structure
(Figure 2b) consisting of four neural network layers and a cell state (ct), which is carried from one
iteration to another. The additional layers form forget, input and output gates, which allow for the
information to be forgotten (reset) or passed on to varying degrees.

The LSTM model and its variations are commonly used in applications where sequence and temporal
data are involved, such as in image captioning (Vinyals et al., 2014), language translation (Sutskever
et al., 2014), and speech recognition (Graves et al., 2013). In many cases LSTM models define the
state of the art, such as with a recent conversational speech recognizer that (slightly) outperforms
professional transcriptionists (Xiong et al., 2016).

A recent variation on the LSTM architecture is the Gated Recurrent Unit (GRU) (Cho et al., 2014),
which introduces a single update gate in place of input and forget gates (Figure 2c). GRUs perform
as well as or better than LSTMs in many cases (Chung et al., 2014; Jozefowicz et al., 2015), and
have the additional advantage of a simpler structure.

In this work we try both an LSTM and a GRU on our learning problem.

2.3 RELATED WORK

Little research in the computational medical domain has used recurrent neural networks. The ear-
liest example we are aware of is the use of an LSTM model that produced reasonable accuracy
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Figure 1: Simplified representation of a recurrent neural network (left) and an unrolled recurrent
neural network (right). xi is a single element in an input sequence x, hi is an output after a single
pass through the recurrent unit. Adapted from Olah (2015).
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Figure 2: Architectures of (a) Simple RNN, (b) LSTM, and (c) GRU units. xt: a single element in
an input sequence being considered in the current iteration, ht−1, ht: the output from the previous
and current iterations, ct−1, ct: the cell states of the previous and current iterations. Adapted from
Olah (2015).

(micro-AUC 0.86) in a 128-dimensional multi-label prediction of diagnoses from regularly sam-
pled, continuously-monitored, real-valued physiologic variables in an Intensive Care Unit setting.
This was an interesting initial application, but it turned out to be only 0.001 better than the baseline
classifier, which was a multi-layer perceptron with expert-designed features (Lipton et al., 2016).
Given the dataset size (10,401 patient records) the lack of improvement may have been due to insuf-
ficient data to power accurate feature learning in the recurrent network.

Very recent work, contemporary with ours, used a GRU model with a semantic embedding in 32,787
patient records to predict the development of heart failure 3 - 6 months in the future, from medication
orders and billing codes in an 18-month window. The model achieved respectable accuracy (0.88
AUC), and demonstrated a meaningful 0.05 AUC improvement over a deep feedforward network
(Choi et al., 2016b).

Other recent work from the same group used a GRU model in a multi-label context to predict the
medications, billing codes, and time of the next patient visit from a sequence of that same infor-
mation for previous visits, using 263,706 patient records. It achieved a recall@30 of 72.4 for the
task, an improvement of 20 over a single-hidden-layer MLP with 2000 units (Choi et al., 2016a).
This is an example of using one of the strengths of a recurrent network - predicting the next element
in a sequence. It contrasts with our work that exploits a different strength of recurrent networks -
predicting a sequence or class that is semantically distinct from but parallel to the elements of the
input sequence.

The closest work to ours from a medical domain perspective is a series of collaborative filter models
(including co-occurrence counting, k-nearest neighbors, and logistic regression) that predict missing
medications using a leave-one-drug-out evaluation design, with predictions based on the rest of the
medications, ICD-9 billing codes, and demographic data. The models were trained and tested on
data from 419 patients in three different clinics, with accuracy varying by clinic, as expected, but
not appreciably by model. Most models ranked the missing drug in the top 10 results between 40
and 50% of the time, and ranked the therapeutic class of the drug in the top 10 results between 50
and 65% of the time.

Many aspects of our work can be found in these prior efforts, but none addresses our particular
problem in the same way. Our work is unique in its learning problem of identifying all drugs a
patient is likely to be taking, based only on the billing codes in the record. Like most others cited, we
use recurrent neural networks in a multi-label predictive context, but in contrast to them we compare
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to the most similar non-recurrent model we can construct, in order to evaluate the contribution of
the temporal sequence information to the solution. Finally, we use one to four orders of magnitude
more data (3.3 million instances, see Section 3.1) than these prior efforts, which we hope will give
us a more realistic assessment of the various deep architectures we use on our problem.

3 EXPERIMENTS

3.1 DATA

Our source database was the deidentified mirror of Vanderbilt’s Electronic Medical Record, which
contains billing codes, medication histories, laboratory test results, narrative text and medical imag-
ing data for over 2 million patients, reaching back nearly 30 years (Roden et al., 2008). We obtained
IRB approval to use this data in this research.

For this experiment we filtered all records in our database to include only the top 1,000 most common
medications and the top m = 2000 most common billing codes, which cover 99.5% of all medication
occurrences and 85.1% of all billing code occurrences. We then included all records from the filtered
data that had at least one medication occurrence and at least ten billing code occurrences. This
resulted in 610,076 complete patient records, which we divided 80/5/15 into training, validation,
and final test sets.

