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ABSTRACT

Knowledge distillation is a potential solution for model compression. The idea
is to make a small student network imitate the target of a large teacher network,
then the student network can be competitive to the teacher one. Most previous
studies focus on model distillation in the classification task, where they propose
different architectures and initializations for the student network. However, only
the classification task is not enough, and other related tasks such as regression and
retrieval are barely considered. To solve the problem, in this paper, we take face
recognition as a breaking point and propose model distillation with knowledge
transfer from face classification to alignment and verification. By selecting appro-
priate initializations and targets in the knowledge transfer, the distillation can be
easier in non-classification tasks. Experiments on the CelebA and CASIA-WebFace
datasets demonstrate that the student network can be competitive to the teacher
one in alignment and verification, and even surpasses the teacher network under
specific compression rates. In addition, to achieve stronger knowledge transfer, we
also use a common initialization trick to improve the distillation performance of
classification. Evaluations on the CASIA-Webface and large-scale MS-Celeb-1M
datasets show the effectiveness of this simple trick.

1 INTRODUCTION

Since the emergence of Alexnet(Krizhevsky et al., 2012), larger and deeper networks have shown to
be more powerful(Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016). However, as
the network going larger and deeper, it becomes difficult to use it in mobile devices. Therefore, model
compression has become necessary in compressing the large network into a small one. In recent years,
many compression methods have been proposed, including knowledge distillation(Ba & Caruana,
2014; Hinton et al., 2014; Romero et al., 2015), weight quantization(Gong et al., 2015; Rastegari et al.,
2016), weight pruning(Han et al., 2016; Szegedy et al., 2016) and weight decomposition(Canziani
et al., 2017; Novikov et al., 2015). In this paper, we focus on the knowledge distillation, which is a
potential approach for model compression.

In knowledge distillation, there is usually a large teacher network and a small student one, and the
objective is to make the student network competitive to the teacher one by learning specific targets of
the teacher network. Previous studies mainly consider the selection of targets in the classification
task, e.g., hidden layers(Luo et al., 2016), logits(Ba & Caruana, 2014; Urban et al., 2017; Sau &
Balasubramanian, 2017) or soft predictions(Hinton et al., 2014; Romero et al., 2015). However, only
the distillation of the classification task is not enough, and some common tasks such as regression
and retrieval should also be considered. In this paper, we take face recognition as a breaking point
that we start with the knowledge distillation in face classification, and consider the distillation on two
domain-similar tasks, including face alignment and verification. The objective of face alignment is to
locate the key-point locations in each image; while in face verification, we have to determine if two
images belong to the same identity.

For distillation on non-classification tasks, one intuitive idea is to adopt a similar method as in face
classification that trains teacher and student networks from scratch. In this way, the distillation on
all tasks will be independent, and this is a possible solution. However, this independence cannot
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give the best distillation performance. There has been strong evidence that in object detection(Ren
et al., 2015), object segmentation(Chen et al., 2015) and image retrieval(Zhao et al., 2015), they all
used the pretrained classification model(on ImageNet) as initialization to boost performance. This
success comes from the fact that their domains are similar, which makes them transfer a lot from
low-level to high-level representation(Yosinski et al., 2014). Similarly, face classification, alignment
and verification also share the similar domain, thus we propose to transfer the distilled knowledge
of classification by taking its teacher and student networks to initialize corresponding networks in
alignment and verification.

Another problem in knowledge transfer is what targets should be used for distillation? In face
classification, the knowledge is distilled from the teacher network by learning its soft-prediction,
which has been proved to work well(Hinton et al., 2014; Romero et al., 2015). However, in face
alignment(Wu et al., 2015) and verification(Wu et al., 2015), they have additional task-specific targets.
As a result, selecting the classification or task-specific target for distillation remains a problem. One
intuitive idea is to measure the relevance of objectives between non-classification and classification
tasks. For example, it is not obvious to see the relation between face classification and alignment, but
the classification can help a lot in verification. Therefore, it seems reasonable that if the tasks are
highly related, the classification target is preferred, or the task-specific target is better.

