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{pierre-alexandre.mattei,charles.bouveyron}
@parisdescartes.fr

ABSTRACT

Feature representation for clustering purposes consists in building an explicit or
implicit mapping of the input space onto a feature space that is easier to cluster or
classify. This paper relies upon an adversarial auto-encoder as a means of building
a code space of low dimensionality suitable for clustering. We impose a tunable
Gaussian mixture prior over that space allowing for a simultaneous optimization
scheme. We arrive at competitive unsupervised classification results on hand-
written digits images (MNIST) that is customarily classified within a supervised
framework.

1 INTRODUCTION

The computer vision field has recently witnessed major progress thanks to end-to-end deep-learning
systems since the seminal work of (LeCun et al., 1990) and more recently (Krizhevsky et al., 2012).
Most of the work however has been carried out in a supervised context. Our effort leverages that
wealth of existing research but for clustering in a unsupervised framework with adversarial auto-
encoders (Makhzani et al., 2015) inspired by generative adversarial networks (Goodfellow et al.,
2014).

2 RELATED WORK

Clustering is one of the most fundamental tasks in machine learning (Duda et al., 2012). This task
consists in grouping similar objects together without any supervision, meaning there are no labels to
guide the grouping. The goal is to find structure in data to facilitate further analysis. It is a desirable
goal in data analysis, visualization and is often a preliminary step in many algorithms for example
in Computer Vision (Ponce & Forsyth, 2011).

In this paper, the clustering is achieved in the code space through a combination of auto-encoders
(Vincent et al., 2010) and a Gaussian mixture model (McLachlan & Peel, 2004). We propose an al-
gorithm to perform unsupervised clustering with the adversarial auto-encoder framework that we call
“DAC” for Deep Adversarial Clustering. Indeed, we postulate that a generative approach, namely a
tuned Gaussian mixture model, can capture an explicit latent model that is the origin of the observed
data, in the original space.

3 DEEP ADVERSARIAL GAUSSIAN MIXTURE AUTO-ENCODERS FOR

CLUSTERING

In our approach, the embedding step role is to make the data representation easier to classify than in
the initial space. We have chosen GMM for its nice theoretical properties (Fraley & Raftery, 2002;
Biernacki et al., 2000). Moreover, it is well-known that such clustering algorithms work better in
low-dimensional settings which motivates our use of dimension reduction performed here by the
auto-encoder.
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In clustering, we have a dataset of points (x1, ...,xi, ...,xn) where each datapoint xi lives in a D-
dimensional space. First, we build an auto-encoder that consists of neural-network-based encoder E
and decoder D parametrized by θE and θD respectively. The encoder E maps the data points from
their original space to a code d-dimensional space (d < D). The decoder D maps them back from
the code space to the original one, in such a way that each datapoint xi is roughly reconstructed
through the encoder and decoder: D(E(xi)) ≃ xi. The idea is that if the reconstruction is viable
then we have compressed the information of each example without too much loss.

Second, similarly to the work of Makhzani et al. (2015), we add up an adversarial part to the system
with: (i) a Gaussian-mixture-based random generator H whose proportions (πk), means (µk) and
covariance matrices (Σk) for k = 1, ...,K are parametrized by θH. An instance of such generated
random vectors is noted zi and lives in the same code d-dimensional space as above; (ii) a neural-
network-based adversarial discriminator A with weights and biases parametrized by θA whose role
is to continously force the code space to follow the Gaussian mixture prior.

Finally, we get three objectives optimized through a Stochastic Gradient Descent (SGD) (see
(Bottou & LeCun, 2004)) scheme with Back-Propagation (BP) (see (LeCun et al., 2012)):

1. the traditional auto-encoder reconstruction objective to minimize over θE and θD:

LR(θE , θD) =

n
∑

i=1

‖xi −D(E(xi)‖
2

2
(1)

One could have chosen a cross-entropy loss function but it does not make any conceptual
difference except that it does not work for non-normalized data. In fact, one could use any
differentiable distance;

2. the Gaussian mixture model likelihood to maximize over θH for K clusters/modes:

ℓGMM (θH) =

n
∏

i=1

K
∑

k=1

πkN (E(xi), µk,Σk) (2)

where, N is the normal Gaussian distribution. But in practice, we will prefer its logarithm
for numerical stability reasons (which is common with GMMs):

LGMM = log(ℓGMM ) (3)

3. the adversarial objective to optimize a minθA maxθE problem:

LA =
−1

2n

(

n
∑

i=1

loge(A(E(xi))) +

n
∑

i=1

loge(1−A(zi))

)

(4)

LA is the cross-entropy loss with the true codes E(xi) from data as positive examples and
fake generated codes zi from the random generator as negative examples.

For Eq. (4), zi comes from from the random generator H. Indeed, z is a random vector
from the multimodal Gaussian distribution H defined above by the πs, µs and Σs:

p(z|θH) =

K
∑

k=1

πkN (z, µk,Σk) (5)

Note that it is possible to generate such vectors using a multinomial random number and
the Cholesky decomposition of covariance matrices (Bishop, 2006, p. 528).

4 EXPERIMENTS

For our empirical experiments, we used the MNIST dataset of 70000 digits images in 10 groups.
Throughout the experiments1, we used the same architecture from Xie et al. (2015) and Jiang et al.
(2016) D-500-500-2000-d (D is the dimensionality of the input space e.g. 784 for MNIST and
d = 10 is the dimensionality of the code space) for the encoder for fair comparaisons. Furthermore,
we use a d-100-10-1 neural network architecture for the discriminator that, thus, takes a code of
dimension d as input and one probability as output of coming from a real data point or a generated
random vector.

1done in Tensorflow (Abadi et al., 2015) and Scikit-learn (Pedregosa et al., 2011) in Python soon available

2



Workshop track - ICLR 2017

Figure 1: Generated digits images. From left to right, we have the ten classes found by DAC and
ordered thanks to the Hungarian Algorithm. From top to bottom, we go further and further in random
directions from the centroids (the first row being the decoded centroids).

4.1 RESULTS

The results of DAC compare favorably to the state-of-the-art in Table (1). We also get an extra-
boost of accuracy thanks to an Ensemble Clustering method (Weingessel et al., 2003) that combines
multiple outputs coming from multiple random initializations.

Datasets MNIST-70k
DAC EC (Ensemble Clustering over 10 runs) 96.50

DAC (median accuracy over 10 runs) 94.08
VaDe (Jiang et al., 2016) 94.06
DEC (Xie et al., 2015) 84.30

GMM 53.73
*: Results taken from (Jiang et al., 2016)

Table 1: Experimental Accuracy Results (%, the higher, the better) based on the Hungarian Method
(Kuhn, 1955; Stephens, 2000)

Our experiments show that an auto-encoder dramatically improves all clustering results as
(Xie et al., 2015) and (Jiang et al., 2016) are based on auto-encoders. Furthermore, our adversar-
ial contribution outperforms all the previous algorithms.

On the first row of Fig. (1) we show the decoded GMM centroids and each corresponds to a cluster
of digits. On the other rows, we go further and further from the centroids and we can see the style
of the digits becoming fancier along with the vertical axis.

5 CONCLUSION

Within the context of the algorithm laid out above, some symbiosis does operate between clustering
and non-linear embedding while preserving the reconstruction ability. There are improvements that
can be made mainly to overcome problems in the adversarial part, the online Gaussian mixture
model and better auto-encoders.
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