A data instance d = {E, T, y} consisted of a sequence E = {e1, . . . , en}, of one-hot billing code
vectors ei ∈ {0, 1}m and their associated times T = {t1, . . . , tn}, ti ∈ R as input, and a multi-label
vector y ∈ {0, 1}k of medication classes as the output target. The most recent n = 100 billing codes
to a selected reference time point in a given patient record were collected into the input sequence E,
and their occurrence times into T , zero padding if necessary. All medications that occurred during
the time span of T were then collected into the output vector y. Practice patterns change over time,
so simply taking the most recent 100 codes for each patient could produce a biased result. To avoid
this, we chose random reference points, stratified by medication. In other words, the reference points
were randomly chosen from the occurrences of each medication in the entire dataset, up to 10,000
points per medication. This resulted in 3.3 million data instances, an average of 5.4 instances per
patient record. Each patient’s data was included in at most one of the training, validation, or test
sets.

Because there are often many approximately equivalent medication choices for a given therapeutic
purpose, we converted medication names to their therapeutic class (beta blocker, immunosuppres-
sant, corticosteroid, etc.) as a synonym reduction step. This step also aggregated generic with brand
names, as well as different formulations of the same active ingredient. For this task we used the
Anatomical Chemical Classification System (ATC)1, which is a multi-level ontology of medica-
tions, organized by both anatomic and therapeutic class. The top level is a broad categorization of
medications (Appendix B), the bottom (fifth) level is individual medications, and we used the third
level, which contains 287 therapeutic classes of the approximately appropriate abstraction level for
our purpose. We used a publicly available mapping2 to translate between our medication names and
ATC codes, with manual mapping for the minority of medications that had no mapping entry. Our
set of medications used k = 182 third-level ATC codes, rendering our output label a 182-element-
long multi-label vector, in which an element is set yi = 1 if a medication in that class appeared in
the set of medications identified for that instance, yi = 0 otherwise. Some medications mapped to
more than one class, and we set yi = 1 for all of them.

Our medication data was collected from structured order entry records and extracted using NLP (Xu
et al., 2010) from mentions in the narrative text of a patient record that included the medication
name, dose, route and frequency. As discussed above, we assumed (and our results demonstrate)
that the medication data is incomplete, and our hope was that a model learned from a sufficiently
large dataset will be robust to the missing data.

This configuration represents the input billing codes in a sequence, but the output medications as
a multi-label vector. This is because ICD-9 codes are represented sequentially in our source data,
but medications are not. They are represented as a list that changes over time in the record. The

1http://www.whocc.no/atc/structure and principles/
2https://www.nlm.nih.gov/research/umls/rxnorm/

4



Published as a conference paper at ICLR 2017

usual goal of clinicians is to verify the list of medications at each visit, and if omissions or additions
are indicated by the patient, to change the list to reflect that. But in the time-constrained reality
of clinical practice, this reconciliation happens sporadically, and many clinicians are hesitant to
change an entry on the medication list for which they were not the original prescriber, so the timing
of the changes in the documentation do not reflect the timing of changes in reality. Therefore we
are reduced to predicting a single multi-label vector, representing the medications that the patient
probably took during the span of time represented by the input codes. (We actually did attempt
some full sequence-to-sequence mappings, with various orderings of the medication sequences, but
we did not achieve any promising results in that direction.)

3.2 CLASSIFIERS

Our main technical goal was to test the performance of recurrent neural networks on this sequence-
centric prediction problem. To evaluate the specific gains provided by the recurrent architectures,
we compare performance against a fully connected feed-forward network configured as similarly
as possible to the recurrent networks, and (as baselines) a random forest and a constant-prevalence
model. We discuss the specific configurations of these classifiers in this section.

3.2.1 RECURRENT NEURAL NETWORKS

We tested both LSTMs and GRUs in this experiment. We configured both architectures to first
compute a semantic embedding xi ∈ Rb of each input ei vector, before appending the times ti
(Figure 3) and feeding the result to three layers of recurrent units. The final output from the last pass
of recurrent unit is as a multi-label prediction for each candidate medication.

The optimal hyperparameters for the model were selected in the randomized parameter optimization
(Bergstra & Bengio, 2012), with the embedding dimension b = 32, number of layers, and number
of nodes optimized by a few trials of human-guided search. Other optimized parameters included
the fraction of dropout (between layers, input gates and recurrent connections), and L1 and L2
regularization coefficients (final values are presented in Appendix A).