Inspired by the above thoughts, in this paper, we propose the model distillation in face alignment
and verification by transferring the distilled knowledge from face classification. With appropriate
selection of initializations and targets, we show that the distillation performance of alignment and
verification on the CelebA(Liu et al., 2015) and CASIA-WebFace(Yi et al., 2016) datasets can
be largely improved, and the student network can even exceed the teacher network under specific
compression rates.

This knowledge transfer is our main contribution. In addition, we realize that in the proposed
method, the knowledge transfer depends on the distillation of classification, thus we use a common
initialization trick to further boost the distillation performance of classification. Evaluations on the
CASIA-WebFace and large-scale MS-Celeb-1M(Guo et al., 2016) datasets show that this simple trick
can give the best distillation results in the classification task.

2 RELATED WORK

In this part, we introduce some previous studies on knowledge distillation. Particularly, all the
following studies focus on the classification task. Buciluǎ et al. (2006) propose to generate synthetic
data by a teacher network, then a student network is trained with the data to mimic the identity labels.
However, Ba & Caruana (2014) observe that these labels have lost the uncertainties of the teacher
network, thus they propose to regress the logits (pre-softmax activations)(Hinton et al., 2014). Besides,
they prefer the student network to be deep, which is good to mimic complex functions. To better
learn the function, Urban et al. (2017) observe the student network should not only be deep, but also
be convolutional, and they get competitive performance to the teacher network in CIFAR(Krizhevsky
& Hinton, 2009). Most methods need multiple teacher networks for better distillation, but this will
take a long training and inference time(Sau & Balasubramanian, 2017). To address the issue, Sau &
Balasubramanian (2017) propose noise-based regularization that can simulate the logits of multiple
teacher networks. However, Luo et al. (2016) observe the values of these logits are unconstrained,
and the high dimensionality will cause fitting problem. As a result, they use hidden layers as they
capture as much information as the logits but are more compact.

All these methods only use the targets of the teacher network in distillation, while if the target is not
confident, the training will be difficult. To solve the problem, Hinton et al. (2014) propose a multi-task
approach which uses identity labels and the target of the teacher network jointly. Particularly, they
use the post-softmax activation with temperature smoothing as the target, which can better represent
the label distribution. One problem is that student networks are mostly trained from scratch. Given
the fact that initialization is important, Romero et al. (2015) propose to initialize the shallow layers of
the student network by regressing the mid-level target of the teacher network. However, these studies
only consider knowledge distillation in classification, which largely limits its application in model
compression. In this paper, we consider face recognition as a breaking point and extend knowledge
distillation to non-classification tasks.
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3 DISTILLATION OF CLASSIFICATION

Due to the proposed knowledge transfer depends on the distillation of classification, improving the
classification itself is necessary. In this part, we first review the idea of distillation for classification,
then introduce how to boost it by a simple initialization trick.

3.1 REVIEW OF KNOWLEDGE DISTILLATION

We adopt the distillation framework in Hinton et al. (2014), which is summarized as follows. Let T and
S be the teacher and student network, and their post-softmax predictions to be PT = softmax(aT)
and PS=softmax(aS), where aT and aS are the pre-softmax predictions, also called the logits(Ba
& Caruana, 2014). However, the post-softmax predictions have lost some relative uncertainties that
are more informative, thus a temperature parameter τ is used to smooth predictions PT and PS to be
PτT and PτS, which are denoted as soft predictions:

PτT = softmax(aT/τ), PτS = softmax(aS/τ). (1)

Then, consider PτT as the target, knowledge distillation optimizes the following loss function

L(Wcls
S ) = H(PS,y

cls) + αH(PτS,P
τ
T), (2)

wherein Wcls
S is the parameter of the student network, and ycls is the identity label. For simplicity,

we omitmin and the number of samplesN , and denote the upper right symbol cls as the classification
task. In addition, H(, ) is the cross-entropy, thus the first term is the softmax loss, while the second
one is the cross-entropy between the soft predictions of the teacher and student network, with α
balancing between the two terms. This multi-task training is advantageous because the target PτT
cannot be guaranteed to be always correct, and if the target is not confident, the identity label ycls

will take over the training of the student work.

