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ABSTRACT

Currently available survival analysis methods are limited in their ability to deal
with complex, heterogeneous, and longitudinal data such as that available in pri-
mary care records, or in their ability to deal with multiple competing risks. This
paper develops a novel deep learning architecture that flexibly incorporates the
available longitudinal data comprising various repeated measurements (rather than
only the last available measurements) in order to issue dynamically updated sur-
vival predictions for one or multiple competing risk(s). Unlike existing works in
the survival analysis on the basis of longitudinal data, the proposed method learns
the time-to-event distributions without specifying underlying stochastic assump-
tions of the longitudinal or the time-to-event processes. Thus, our method is able
to learn associations between the longitudinal data and the various associated risks
in a fully data-driven fashion. We demonstrate the power of our method by ap-
plying it to real-world longitudinal datasets and show a drastic improvement over
state-of-the-art methods in discriminative performance. Furthermore, our analysis
of the variable importance and dynamic survival predictions will yield a better un-
derstanding of the predicted risks which will result in more effective health care.

1 INTRODUCTION

Survival analysis informs our understanding of the relationships between the (distribution of) first
hitting times of events (such as death, onset of a certain disease, etc.) and the covariates, and
enables us to issue corresponding risk assessments for such events. Clinicians use survival analysis
to make screening decisions or to prescribe treatments, while patients use the information about
their clinical risks to adjust their lifestyles in order to mitigate such risks. However, designing the
best clinical intervention for a patient is a daunting task, as the appropriate level of interventions
or the corresponding outcome often depend on whether this patient is susceptible to or suffers from
competing risks. For example, studies in (Koene et al. (2016)) have shown that various treatments,
such as chemotherapy, for breast cancer increase the risk of a cardiovascular events. To refer to
the same example in cystic fibrosis (CF), the decision on lung transplantation, which is particularly
recommended for patients with end-stage respiratory failure, must jointly account for deaths from
other CF-associated failures (e.g., CF-associated liver failure) since they share a number of risk
factors (Kobelska-Dubiel et al. (2014)).

Meanwhile, as a growing number of electronic health records (EHRs) have been deployed in hos-
pitals1, modern clinical data in EHR often comprises longitudinal measurements; especially with
chronic diseases, patients are followed up over the span of years, usually as part of regular physical
examinations. Information contained in these longitudinal (follow-up) measurements is of signif-
icant importance such that interpreting these measurements in their historical context can offer an
explanation for how the underlying process of clinical events progresses (Rizopoulos et al. (2017);
Suresh et al. (2017)). For example, forced expiratory volume (FEV1), and its development, is a
crucial biomarker in assessing the severity of CF as it allows clinicians to describe the progres-
sion of the disease and to anticipate the occurrence of respiratory failures (Nkam et al. (2017); Li
et al. (2017)). Therefore, to provide a better understanding of disease progression, it is essential
to incorporate longitudinal measurements of biomarkers and risk factors into a model. Rather than

1EHRs are deployed in more than 75% of hospitals in the United States, according to the recent data brief
by the Offcie of National Coordinator (ONC) (Henry et al. (2016)).
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discarding valuable information recorded over time, this allows us to make better risk assessments
on the clinical events of interest.

In light of the discussion above, we design a deep neural network for dynamic survival analysis
with competing risks, which we call Dynamic-DeepHit, that learns, on the basis of the available
longitudinal measurements, a flexible data-driven distribution of first hitting times of various events
of interest. An important aspect of our method is that it naturally handles situations in which there
are multiple competing risks where more than one type of event plays a role in the survival setting.
To enable survival analysis with competing risks, Dynamic-DeepHit employs a network architec-
ture that consists of a single shared subnetwork and a family of cause-specific subnetworks. We
incorporate historical information of each patient using a recurrent neural network (RNN) structure
in the shared subnetwork, which allows our method to update personalized and cause-specific risk
predictions as additional measurements are collected in a fully dynamic fashion. We conduct a set
of experiments on real-world datasets showing that our model outperforms state-of-the-art survival
models in discriminating individual risks for different causes. In addition, we provide variable im-
portance and dynamic risk predictions of our method to yield clinical usefulness in interpreting the
associations between covariates and the survival.