Both models were implemented using Keras (Chollet, 2015) and trained for 300 iterations using
cross-entropy under the Adadelta optimizer (Zeiler, 2012).

e1 e2 e3 e100

embedding

t1 t2 t3 t100

x1 x2 x3 x100

t1 t2 t3 t100

y1 y2 y3 y182

e1 e2 e3 e100

embedding

t1 t2 t3 t100

x1 x2 x3 x100

t1 t2 t3 t100

y1 y2 y3 y182

recurrent
layers

feed-forward
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Figure 3: Recurrent (left) and feed-forward (right) neural network architectures. Arrows indicate the
flow of information. Input for both models is sequence of billing code observations e and sequence of
corresponding timestamps t. A code observation ei passes through an embedding layer, producing
an embedding vector xi, which is then appended with time t. The processed matrix then passes
through either recurrent layers or feed-forward layers. The output in both cases is a single vector y
of label probabilities.
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3.2.2 FULLY CONNECTED NEURAL NETWORK

The fully connected network used as similar an architecture as possible to the recurrent networks, in
an attempt to isolate the gain achieved from the recurrence property. Specifically, we used the same
architecture for embedding and timestamp appending (Figure 3).

Hyperparameters were optimized using random search over the number of layers, number of nodes,
dropout, activation function between layers, L1 and L2 regularization coefficients (Appendix A).
(Surprisingly, the optimizer chose tanh over ReLU as the optimal activation function.)

The models were also implemented using Keras, and were trained using cross-entropy for 500 iter-
ations under the Adadelta optimizer.

3.2.3 RANDOM FOREST

Because the random forest model is not easily structured to operate on sequences, we represented
the input data as either binary occurrence vectors v ∈ {0, 1}m, or bag-of-codes vectors w ∈ Nm
(counts of each code value in the sequence) rather than as sequences of codes with associated times.
No embedding was used, because random forest code was not able to cope with the large size of the
data in the (dense) embedded space.

Even in the (sparse) original space, the full dataset was too large for the random forest code, so we
implemented it as an ensemble of ten independent forests, each trained on one tenth of the training
data, and their average score used for test predictions.

Models were implemented using scikit-learn (Pedregosa et al., 2011) with parameters optimized
under random search (Appendix A).

While other models could reasonably serve as a baseline for this work, we chose a random forest
because they tend to perform well on widely varying datasets (Fernández-Delgado et al., 2014), they
are efficient to train and test, and they don’t require a huge effort to optimize (in order to produce a
fair comparison).

3.3 CONSTANT-PREVALENCE MODEL

This minimum baseline model simply predicts the prevalence of each label for all instances. For
example, if there were three possible medications, with prevalences of 0.3, 0.9, and 0.2, then the
prediction of this model would be a constant [0.3, 0.9, 0.2] for each instance. We include this model
in order to mitigate the fact that while all of our evaluation measures are suitable for comparing
models on the same data, some are not well suited for external comparison because they depend, for
example, on the prevalence of positive labels (Section 3.4). By including this model we can at least
establish a true minimum baseline for reference.

3.4 EVALUATION

Our main evaluation focused on the models, although we also performed a separate evaluation of
the embedding.

3.4.1 MODELS

There are several possibilities for evaluation in a multi-label classification context (Sechidis et al.,
2011; Zhang & Zhou, 2014). We chose micro-averaged area under the ROC curve (AUC) and la-
bel ranking loss as the primary methods of evaluation, because they treat each instance with equal
weight, regardless of the nature of the positive labels for that instance. In other words, we wanted
primary measures that did not give a scoring advantage to instances with either very many or very
few positive labels, or that included very rare or very prevalent labels. Additionally, both of these
measures appeal to us as intuitive extensions of the usual binary AUC, when seen from the perspec-
tive of a single instance. However, because these two measures don’t reflect all aspects of multi-label
prediction performance, we also include macro-averaged AUC, label ranking average precision and
coverage error measures.
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Micro-averaged AUC considers each of the multiple label predictions in each instance as either true
or false, and then computes the binary AUC as if they all belonged to the same 2-class problem
(Zhang & Zhou, 2014). In other words, micro-averaged AUC Aµ is:

Aµ =

∣∣(x, x′, l, l′) : f(x, l) ≥ f(x′, l′), (x, l),∈ S, (x′, l′) ∈ S̄
∣∣∣∣S∣∣∣∣S̄∣∣ , (1)

where S = {(x, l) : l ∈ Y } is the set of (instance, label) pairs with a positive label, and Y = {yi :
yi = 1, i = 1 . . . k} is the set of positive labels for input x.

Label ranking loss LR gives the average fraction of all possible (positive, negative) label pairs for
each instance in which the negative label has a higher score than the positive label (Tsoumakas et al.,
2010):

LR =
1

N

N∑
j=1

1

|Y (j)||Y (j)|

∣∣∣{(l, l′) : r(j)(l) > r(j)(l′), (l, l′) ∈ Y (j) × Y (j)
}∣∣∣ (2)

where the superscript (j) refers to the jth test instance (of N total instances) and r(l) is the predicted
rank of a label l.