3.2 INITIALIZATION TRICK

It is noticed that in Eqn.(2), the student network is trained from scratch. As demonstrated in Ba &
Caruana (2014) that deeper student networks are better for distillation, initialization thus has become
very important(Hinton et al., 2006; Ioffe & Szegedy, 2015). Based on the evidence, Fitnet(Romero
et al., 2015) first initializes the shallow layers of the student network by regressing the mid-level
target of the teacher network, then it follows Eqn.(2) for distillation. However, only initializing the
shallow layers is still difficult to learn high-level representation, which is generated by deep layers.
Furthermore, Yosinski et al. (2014) shows that the network transferability increases as tasks become
more similar. In our case, the initialization and distillation are both classification tasks with exactly
the same data and identity labels, thus more deep layers should be initialized for higher transferability,
and we use a simple trick to achieve this.

To obtain an initial student network, we train it with softmax loss:

L(Wcls
S0

) = H(PS,y
cls), (3)

wherein the lower right symbol S0 denotes the initialization for student network S. In this way, the
student network is fully initialized. Then, we modify Eqn.(2) as

L(Wcls
S |Wcls

S0
) = H(PS,y

cls) + αH(PτS,P
τ
T), (4)

wherein Wcls
S |Wcls

S0
indicates that Wcls

S is trained with the initialization of Wcls
S0

, and the two
entropy terms remain the same. This process is shown in Fig.1(a). It can be seen that the only
difference with Eqn.(2) is that the student network is trained with the full initialization, and this
simple trick has been commonly used, e.g., initializing the VGG-16 model based on a fully pretrained
model(Simonyan & Zisserman, 2015). We later show that this trick can get promising improvements
over Eqn.(2) and Fitnet(Romero et al., 2015).

4 DISTILLATION TRANSFER

In this part, we show how to transfer the distilled knowledge from face classification to face alignment
and verification. The knowledge transfer consists of two steps: transfer initialization and target
selection, which are elaborated as follows.
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Figure 1: The pipeline of knowledge distillation in face classification, alignment and verification.
ycls and yali are the ground truth labels for classification and alignment respectively.

4.1 TRANSFER INITIALIZATION

The first step of the transfer is transfer initialization. The motivation is based on the evidence
that in detection, segmentation and retrieval, they have used the pretrained classification model (on
ImageNet) as initialization to boost performance(Ren et al., 2015; Chen et al., 2015; Zhao et al., 2015).
The availability of this idea comes from the fact that they share the similar domain, which makes
them transfer easily from low-level to high-level representation(Yosinski et al., 2014). Similarly, the
domains of face classification, alignment and verification are also similar, thus we can transfer the
distilled knowledge in the same way.

For simplicity, we denote the parameters of teacher and student networks in face classification as
Wcls

T and Wcls
S . Analogically, they are Wali

T and Wali
S in alignment, while Wver

T and Wver
S in

verification. As analyzed above, in the distillation of alignment and verification, teacher and student
networks will be initialized by Wcls

T and Wcls
S respectively.

4.2 TARGET SELECTION

Based on the initialization, the second step is to select appropriate targets in the teacher network for
distillation. One problem is that non-classification tasks have their own task-specific targets, but
given the additional soft predictions PτT, which one should we use? To be clear, we first propose the
general distillation for non-classification tasks as follows:

L(WS|Wcls
S ) = Φ (WS,y) + αH(PτS,P

τ
T) + βΨ (KS,KT) , (5)

where WS and y denote the task-specific network parameter and label respectively. Φ (WS,y) is
the task-specific loss function, and Ψ (KS,KT) is the task-specific distillation term with the targets
selected as KT and KS in teacher and student networks. Besides, α and β are the balancing terms
between classification and non-classification tasks. In Eqn.(5), the above problem has become how
to set α and β for a given non-classification task. In the following two parts, we will give some
discussions on two tasks: face alignment and verification.

4.2.1 ALIGNMENT

The task of face alignment is to locate the key-point locations for each image. Without loss of
generality, there is no any identity label, but only the keypoint locations for each image. Face
alignment is usually considered as a regression problem(Wu et al., 2015), thus we train the teacher
network with optimizing the Euclidean loss:

L(Wali
T |Wcls

T ) =
∥∥RT − yali

∥∥2, (6)

wherein RT is the regression prediction of the teacher network and yali is the regression label. In
distillation, except for the available soft predictions PτT(classification target), another one is the
task-specific target that can be the hidden layer KT(Luo et al., 2016), and it satisfies RT = fc (KT)
with fc being a fully-connected mapping.