Related works: Since the Cox proportional hazard model (Cox (1972)) was first introduced, a
variety of methods have been developed for survival analysis, ranging from statistical models to
deep learning techniques (Fine & Gray (1999); Ishwaran et al. (2008); Lee & Whitmore (2010);
Yu et al. (2011); Lee et al. (2018); Luck et al. (2017); Katzman et al. (2016); Alaa & van der
Schaar (2017); Bellot & van der Schaar (2018)). Especially, deep networks have been shown to
achieve significantly improved performance in survival analysis (Katzman et al. (2016); Luck et al.
(2017); Alaa & van der Schaar (2017); Bellot & van der Schaar (2018); Lee et al. (2018)) owing
to the ability to represent complicated associations between features and outcomes. However, all of
these methods provide static survival analysis: they use only the current information to perform the
survival predictions and most of the works focus on a single risk rather than multiple risks. In this
paper, we extend the idea of (Lee et al. (2018)), which finds the estimated joint distribution of the
first hitting time and competing events utilizing a deep network, into the longitudinal setting where
repeated measurements are available.

Few methods have been developed to use the longitudinal time-to-event data in order to enable dy-
namic survival analysis under competing risks. The first strand of literatures includes landmarking
(Heagerty & Zheng (2005); Zheng & Heagerty (2005); van Houwlingen (2007); van Houwelingen
& Putter (2008)) and joint models (Henderson et al. (2000); Ibrahim et al. (2010); Tsiatis & Da-
vidian (2004); Brown et al. (2005); Barrett & Su (2017)). Landmarking refrains from modeling the
time-dependent aspect of longitudinal variables and, instead, obtains survival probabilities from the
survival model fitted to subjects who are still at risk at the time points of interest (i.e., landmarking
times). On the other hand, joint models explicitly model the longitudinal process and leverage their
predictions as inputs in a separate survival process used for predicting survival probabilities. How-
ever, both approaches, and their variations (van Houwelingen & Putter (2008); Tsiatis & Davidian
(2004); Brown et al. (2005); Barrett & Su (2017)), make strong assumptions about the underlying
stochastic models for the survival process (in landmarking) or for both the longitudinal and survival
processes (in joint models). Hence, model mis-specifications (e.g., typically, a linear mixed model
and a Cox proportional hazard model) limit their ability to learn and infer complex interactions
between covariates and survival times, which are common in many diseases with heterogeneity.

The second strand models the longitudinal data using variants of RNNs (Choi et al. (2016a;b);
Razavian et al. (2016); Lipton et al. (2016)) and avoids the need for explicit model specifications,
which results in performance gain in terms of predictive accuracy. However, these models can not
properly cope with time-to-event data where the goal is to find the probability of the first hitting
event occurring at different times of our interest. Instead, given longitudinal measurements, they
view making risk predictions of one or multiple event(s) as solving a single or multiple label(s)
classification problem at each time stamp, e.g., whether an event occurs or not at the measurement
time (Choi et al. (2016a;b)), within a predefined time-window (Razavian et al. (2016)), or at the
end of the available longitudinal measurements (Lipton et al. (2016)). To our best knowledge, this
paper is the first to investigate a deep learning approach for dynamic time-to-event analysis with
competing risks on the basis of repeated measurements (longitudinal time-to-event data).
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Figure 1: Illustration of longitudinal survival data. Colored dots indicate the times at which longi-
tudinal measurements are observed, while the end point markers denote the event type or censoring.

2 BACKGROUND

2.1 LONGITUDINAL TIME-TO-EVENT DATA

We consider a dataset D = {(X i, τ i, ki)}Ni=1 comprising time-to-event (survival) data for N sub-
jects who have been followed up for a certain amount of time. For each subject i, X i is a set of
longitudinal observations including both static and time-varying covariates, τ i = min(T i, Ci) is
the time information with T i ∈ T indicating the time-to-event and Ci ∈ T indicating the time-to-
censoring, and ki ∈ K being the event or censoring that occurred at τ i.