Macro-averaged AUC can be thought of as averaging the AUC performance of several one-vs-all
classifiers, one model for each label. It treats each model equally, regardless of the prevalence of
positive labels for that model. This gives a score of 0.5 to the constant-prevalence model, at the
cost of weighting instances differently in order to achieve that. This is in contrast to micro-averaged
AUC, which can be thought of as averaging across instances rather than labels. It weighs each
instance equally, at the cost of a 0.5 score no longer being the random-guessing baseline.

Label ranking average precision gives the mean fraction of correct positive labels among all positive
labels with lower scores for each label. The coverage error function calculates the mean number of
labels on the ranked list that are needed to cover all the positive labels of the sample. Both of these
depend on the prevalence of positive labels in a test instance.

3.4.2 EMBEDDING

We evaluated the embedding based on how strongly related in a clinical semantic sense
the nearest neighbor to each code is (in the embedding space). A licensed physi-
cian manually annotated the list of all 2000 codes with its match category m ∈
{strongly related,loosely related,unrelated}, and we computed the empirical
marginal probability P (m) of each category, the empirical conditional probability P (m|d) of the
match category given the nearest neighbor (Manhattan) distance d and the empirical marginal prob-
ability P (d). For comparison, we computed P (m) under 100 random code pairings.

4 RESULTS AND DISCUSSION

The GRU model had the top performance by all measures, although the LSTM was a close second
(Table 1), a performance pattern consistent with previous reports (Chung et al., 2014). The deep
neural net performance was about 0.01 worse in both measures, suggesting that the recurrent models
were able to use the sequence information, but only to a small advantage over the most similar non-
temporal architecture. However, we note that both RNNs’ performance peaked at the top end of our
tractable range for model size, while the feed-forward network peaked using a model about one third
that size (Appendix A). Experimenting with the architecture, we found that increasing the number
of nodes or layers for the feed-forward network increased training time but not performance. This
suggests that the RNN performance was limited by the hardware available, and increasing the size
of the model may further increase performance, and that the feed-forward network was limited by
something else.

Both random forest models were weaker than the deep neural net, as might be expected from the
need to resort to binary and bag-of-codes representations of the input data.
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Table 1: Results of multi-label classification for each model. Baseline is the constant-prevalence
model. Perfect is the best possible performance for our data under the given measure.

Label Ranking Label Ranking Coverage
Model Micro-AUC Loss Macro-AUC Avg. Precision Error

GRU 0.927 0.076 0.861 0.603 62.6
LSTM 0.926 0.077 0.859 0.600 63.0
NN 0.916 0.086 0.835 0.570 67.3
RF (binary) 0.903 0.102 0.804 0.523 73.7
RF (counts) 0.894 0.111 0.787 0.497 77.3
Baseline 0.828 0.172 0.500 0.355 97.2
Perfect 1.0 0.0 1.0 1.0 15.0

A natural question is what performance is good enough for clinical use. While there is little clinical
experience with multi-label classifiers, we would generally expect clinicians using a binary classifier
in an advisory role to find an AUC & 0.9 to be useful, and AUC & 0.95 to be very useful. An AUC
difference of 0.01, and perhaps 0.005 are potentially noticeable in clinical use.

This 0.9/0.01 rule of thumb may loosely translate to our AUC variants, but it can directly translate
to Label Ranking Loss LR (2). If we think of a single output prediction ŷ ∈ [0, 1]k as a set of
predictions for k binary labels, then 1− AUC for that set of predictions is equivalent to LR for the
original instance ŷ. Therefore, values of LR . 0.1 may be clinically useful, and LR . 0.05 may be
very useful.

Subjectively examining performance on 20 randomly selected cases, we find very good detailed
predictions, but also evidence of both missing medications and missing billing codes. An example
of a good set of detailed predictions is from a complex patient suffering from multiple myeloma (a
type of cancer) with various complications. This patient was taking 26 medications, 24 of which
had moderate to high probability predictions (Figure 4). (We have found by eyeball that a prediction
cutoff of 0.2 gives a reasonable balance between sensitivity and specificity for our model.) In the
other direction, only two of the high-prediction classes were not actually being taken, but those
classes, along with several of the other moderately-predicted classes, are commonly used for cancer
and are clinically reasonable for the case. (Details of this and the two cases below are in Appendix
C).

A good example of missing medications is a case in which the record has multiple billing codes
for both osteoporosis (which is very commonly treated with medication) and postablative hypothy-
roidism (a deliberately induced condition that is always treated with medication), but no medications
of the appropriate classes were in the record. The GRU model predicted both of these classes, which
the patient was almost surely taking.

A good example of either missing billing codes or discontinued medications that remain documented
as active is a case in which the record has at least five years of data consisting only of codes for
Parkinson’s disease, but which lists medications for high cholesterol, hypertension, and other heart
disease. The GRU model predicted a reasonable set of medications for Parkinson’s disease and its
complications, but did not predict the other medications that are not suggested by the record.