In face classification, the key in distinguishing different identities is the appearance around the
key-points such as shape and color, but the difference of key-point locations for different identities
is small. As a result, face identity is not the main influencing factor for these locations, but it is
still related as different identities may have slightly different locations. Instead, pose and viewpoint

4



Under review as a conference paper at ICLR 2018

variations have a much larger influence. Therefore, in face alignment, the hidden layer is preferred
for distillation, which gives Eqn.(7) by setting α < β, as shown in Fig.1(b).

L(Wali
S |Wcls

S ) =
∥∥RS − yali

∥∥2 + αH(PτS,P
τ
T) + β‖KS −KT‖2. (7)

4.2.2 VERIFICATION

The task of face verification is to determine if two images belong to the same identity. In verification,
triplet loss(Schroff et al., 2015) is a widely used metric learning method(Schroff et al., 2015), and
we take it for model distillation. Without loss of generality, we have the same identity labels as in
classification, then the teacher network can be trained as

L(Wver
T |Wcls

T ) =
[
‖Ka

T −Kp
T‖

2 − ‖Ka
T −Kn

T‖
2

+ λ
]
+
, (8)

where Ka
T, Kp

T and Kn
T are the hidden layers for the anchor, positive and negative samples respec-

tively, i.e., a and p have the same identity, while a and n come from different identities. Besides, λ
controls the margin between positive and negative pairs.

Similar to face alignment, we consider the hidden layer KT and soft prediction PτT as two possible
targets in distillation. In fact, classification focuses on the difference of identities, i.e. the inter-class
relation, and this relation can help a lot in telling if two image have the same identity. As a result,
classification can be beneficial to boost the performance of verification. Therefore, in face verification,
the soft prediction is preferred for distillation, which gives the following loss function by setting
α > β, as shown in Fig.1(c).

L(Wver
S |Wcls

S ) =
[
‖Ka

S −Kp
S‖

2 − ‖Ka
S −Kn

S‖
2

+ λ
]
+

+αH(PτS,P
τ
T)+β‖KS −KT‖2. (9)

Particularly, some studies(Wang et al., 2017) show the benefits by using additional softmax loss in
Eqn.(8). For comparison, we also add the softmax loss H(PT,y

cls) and H(PS,y
cls) in Eqn.(8) and

Eqn.(9) respectively for further enhancement.

4.2.3 A SHORT SUMMARY

As analyzed above, α and β should be set differently in the distillation of different tasks. The key is
to measure the relevance of objectives between classification and non-classification tasks. For a given
task, if it is highly related to the classification task, then α > β is necessary, or α < β should be set.
Though this rule cannot be theoretically guaranteed, it provides some guidelines to use knowledge
distillation in more non-classification tasks.

5 EXPERIMENTAL EVALUATION

In this section, we give the experimental evaluation of the proposed method. We first introduce the
experimental setup in detail, and then show the results of knowledge distillation in the tasks of face
classification, alignment and verification.

5.1 EXPERIMENTAL SETUP

Database: We use three popular datasets for evaluation, including CASIA-WebFace(Yi et al., 2016),
CelebA(Liu et al., 2015) and MS-Celeb-1M(Guo et al., 2016). CASIA-WebFace contains 10575
people and 494414 images, while CelebA has 10177 people with 202599 images and the label
of 5 key-point locations. Compared to the previous two, MS-Celeb-1M is a large-scale dataset
that contains 100K people with 8.4 million images. In experiments, we use CASIA-WebFace and
MS-Celeb-1M for classification, CelebA for alignment and CASIA-WebFace for verification.

Evaluation: In all datasets, we randomly split them into 80% training and 20% testing samples. In
classification, we evaluate the top1 accuracy based on if the identity of the maximum prediction
matches the correct identity label(Krizhevsky et al., 2012), and the results on the LFW(Learned-Miller
et al., 2016) database (6000 pairs) are also reported by computing the percentage of how many pairs
are correctly verified. In alignment, the Normalized Root Mean Squared Error (NRMSE) is used
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to evaluate alignment(Wu et al., 2015); while in verification, we compute the Euclidean distance
between each pair in testing samples, and the top1 accuracy is reported based on if a test sample and
its nearest sample belong to the same identity. Particularly, LFW is not used in verification because
6000 pairs are not enough to see the difference obviously for different methods.