Define X i(t) = {xi(tij) : 0 ≤ tij ≤ t for j = 1, · · · ,M i} a set of longitudinal observations until
time t where xi(tj) is covariates recorded at time tj . Here, we distinguish notations between time
stamps j = 1, · · · ,M i and the corresponding actual times tij = ti1, · · · , tiMi , since measurements
are not necessarily observed at regular intervals. Then, we use X i = X i(tiMi) to denote a whole set
of longitudinal observations available for subject i until the last measurement time tiMi of that subject
for notational simplicity. A set of possible survival times is denoted as T = {0, 1, · · · , Tmax} with
Tmax being a predefined maximum time horizon, where we treat survival time as discrete2 (e.g., a
resolution of one month) and the time horizon as finite (e.g., no patients lived longer than 100 years).
A set of possible events is K = {∅, 1, 2, · · · ,K}, with ∅ denoting right-censoring as survival data
is frequently right-censored due to subjects being lost to follow-up. We assume that every subject
experiences exactly one event among K ≥ 1 possible events of interest within T . This includes
cause-specific deaths due to CF, where deaths from other causes are competing risks for death due
to respiratory failure (Gooley et al. (1999)). Figure 1 depicts a time-to-event dataset comprising
histories of longitudinal measurements with competing risks, where subjects are aligned based on
the synchronization event. The aforementioned characteristics are highlighted with annotations.

2.2 CUMULATIVE INCIDENCE FUNCTION

The cause-specific cumulative incidence function (CIF) is key to survival analysis under the presence
of competing risks. As defined in (Fine & Gray (1999)), the CIF expresses the probability that a
particular event k∗ ∈ K occurs on or before time τ∗ conditioned on the history of longitudinal
measurements X ∗. The fact that longitudinal measurements have been recorded up to t∗M∗ implies
survival of the subject up to this time point. Thus, the CIF is defined as follows:

Fk∗(τ
∗|X ∗) , P (T ≤ τ∗, k = k∗|X ∗, T > t∗M∗) =

∑
m≤τ∗

P (T = m, k = k∗|X ∗, T > t∗M∗). (1)

Whenever a new measurement is recorded for this subject at time t > t∗M∗ , we can update (1)
accounting for that information in a dynamic fashion.

2Discretization is performed by transforming continuous-valued times into a set of contiguous time inter-
vals, i.e., T = τ implies T ∈ [τ, τ + δt) where δt implies the resolution.
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Figure 2: The Dynamic-DeepHit architecture with K competing risks.

Similarly, the survival probability of a subject at time τ∗ given X ∗ (i.e., the probability that a subject
does not experience any event before or at time τ∗) can be derived by

S(τ∗|X ∗) , P (T > τ∗|X ∗, T > t∗M∗) = 1−
∑
k 6=∅

Fk(τ∗|X ∗). (2)

Our goal is to estimate the CIF, F̂k∗(τ∗|X ∗), from the dataset D, in order to analyze the cause-
specific risk given the history of observations and to issue dynamic risk predictions.

3 PROPOSED METHOD

In this section, we describe our network architecture for survival analysis with competing risks on
the basis of longitudinal measurements. We seek to train the network to learn an estimate of the joint
distribution of the first hitting time and competing events given the longitudinal observations. This
estimated distribution is then used to estimate (1) and (2).

For illustration, we redefine X i = (Xi,∆i) where Xi = {xi1,xi2 · · · ,xiMi} with xij = xi(tij) and
∆i = {δi1, δi2 · · · , δiMi}, which is a set of time intervals between two adjacent measurements. Here,
δij implies the actual amount of time that has elapsed until the next measurement, i.e. δij = tij+1− tij
for 1 ≤ j < M i, and δiMi = 0. Then, the training set can be redefined asD = {(Xi,∆i, τ i, ki)}Ni=1.