Given how easy it was to find cases with apparently missing codes and medications, we conclude
that there is indeed a substantial amount of label noise in our data, and we therefore interpret our
models’ performance as lower bounds on the actual performance. We are encouraged that this kind
of a model may actually be useful for identifying missing medications in the record, but of course
a more thorough validation, and possibly a more accurate model, would be necessary before using
in a clinical scenario. A definitive experiment would use off-line research, including reconciling
information from various electronic and human sources to establish the ground truth of which med-
ications were being taken on a particular day, but such efforts are labor intensive and expensive, and
can only be conducted on a very small scale.

An interesting byproduct of these models is the semantic embedding of ICD-9 codes used in the
recurrent networks (Figure 5). Transforming input to a semantic embedding is a common pre-
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Figure 4: Medication predictions for a complicated patient. Each vertical bar represents the pre-
diction for a single medication class, with the height of the bar representing the confidence of the
prediction. Black labels with arrows indicate ATC therapeutic classes for medications the patient
was actually taking. Colors and letters below the axis indicate organ system groups. More detail in
Appendix C.

processing step to improve performance, but clearly the semantic understanding it provides to an
algorithm can be useful beyond the immediate learning problem (Mikolov et al., 2013). Investigating
the embedding learned in this experiment shows some generalizable potential, but it also reveals the
need for further refinement before it can be truly useful. Specifically, while it’s easy to find tight
groups of ICD-9 codes that are strongly clinically related in our embedding, we also find groups for
which we cannot see a meaningful clinical relationship.

For example, we see two groups of codes relating to kidney failure and diabetes mellitus, two classes
of very prevalent disease (Figure 5, insets). In other iterations with different parameter settings, the
kidney failure codes were even embedded in a sequence reflecting the natural progression of the
disease, with the code for dialysis (an intensive treatment for end-stage kidney failure) embedded
at the appropriate place. Interestingly, these were not the parameter settings that optimized overall
prediction performance. In other settings, such as our performance-optimal setting, the sequence
is close to the natural progression of the disease, but not quite identical. Nevertheless, this is an
exciting result that suggests great potential.

Further evaluation of the embedding found that 49% of codes were strongly related semantically
to their nearest neighbor, 10% were loosely related, and 41% unrelated. This fraction of strongly
related nearest neighbors was lower than we had hoped, but much higher than expected by chance
(Figure 6), and it definitely improved classification performance. Furthermore, it was obvious by
inspection that in general, codes closer in the embedding were more semantically related than distant
codes, but interestingly, the distance to the nearest such neighbor showed the opposite relationship
— nearest neighbors that were very close were less likely to be semantically related than nearest
neighbors that were far, and this trend is roughly linear across the full range of d (Figure 6). So the
sparser the points are in the embedded space, the more semantically related they are to their nearest
neighbor, but the causal direction of that effect and the technical reason for it are beyond the scope
of this initial work.

For this prediction problem, we settled on predicting the medications that occurred in the record
during the same time span as the billing codes used. Originally, we intended to predict only the
medications listed on the day of the reference point, but that turned out to greatly exacerbate the
missing medication problem. After trying medications that fell on the reference day only, the week
prior to the reference day, and the six months prior, our best performance both subjectively and
objectively was achieved using the full time range of the input data.

While the performance of the recurrent networks was quite good, we believe it could be improved
by including additional input data, such as laboratory test results, demographics, and perhaps vital

9
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250.81 Diabetes with other specified manifestations, type I …
362.01 Background diabetic retinopathy

250.80 Diabetes with other specified manifestations, type II or unspecified, …
250.40 Diabetes with renal manifestations, type II or unspecified, …

250.50 Diabetes with ophthalmic manifestations, type II or unspecified, …
250.42 Diabetes with renal manifestations, type II or unspecified, uncontrolled
250.01 Diabetes without complication, type I

250.62 Diabetes with neurological manifestations, type II or unspecified,
            uncontrolled

250.60 Diabetes with neurological manifestations, type II or unspecified …

357.2 Polyneuropathy in diabetes

585.3 Chronic kidney disease, Stage III (moderate)

585.4 Chronic kidney disease, Stage IV (severe)

585.5 Chronic kidney disease, Stage V

585.6 End stage renal disease

585.9 Chronic kidney disease, unspecified

V45.11 Renal dialysis status

V45.1 Postsurgical renal dialysis status

285.21 Anemia in chronic kidney disease

309.24 Adjustment disorder with anxiety

724.3 Sciatica
831.00 Closed dislocation of shoulder

701.4 Keloid scar

787.1 Heartburn

727.00 Synovitis and tenosynovitis

Figure 5: A t-SNE representation of our final embedding. The insets highlight two groups of codes
(diabetes mellitus and kidney failure) that are strongly related clinically, and a third group that is
not. Codes are colored by whether their nearest neighbor in the embedding space (which may be
different from the nearest neighbor in this t-SNE space) is strongly related (blue), loosely related
(orange), or unrelated (gray) from a clinical perspective.
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Figure 6: Semantic relatedness of nearest neighbors vs. the distance between them. Solid lines
are the conditional probabilities P (m|d) for the three values of m, dashed line is the marginal
probability P (d) of nearest neighbor distances d. Surprisingly, nearest neighbors that are farther
away (but still the nearest neighbor) are more strongly related than nearest neighbors that are closer
in the embedding space. Shaded regions, colored to correspond to the three values of m, are the 95%
CI for empirically estimated P (m) under random pairings, and represent the expected null result.