Teacher and Student: To learn the large number of identities, we use ResNet-50(He et al., 2016) as
the teacher network, which is deep enough to handle our problem. For student networks, given the
fact that deep student networks are better for knowledge distillation(Ba & Caruana, 2014; Urban et al.,
2017; Romero et al., 2015), we remain the same depth but divide the number of convolution kernels
in each layer by 2, 4 and 8, which give ResNet-50/2, ResNet-50/4 and ResNet-50/8 respectively.

Pre-processing and Training: Given an image, we resize it to 256× 256 wherein a sub-image with
224 × 224 is randomly cropped and flipped. Particularly, we use no mean subtraction or image
whitening, as we use batch normalization right after the input data. In training, the batchsize is set
to be 256, 64 and 128 for classification, alignment and verification respectively, and the Nesterov
Accelerated Gradient(NAG) is adopted for faster convergence. For the learning rate, if the network is
trained from scratch, 0.1 is used; while if the network is initialized, 0.01 is used to continue, and 30
epochs are used in each rate. Besides, in distillation, student networks are trained with the targets
of the teacher network generated online, and the temperature τ and margin λ are set to be 3 and 0.4
by cross-validation. Finally, the balancing terms α and β have many possible combinations, and we
show later how to set them by an experimental trick.

Symbols in Experiments: (1)Scratch: student networks are not initialized; (2)Pretrain: student
networks are trained with the task-specific initialization; (3)Distill: student networks are initialized
with Wcls

S ; (4)Soft: the soft prediction PτT; (5)Hidden: the hidden layer KT.

5.2 COMPARISON TO PREVIOUS STUDIES

In this part, we compare the initialization trick to previous studies in classification. Table.1 shows the
comparison of different targets and initializations. It can be observed from the first table that without
any initialization, soft predictions achieve the best distillation performance, i.e., 61.27%. Based on
the best target, the second table gives the results of different initializations in distillation. We see that
our full initialization obtains the best accuracy of 75.06%, which is much higher than other methods,
i.e., 10% and 5% higher than the Scratch and Fitnet(Romero et al., 2015). These results show that
the full initialization of student networks can give the highest transferability in classification, and
also demonstrates the effectiveness of this simple trick.

Table 1: The comparison to previous studies with different initializations and targets. Results are
given on CASIA-WebFace.

CASIA-WebFace ResNet-50/8 with Different Targets

Top1 acc(%)

Initialization Targets

Scratch
Hidden Logits Soft

(Luo et al., 2016) (Sau & Balasubramanian, 2017) (Hinton et al., 2014)
60.08 59.77 61.27

CASIA-WebFace ResNet-50/8 with Different Initializations

Top1 acc(%)

Target Initialization

Pτ
T

Scratch Fitnet Ours(Hinton et al., 2014) (Ba & Caruana, 2014)
64.49 69.88 75.06

5.3 FACE CLASSIFICATION

Base on the best initialization and target, Table.2 shows the distillation results of face classification
on CASIA-WebFace and MS-Celeb-1M, and we have three main observations. Firstly, the student
networks trained with full initialization can obtain large improvements over the ones trained from
scratch, which further demonstrates the effectiveness of the initialization trick in large-scale cases.
Secondly, some student networks can be competitive to the teacher network or even exceed the teacher
one by a large margin, e.g. in the CASIA-WebFace database, ResNet-50/4 can be competitive to the
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teacher network, while ResNet-50/2 is about 3% higher than the teacher one in the top1 accuracy.
Finally, in the large-scale MS-Celeb-1M, student networks cannot exceed the teacher network but
only be competitive, which shows that the knowledge distillation is still challenging for a large
number of identities.

Table 2: The top1 and LFW accuracy of knowledge distillation in classification. Results are obtained
on CASIA-WebFace and MS-Celeb-1M.