3.1 NETWORK ARCHITECTURE

Dynamic-DeepHit3 is a sequence to time-to-event network, which consists of two subnetworks: a
shared subnetwork that handles the history of longitudinal measurements and make step-ahead pre-
dictions of time-varying covariates, and a set of cause-specific subnetworks which estimates the joint
distribution of the first hitting time and competing events. Figure 2 illustrates the overall architecture
which comprises a shared subnetwork andK cause-specific subnetworks. As the multi-task learning
has been successful across different applications (Collobert & Weston (2008); Deng et al. (2013);
Ramsundar et al. (2015)), we expect joint optimization of subnetworks to help the overall network
capture associations between the time-to-event under competing risks and the history of longitudinal
measurements. Throughout this subsection, we omit the dependence on i for ease of notation.

Shared Subnetwork: The shared subnetwork employs a dynamic RNN structure to handle the
longitudinal survival data with each subject having different numbers of measurements, observed
at irregular time intervals. The RNN structure allows Dynamic-DeepHit to capture correlations
both within and across the longitudinal measurements and to unravel the temporal patterns that are
common to the K competing risks. Formally, for each time stamp j = 1, · · ·M − 1, the subnetwork
takes a tuple of (xj , δj) as an input and outputs (yj ,hj), where yj and hj indicates the step-ahead
estimate of time-varying covariates, i.e., xj+1, and the hidden state at time stamp j, respectively.

Cause-specific Subnetworks: Each cause-specific subnetwork utilizes a feed-forward network to
capture relationships between the cause-specific risk and the longitudinal measurements. The inputs

3Source code available at: http://github.com/ICLR2019-submission/Dynamic-DeepHit
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include the hidden states of the shared subnetwork and the measurements at the last observation.
This gives the subnetworks access to the learned common representation of the longitudinal history,
which has progressed along with the trajectory of the past longitudinal measurements, as well as the
latest observation. Formally, the k-th cause-specific subnetwork takes as input the pair (xM ,hM−1)
and outputs a vector, fck(xM ,hM−1).

Output Layer: Dynamic-DeepHit employs a soft-max layer in order to summarize the outcomes of
each cause-specific subnetwork, fc1(·), · · · , fcK (·), and to map into one output vector. Overall, our
method produces the estimated joint distribution of the first hitting time and competing events. In
particular, given a subject with X ∗, each output node represents the probability of having event k at
time τ , i.e. o∗k,τ = P̂ (T = τ, k = k|X ∗). Therefore, we can define the estimated CIF for cause k∗

at time τ∗ as follows:

F̂k∗(τ
∗|X ∗) =

∑
t∗
M∗<m≤τ∗

o∗k∗,m

1−
∑
k 6=∅

∑
n≤t∗

M∗
o∗k,n

. (3)

Note that (3) is built upon the condition that this subject has survived up to t∗M∗ .

3.2 TRAINING DYNAMIC-DEEPHIT

To train Dynamic-DeepHit, we minimize Ltotal that is specifically designed to handle longitudinal
measurements and right-censoring. The total loss function is the sum of three terms:

Ltotal = L1 + L2 + L3,

where L1 is the negative log-likelihood of the joint distribution of the first hitting time and events,
which is necessary to capture the first hitting time in the right-censored data, and L2 and L3 are
utilized to enhance the overall network. More specifically, L2 combines cause-specific ranking
losses to concentrate the network on discriminating estimated individual risks for each cause, andL3

incorporates the prediction error on trajectories of time-varying covariates to regularize the network.
In Appendix C, we demonstrate the effect of including each of the losses on the performance.