signs. We also suspect that if we can devise a way to convert our medication data into reliably-
ordered sequences, we can more fully exploit the strengths of recurrent networks for medication
prediction. We look forward to trying these and other variations in future work.
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APPENDIX A.

This appendix lists the optimized parameters for the different models. Except where noted, param-
eters were optimized under random search.

Recurrent Neural Network Models: (parameters marked with an asterisk were optimized with
human-guided search.)

Parameter Model

GRU LSTM

Dropout for input gates 0.1 0.25
Dropout for recurrent connections 0.75 0.75
L1 applied to the input weights matrices 0 0
L1 applied to the recurrent weights matrices 0 0
L2 applied to the input weights matrices 0.0001 0.0001
L2 applied to the recurrent weights matrices 0.0001 0.001
L2 applied to the output layer’s weights matrices 0.0001 0.001
Dropout before the output layer 0.5 0.5
*Number of recurrent layers 3 3
*Number of nodes in recurrent units 400 400

Feed Forward Neural Network Model:

Parameter Value

Dropout before the output layer 0.1
Dropout between feed-forward layers 0.1
Number of feed-forward layers 3
Activation function between feed-forward layers tanh
Number of nodes in feed-forward layers 128

Random Forest Model (binary input):

Parameter Value

Number of estimators 800
Ratio of features to consider when looking for the best split 0.4666
Minimum number of samples required to split an internal node 87
Minimum number of samples required to be at a leaf node 3
The function to measure the quality of a split entropy
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APPENDIX B.

This appendix lists the top level classes for International Statistical Classification of Diseases and
Related Health Problems, Ninth Revision (ICD-9) and Anatomical Chemical Classification System
(ATC).

ICD-9 chapters.

Code range Description

001-139 Infectious and parasitic diseases
140-239 Neoplasms
240-279 Endocrine, nutritional and metabolic diseases, and immunity disorders
280-289 Diseases of the blood and blood-forming organs
290-319 Mental disorders
320-359 Diseases of the nervous system
360-389 Diseases of the sense organs
390-459 Diseases of the circulatory system
460-519 Diseases of the respiratory system
520-579 Diseases of the digestive system
580-629 Diseases of the genitourinary system
630-679 Complications of pregnancy, childbirth, and the puerperium
680-709 Diseases of the skin and subcutaneous tissue
710-739 Diseases of the musculoskeletal system and connective tissue
740-759 Congenital anomalies
760-779 Certain conditions originating in the perinatal period
780-799 Symptoms, signs, and ill-defined conditions
800-999 Injury and poisoning

V01-V91 Supplementary - factors influencing health status and contact with health services
E000-E999 Supplementary - external causes of injury and poisoning

Top level groups ATC codes and their corresponding colors used in Figure 4 and Appendix C.

Code Contents Color

A Alimentary tract and metabolism
B Blood and blood forming organs
C Cardiovascular system
D Dermatologicals
G Genito-urinary system and sex hormones
H Systemic hormonal preparations, excluding sex hormones and insulins
J Antiinfectives for systemic use
L Antineoplastic and immunomodulating agents
M Musculo-skeletal system
N Nervous system
P Antiparasitic products, insecticides and repellents
R Respiratory system
S Sensory organs
V Various
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APPENDIX C.

This appendix presents results from three illustrative cases from the dozen cases randomly selected
for individual evaluation.

CASE 1.

ICD-9 code Code description Time estimate (ago)

203.00 Multiple myeloma, without mention of having achieved remission 4.8 months ago
273.1 Monoclonal paraproteinemia 4.8 months ago
285.9 Anemia, unspecified 4.8 months ago

276.50 Volume depletion, unspecified 4.8 months ago
733.00 Osteoporosis, unspecified 4.8 months ago
203.00 Multiple myeloma, without mention of having achieved remission 4.8 months ago
203.00 Multiple myeloma, without mention of having achieved remission 2.9 months ago
203.01 Multiple myeloma, in remission 2.9 months ago
273.1 Monoclonal paraproteinemia 2.9 months ago
273.1 Monoclonal paraproteinemia 1.6 months ago
279.3 Unspecified immunity deficiency 1.6 months ago