CASIA-WebFace Teacher Network Student Network
ResNet-50 Initialization ResNet-50/2 ResNet-50/4 ResNet-50/8

Top1 acc(%) 88.61 Scratch(Hinton et al., 2014) 82.25 79.36 66.12
Ours 91.01 87.21 75.06

LFW acc(%) 97.67 Scratch(Hinton et al., 2014) 97.27 96.7 95.12
Ours 98.2 97.57 96.18

MS-Celeb-1M Teacher Network Student Network
ResNet-50 Initialization ResNet-50/2 ResNet-50/4 ResNet-50/8

Top1 acc(%) 90.53 Scratch(Hinton et al., 2014) 84.59 81.94 57.84
Ours 88.38 85.26 70.98

LFW acc(%) 99.11 Scratch(Hinton et al., 2014) 98.61 98.03 96.33
Ours 98.88 98.18 96.98

5.4 FACE ALIGNMENT

In this part, we give the evaluation of distillation in face alignment. Table.3 shows the distillation
results of ResNet-50/8 with different initializations and targets on CelebA. The reason we only
consider ResNet-50/8 is that face alignment is a relatively easy problem and most studies use shallow
and small networks, thus a large compression rate is necessary for the deep ResNet-50. One important
thing is how to set α and β in Eqn.(7). As there are many possible combinations, we use a simple
trick by measuring their individual influence and discard the target with the negative impact by setting
α = 0 or β = 0; while if they both have positive impacts, α > 0, β > 0 should be set to keep both
targets in distillation.

As shown in Table.3, when the initializations of Pretrain and Distill are used, α = 1, β = 0(soft
prediction) always decreases performance, while α = 0, β = 1(hidden layer) gets consistent
improvements, which implies that the hidden layer is preferred in the distillation of face alignment. It
can be observed in Table.3 that Distill has a lower error rate than Pretrain, which shows that Wcls

S
has higher transferability on high-level representation than the task-specific initialization. Besides,
the highest distillation performance 3.21% is obtained with Distill and α = 0, β = 1, and it can be
competitive to the one of the teacher network(3.02%).

Table 3: The NRMSE(%) of knowledge distillation in face alignment with different initializations
and targets. Results are obtained on CelebA.

CelebA Teacher Network Student Network

NRMSE(%)

ResNet-50 Network Initialization Targets
α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

3.02 ResNet-50/8 Pretrain 3.36 3.24 3.60
Distill 3.29 3.21 3.54

5.5 FACE VERIFICATION

In this part, we give the evaluation of distillation in face verification. Similar to alignment, we select
α and β in the same way. Table.4 shows the verification results of different initializations and targets
on CASIA-WebFace, and the results are given by Eqn.(9). It can be observed that no matter which
student network or initialization is used, α = 0, β = 1(hidden layer) always decreases the baseline
performance, while α = 1, β = 0(soft prediction) remains almost the same. As a result, we discard
the hidden layer and only use the soft prediction.
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One interesting observation in Table.4 is that α = 0, β = 0 always obtains the best performance, and
the targets do not work at all. One possible reason is that the target in classification is not confident,
i.e., the top1 accuracy of ResNet-50 in classification is only 88.61%. To improve the classification
ability, we add additional softmax loss in Eqn.(8) and Eqn.(9), and the results are shown in Table.5.
We see that the accuracy of ResNet-50/2 and ResNet-50/4 has obtained remarkable improvements,
which implies that the classification targets that are not confident enough cannot help the distillation.
But with the additional softmax loss, the student work can adjust the learning by identity labels. As
a result, α = 1, β = 0 can get the best performance, which is even much higher than the teacher
network, e.g., 79.96% of ResNet-50/2 with Distill and α = 1, β = 0.

Table 4: The top1 accuracy of knowledge distillation with single triplet loss in verification. Results
are obtained on CASIA-WebFace.