Log-likelihood Loss: The first loss function is the negative log-likelihood of the joint distribution
of the first hitting time and corresponding event considering the right-censoring (Lee & Whitmore
(2006)), conditioned on the measurements recorded until the last observation. This is an extension
to the survival setting with K competing risks on the basis of longitudinal measurements. More
specifically, for a subject who is not censored, it captures both the event that occurs and the time at
which the event occurs, while for a subject who is censored, it captures the time at which the subject
is censored (lost to follow-up); see (Lawless (2002)). We define the log-likelihood loss as follows:

L1 = −
N∑
i=1

[
1ki 6=∅ · log

( oiki,τ i

1−
∑
k 6=∅

∑
n≤ti

Mi
oik,n

)
+ 1ki=∅ · log

(
1−

∑
k 6=∅

F̂k(τ i|X i)
)]
. (4)

Ranking Loss: To fine-tune the network, we utilize a ranking loss function which adapts the idea
of concordance (Harrell et al. (1982)): a subject who dies at time τ should have a higher risk at
time τ than a subject who survived longer than τ . However, the longitudinal measurements of
subjects can begin at any point in their lifetime or disease progression (Ranganath et al. (2016)),
and this makes direct comparison of the risks at different time points difficult to assess. Thus, we
compare the risks of subjects at times elapsed since their last measurements, that is, for subject i,
we focus on si = τ i − tiMi instead of τ i. Define a pair (i, j) an acceptable pair for event k if
subject i experiences event k at time si while the other subject j does not experience any event,
including censoring, until si (i.e., sj > si). Then, the estimated CIF satisfies the concordance if
F̂k(si + tiMi |X i) > F̂k(si + tjMj |X j). Formally, we define the ranking loss as follows:

L2 =

K∑
k=1

αk
∑
i 6=j

Ak,i,j · η
(
F̂k(si + tiMi |X i), F̂k(si + tjMj |X j)

)
,

where Ak,i,j , 1ki=k,si<sj is an indicator for acceptable pairs (i, j) for event k, αk ≥ 0 is a
hyper-parameter chosen to trade off ranking losses of the k-th competing event, and η(a, b) is a
differentiable loss function. For convenience, we set αk = α for k = 1, · · · ,K and the loss function
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η(a, b) = exp(−a−bσ ). Incorporating L2 into the total loss function penalizes incorrect ordering of
pairs and encourages correct ordering of pairs with respect to each event.

Prediction Loss: Longitudinal measurements on time-varying covariates, such as the trajectory of
biomarkers and the presence of comorbidities over time, may be highly associated with the occur-
rence of clinical events. Thus, we introduce an auxiliary task in the shared subnetwork, which is
making step-ahead predictions on covariates of our interest, to find hidden representations of histor-
ical information and to regularize the overall network. The prediction loss is defined as

L3 = β ·
N∑
i=1

Mi−1∑
m=0

ζ(xim+1,y
i
m), (5)

where yim is the step-ahead prediction for xim+1, β ≥ 0 is a hyper-parameter, and ζ(a,b) =∑
d∈I ζd(ad, bd) where a and b are dx-dimensional vectors, and ζd(ad, bd) = |ad− bd|2 for contin-

uous and ζd(ad, bd) = ad log bd + (1 − ad) log(1 − bd) for binary covariates. Here, we select I as
a set of time-varying covariates (e.g., biomarkers) on which we focus the network to be regularized.

3.3 DISCUSSION ON THE SCALABILITY

For accurate estimation of CIFs, it is desirable to have the time interval for the time horizon dis-
cretization (i.e., defining T in Section 2) be fine rather than coarse since it maintains more informa-
tion on time-to-event/censoring. However, this might cause scalability issue in Dynamic-DeepHit.
In particular, the proposed network requires a larger number of nodes in the output layer to han-
dle T with a finer time interval, and the network can become over-fitted due to a small number
of samples in the dataset, which is often the case in medicine. To prevent the proposed network
from over-fitting, we utilize 1) early stopping based on the performance metric of our interest (i.e.,
discriminative performance) and 2) L1 regularization over weights in the cause-specific subnetwork
and the output layer. We show in the experiments that Dynamic-DeepHit achieves a significant
performance gain with a fine time interval; see details in the following section.