203.00 Multiple myeloma, without mention of having achieved remission 1.6 months ago
781.2 Abnormality of gait 3.7 weeks ago

203.00 Multiple myeloma, without mention of having achieved remission 3.7 weeks ago
401.9 Unspecified essential hypertension 3.7 weeks ago

V12.54 Personal history of transient ischemic attack (TIA), and cerebral infarction without residual deficits 3.7 weeks ago
794.31 Nonspecific abnormal electrocardiogram [ECG] [EKG] 3.7 weeks ago
786.09 Other respiratory abnormalities 3.7 weeks ago
273.1 Monoclonal paraproteinemia 3.7 weeks ago

203.00 Multiple myeloma, without mention of having achieved remission 3.6 weeks ago
V58.69 Long-term (current) use of other medications 3.6 weeks ago
794.31 Nonspecific abnormal electrocardiogram [ECG] [EKG] 3.4 weeks ago
203.00 Multiple myeloma, without mention of having achieved remission 4 days ago
V42.82 Peripheral stem cells replaced by transplant 4 days ago
203.01 Multiple myeloma, in remission 3 days ago

38.97 Central venous catheter placement with guidance 3 days ago
V42.82 Peripheral stem cells replaced by transplant 3 days ago
V58.81 Fitting and adjustment of vascular catheter 3 days ago
203.00 Multiple myeloma, without mention of having achieved remission 3 days ago
V42.82 Peripheral stem cells replaced by transplant 2 days ago
203.01 Multiple myeloma, in remission 2 days ago
203.00 Multiple myeloma, without mention of having achieved remission 1 day ago
V42.82 Peripheral stem cells replaced by transplant 1 day ago
203.00 Multiple myeloma, without mention of having achieved remission now
V42.82 Peripheral stem cells replaced by transplant now

Medication predictions for a complicated patient. Each vertical bar represents the prediction for
a single medication class, with the height of the bar representing the confidence of the prediction.
Black labels above arrows indicate ATC therapeutic classes for medications the patient was actually
taking. Colors and letters below the axis indicate high-level therapeutic class groups.
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Predicted vs. actual medication classes for the patient in Case 1. The four-character sequence in
the first and fourth columns is the ATC code for the medication therapeutic class, and an asterisk in
the first column indicates that the predicted medication is in the actual medication list. Probabilities
listed are the model predictions for the listed therapeutic class. In the predicted medications column,
all predictions with probability at least 0.2 are listed.

Top predictions Prob. True labels Prob.

S03B* Corticosteroids 97.01% S03B Corticosteroids 97.01%
S01C* Antiinflammatory agents and antiinfectives in combi-

nation
95.54% S01C Antiinflammatory agents and antiinfectives in combi-

nation
95.54%

S02B* Corticosteroids 95.54% S02B Corticosteroids 95.54%
L01A Alkylating agents 94.00% D07X Corticosteroids, other combinations 93.37%
D07X* Corticosteroids, other combinations 93.37% H02A Corticosteroids for systemic use, plain 91.06%
H02A* Corticosteroids for systemic use, plain 91.06% D07A Corticosteroids, plain 90.83%
D07A* Corticosteroids, plain 90.83% S01B Antiinflammatory agents 90.79%
S01B* Antiinflammatory agents 90.79% D10A Anti-acne preparations for topical use 88.56%
D10A* Anti-acne preparations for topical use 88.56% C05A Agents for treatment of hemorrhoids and anal fissures

for topical use
88.52%

C05A* Agents for treatment of hemorrhoids and anal fissures
for topical use

88.52% R01A Decongestants and other nasal preparations for topi-
cal use

87.02%

A04A Antiemetics and antinauseants 87.95% J05A Direct acting antivirals 86.83%
R01A* Decongestants and other nasal preparations for topi-

cal use
87.02% A01A Stomatological preparations 86.11%

J05A* Direct acting antivirals 86.8% N02A Opioids 84.86%
A01A* Stomatological preparations 86.11% B05C Irrigating solutions 82.56%
N02A* Opioids 84.86% A12C Other mineral supplements 79.50%
B05C* Irrigating solutions 82.56% B05X I.V. solution additives 74.84%
A12C* Other mineral supplements 79.50% L04A Immunosuppressants 68.76%
B05X* I.v. solution additives 74.84% N02B Other analgesics and antipyretics 57.24%
L04A* Immunosuppressants 68.76% S01A Antiinfectives 54.59%
N05A Antipsychotics 58.64% J01D Other beta-lactam antibacterials 43.40%
N02B* Other analgesics and antipyretics 57.24% C03C High-ceiling diuretics 39.88%
S01A* Antiinfectives 54.59% J01M Quinolone antibacterials 29.78%
L03A Immunostimulants 45.96% C07A Beta blocking agents 27.08%
A02B Drugs for peptic ulcer and gastro-oesophageal reflux