CASIA-WebFace Teacher Network Student Network

Top1 acc(%)
ResNet-50 Network Initialization Targets

α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

73.81 ResNet-50/2 Pretrain 63.98 60.66 66.50
Distill 71.29 68.74 71.23

CASIA-WebFace Teacher Network Student Network

Top1 acc(%)
ResNet-50 Network Initialization Targets

α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

73.81 ResNet-50/4 Pretrain 61.74 61.71 62.64
Distill 68.17 66.74 68.12

CASIA-WebFace Teacher Network Student Network

Top1 acc(%)
ResNet-50 Network Initialization Targets

α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

73.81 ResNet-50/8 Pretrain 51.03 49.19 51.76
Distill 56.69 53.99 56.52

Table 5: The top1 accuracy of knowledge distillation with joint triplet loss and softmax loss in
verification. Results are obtained on CASIA-WebFace.

CASIA-WebFace Teacher Network Student Network

Top1 acc(%)
ResNet-50 Network Initialization Targets

α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

74.16 ResNet-50/2 Pretrain 72.38 70.54 73.62
Distill 79.51 77.63 79.96

CASIA-WebFace Teacher Network Student Network

Top1 acc(%)
ResNet-50 Network Initialization Targets

α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

74.16 ResNet-50/4 Pretrain 66.64 65.08 68.24
Distill 72.01 70.31 72.82

CASIA-WebFace Teacher Network Student Network

Top1 acc(%)
ResNet-50 Network Initialization Targets

α = 0, β = 0 α = 0, β = 1 α = 1, β = 0

74.16 ResNet-50/8 Pretrain 51.86 51.43 53.45
Distill 57.66 56.87 57.78

6 CONCLUSION

In this paper, we take face recognition as a breaking point, and propose the knowledge distillation
on two non-classification tasks, including face alignment and verification. We extend the previ-
ous distillation framework by transferring the distilled knowledge from face classification to face
alignment and verification. By selecting appropriate initializations and targets, the distillation on
non-classification tasks can be easier. Besides, we also give some guidelines for target selection on
non-classification tasks, and we hope these guidelines can be helpful for more tasks. Experiments
on the datasets of CASIA-WebFace, CelebA and large-scale MS-Celeb-1M have demonstrated the
effectiveness of the proposed method, which gives the student networks that can be competitive or
exceed the teacher network under appropriate compression rates. In addition, we use a common
initialization trick to further improve the distillation performance of classification, and this can boost
the distillation on non-classification tasks. Experiments on CASIA-WebFace have demonstrated the
effectiveness of this simple trick.
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Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In KDD, 2006.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network
models for practical applications. In arXiv:1605.07678, 2017.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR,
2015.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolutional
networks using vector quantization. In ICLR, 2015.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset and
benchmark for large-scale face recognition. In ECCV, 2016.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Workshop, 2014.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. 2006.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. In
Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012.

Erik Learned-Miller, Gary B. Huang, Aruni RoyChowdhury, and Gang Hua. Labeled faces in the
wild: A survey. In Advances in Face Detection and Facial Image Analysis, 2016.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, and Xiaoou Tang. Face model compression by
distilling knowledge from neurons. In AAAI, 2016.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks. In NIPS, 2015.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.

Bharat Bhusan Sau and Vineeth N. Balasubramanian. Deep model compression: Distilling knowledge
from noisy teachers. In arXiv:1610.09650, 2017.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, 2015.

9



Under review as a conference paper at ICLR 2018

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR,
2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich
Caruana, Abdelrahman Mohamed, Matthai Philipose, and Matt Richardson. Do deep convolutional
nets really need to be deep and convolutional? In arXiv:1603.05691, 2017.

Chong Wang, Xue Zhang, and Xipeng Lan. How to train triplet networks with 100k identities? In
arXiv:1709.02940, 2017.

Yue Wu, Tal Hassner, KangGeon Kim, Gerard Medioni, and Prem Natarajan. Facial landmark
detection with tweaked convolutional neural networks. In arXiv:1511.04031, 2015.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning face representation from scratch. In
arXiv:1506.02640, 2016.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In NIPS, 2014.

Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep semantic ranking based hashing
for multi-label image retrieval. In CVPR, 2015.

10


	Introduction
	Related Work
	Distillation of Classification
	Review of Knowledge Distillation
	Initialization Trick

	Distillation Transfer
	Transfer Initialization
	Target Selection
	Alignment
	Verification
	A Short Summary


	Experimental Evaluation
	Experimental Setup
	Comparison to Previous Studies
	Face Classification
	Face Alignment
	Face Verification

	Conclusion