4 EXPERIMENTS

Throughout the experiments, we use two real-world medical datasets comprising two competing
risks to evaluate our proposed method against the state-of-the-art benchmarks. (In addition, we
reported the evaluation of our method for a real-world dataset with a single risks in Appendix E.)
Results are obtained using 5 random 64/16/20 train/validation/test splits. The hyper-parameters are
chosen utilizing Random Search (Bergstra & Bengio (2012)); see details in Appendix A. For the
prediction loss in (5), we included all the time-varying covariates available in each dataset into I.

4.1 DATASET

Cystic Fibrosis Data: This is a retrospective longitudinal data from the UK Cystic Fibrosis Registry,
sponsored and hosted by the UK Cystic Fibrosis Trust4. We focused our experiments on 5,883 adult
cystic fibrosis (CF) patients who were aged 18 years or older. Among the total of 5,883 patients,
605 patients (10.28%) were followed until death and the remaining 5,278 patients (89.72%) were
right-censored (i.e., lost to follow-up). We divided the mortality cause into: i) 491 (8.35%) deaths
due to respiratory failures and ii) 114 (1.94%) deaths due to other causes, including CF-associated
liver failure. (Details on the other causes are illustrated in Appendix D.) It is important that patients
who are at risk of respiratory failure be provided with a joint prognosis of mortality due to other
causes in order to properly manage therapeutic interventions; lung transplantation is particularly
recommended for patients with end-stage respiratory failure (Liou et al. (2001); Hofer et al. (2009))
since not only lung donors are very scarce but also it is accompanied with serious risks of post-
transplant complications (Mayer-Hamblett et al. (2002)). Since CF is a genetic disease where the
longitudinal measurements of patients can begin at any point in their disease progression, throughout
the experiments, all patients are aligned based on their date of birth to synchronize the time to
compare risk predictions made at different ages. We prescribed the set of possible survival times up
to 100 years with a monthly time interval, i.e., T = {0, 1, · · · , 1200}.

4https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
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Mayo Clinic Primary Biliary Cirrhosis Data: This data is from the Mayo Clinic trial in primary
biliary cirrhosis (PBC) of the liver, which comprises of 312. Among 312 PBC patients, 169 patients
(54.17%) were followed until the competing events of our interest and the remaining 143 patients
(45.83%) were right-censored. Two competing events are considered in this experiment: i) 140
(44.87%) deaths and ii) 29 (9.29%) patients who underwent liver transplantation. Since not only
death from liver failure is highly associated with and have many common risk factors with liver
transplantation but also it hinders the death being observed during study, it is of significant impor-
tance to take liver transplantation into account as the competing risk. Throughout the experiments,
all patients are aligned based on the start of the clinical study on PBC. We prescribed the set of
possible survival times up to 15 years with a monthly time interval, i.e., T = {0, 1, · · · , 180}.
Missing imputations and full descriptions of the datasets are available in Appendix D.

4.2 BENCHMARKS

We compared Dynamic-DeepHit with the following state-of-the-art methods that account for dy-
namic survival analysis based on longitudinal measurements (please refer to Appendix B for details):

• cs-Cox: a landmarking approach utilizing the cause-specific version of the Cox Propor-
tional Hazards (PH) Model5,

• RSF: a landmarking approach utilizing the random survival forest6 (Ishwaran et al. (2008))
with 1000 trees,

• DeepHit: a landmarking approach utilizing the deep neural network for competing risks
proposed in (Lee et al. (2018)),

• JM: a joint model implemented using a Bayesian framework that uses MCMC algorithms7

(Rizopoulos (2016)) by modeling the time-to-event data using a cause-specific Cox PH
model and the longitudinal process using a linear mixed model,

• Dynamic-Exp: a deep neural network utilizing the same architecture with that of Dynamic-
DeepHit whose output layer is modified to model the time-to-event data with the Exponen-
tial distribution.

Here, to account for the competing risks setting, the cause-specific Cox was created by fixing an
event and treating the other event simply as a form of censoring; see (Haller et al. (2013)). DeepHit
and Dynamic-Exp are introduced to highlight the gain of our proposed architecture.