disease
44.56%

J01D* Other beta-lactam antibacterials 43.40% N03A Antiepileptics 20.00%
C03C* High-ceiling diuretics 39.88% J01X Other antibacterials 5.88%
B01A Antithrombotic agents 37.80% M03B Muscle relaxants, centrally acting agents 5.09%
V03A All other therapeutic products 34.18%
R06A Antihistamines for systemic use 31.78%
A06A Drugs for constipation 31.57%
J01M* Quinolone antibacterials 29.78%
N05B Anxiolytics 29.42%
D04A Antipruritics, incl. antihistamines, anesthetics, etc. 27.62%
C07A* Beta blocking agents 27.08%
L01X Other antineoplastic agents 24.72%
R05C Expectorants, excl. combinations with cough sup-

pressants
20.43%

N03A* Antiepileptics 20.00%
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CASE 2.

ICD-9 code Code description Time estimate (ago)

735.4 Other hammer toe (acquired) 2.4 years ago
729.5 Pain in limb 2.4 years ago
244.1 Other postablative hypothyroidism 1.5 years ago
285.9 Anemia, unspecified 1.5 years ago
244.1 Other postablative hypothyroidism 1.2 years ago
244.1 Other postablative hypothyroidism 11.5 months ago

733.00 Osteoporosis, unspecified 11.5 months ago
733.01 Senile osteoporosis 7.7 months ago
268.9 Unspecified vitamin D deficiency 7.7 months ago
729.5 Pain in limb 7.7 months ago
174.9 Malignant neoplasm of breast (female), unspecified 7.7 months ago

722.52 Degeneration of lumbar or lumbosacral intervertebral disc 7.7 months ago
279.3 Unspecified immunity deficiency 7.7 months ago

733.01 Senile osteoporosis 6.4 months ago
733.01 Senile osteoporosis 6.2 months ago
244.1 Other postablative hypothyroidism 6.0 months ago
401.1 Benign essential hypertension 6.0 months ago

V58.69 Long-term (current) use of other medications 1.9 weeks ago
733.01 Senile osteoporosis now
244.1 Other postablative hypothyroidism now

V58.69 Long-term (current) use of other medications now

Predicted vs. actual medication classes for Case 2. Table structure as in case 1.

Top predictions Prob. True labels Prob.

M05B Drugs affecting bone structure and mineralization 88.18% A11C Vitamin a and d, incl. combinations of the two 39.42%
H03A Thyroid preparations 84.82% N06A Antidepressants 20.88%
H05A Parathyroid hormones and analogues 66.33% C10A Lipid modifying agents, plain 17.05%
A11C* Vitamin a and d, incl. combinations of the two 39.42% N03A Antiepileptics 15.61%
N02B Other analgesics and antipyretics 37.58% C09C Angiotensin ii antagonists, plain 10.38%
A01A Stomatological preparations 23.05% L02B Hormone antagonists and related agents 4.22%
A12A Calcium 21.59%
N06A* Antidepressants 20.88%
C07A Beta blocking agents 20.81%

Medication predictions for a simpler patient. Note that the high-prediction medications are clinically
reasonable given the billing codes in the sequence. Figure representation as in case 1.
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CASE 3.

ICD-9 code Code description Time estimate (ago)

332.0 Paralysis agitans 5.0 years ago
332.0 Paralysis agitans 4.7 years ago
332.0 Paralysis agitans 4.5 years ago
332.0 Paralysis agitans 4.0 years ago
332.0 Paralysis agitans 3.5 years ago
332.0 Paralysis agitans 3.0 years ago
332.0 Paralysis agitans 2.7 years ago
332.0 Paralysis agitans 2.4 years ago
332.0 Paralysis agitans 2.0 years ago
332.0 Paralysis agitans 1.7 years ago
332.0 Paralysis agitans 1.0 years ago
332.0 Paralysis agitans 9.9 months ago
332.0 Paralysis agitans 4.1 months ago
332.0 Paralysis agitans now

Predicted vs. actual medication classes for Case 3. Table structure as in case 1.

Top predictions Prob. True labels Prob.

N04B Dopaminergic agents 97.66% C10A Lipid modifying agents, plain 13.90%
N03A Antiepileptics 34.01% C09A Ace inhibitors, plain 9.21%
N02B Other analgesics and antipyretics 32.81% C01E Other cardiac preparations 5.56%
N06A Antidepressants 26.10% C02C Antiadrenergic agents, peripherally acting 0.72%
N02A Opioids 20.33% G03B Androgens 0.32%

A14A Anabolic steroids 0.08%

Medication predictions for a patient with only one ICD-9 code, repeated many times over five years.
The medications listed under true labels are not indicated for paralysis agitans (Parkinson’s disease),
but the patient was surely taking them for reasons not documented in the ICD-9 sequence. The
model predicted mostly reasonable medications for a patient with Parkinson’s disease, especially
Dopaminergic agents, which is the primary treatment for the disease. Figure representation as in
case 1, above.
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