4.3 DISCRIMINATIVE PERFORMANCE

In survival analysis, predictions of survival models are most commonly assessed and compared with
respect to how well the survival models discriminate individual risks. To assess the discriminative
performance of the various methods, we use a cause-specific time-dependent concordance index,
Ck(t,∆t), which is an extension of (Gerds et al. (2013)) adapted to the competing risks setting on the
basis of longitudinal measurements.8 In particular, Ck(t,∆t) takes both prediction and evaluation
times into account to reflect possible changes in predicted risks over time. Given the estimated CIF
in (3), Ck(t,∆t) for event k is defined as

Ck(t,∆t) = P
(
F̂k(t+ ∆t|X i(t)) > F̂k(t+ ∆t|X j(t))

∣∣∣T i < T j , ki = k, T i < t+ ∆t
)
, (6)

where t is the prediction time, which is the time at which survival models issue risk predictions
incorporating measurements collected until that time, and ∆t is the evaluation time, which is the
time elapsed since the prediction is made.

We reported the discriminative performance of survival models on the CF dataset and the PBC
dataset in Table 1 and 2, respectively. On the CF dataset, our model achieves significant performance

5https://cran.r-project.org/web/packages/survival/
6https://cran.r-project.org/web/packages/randomForestSRC/
7https://cran.r-project.org/web/packages/JMbayes/
8The metric in (Gerds et al. (2013)) is suitable for evaluating discriminative performance at different time

horizons once risk predictions are issued in the static survival setting. However, since the time horizon at which
risk predictions are made is not considered, this metric cannot be directly used in the longitudinal setting;
similar extensions are proposed using area under ROC curve in (Rizopoulos et al. (2017); Suresh et al. (2017))
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Table 1: Comparison of Ck(t,∆t) (mean ± std) for the CF dataset. Higher the better.

Algorithms Resp. Failure Other Causes
∆t = 1 ∆t = 3 ∆t = 5 ∆t = 1 ∆t = 3 ∆t = 5

t = 30

cs-Cox 0.748±0.10 0.748±0.09 0.748±0.09 0.604±0.13 0.601±0.13 0.602±0.13
RSF 0.935±0.01 0.926±0.01 0.925±0.01 0.799±0.04 0.791±0.05 0.772±0.05

DeepHit 0.910±0.02 0.907±0.02 0.907±0.02 0.819±0.07 0.831±0.07 0.834±0.07
JM 0.833±0.02 0.878±0.01 0.870±0.01 0.728±0.04 0.766±0.05 0.759±0.05

Dynamic-Exp. 0.895±0.03 0.890±0.03 0.890±0.03 0.824±0.05 0.825±0.05 0.824±0.05
Dynamic-DeepHit 0.946±0.01 0.940±0.01 0.939±0.01 0.926±0.02 0.919±0.03 0.913±0.03

t = 40

cs-Cox 0.745±0.04 0.745±0.04 0.745±0.04 0.604±0.14 0.605±0.14 0.605±0.14
RSF 0.886±0.02 0.887±0.03 0.885±0.03 0.801±0.10 0.772±0.05 0.744±0.05

DeepHit 0.913±0.02 0.923±0.02 0.923±0.01 0.837±0.07 0.845±0.07 0.846±0.07
JM 0.858±0.02 0.872±0.01 0.884±0.01 0.775±0.04 0.782±0.04 0.787±0.04

Dynamic-Exp. 0.883±0.03 0.883±0.03 0.882±0.03 0.816±0.04 0.817±0.04 0.816±0.04
Dynamic-DeepHit 0.944±0.03 0.954±0.01 0.954±0.01 0.920±0.02 0.918±0.03 0.921±0.02

t = 50

cs-Cox 0.801±0.11 0.801±0.11 0.801±0.11 0.649±0.15 0.649±0.15 0.649±0.15
RSF 0.895±0.01 0.891±0.02 0.889±0.02 0.731±0.06 0.763±0.03 0.763±0.03

DeepHit 0.929±0.01 0.929±0.01 0.929±0.01 0.851±0.07 0.858±0.06 0.859±0.06
JM 0.878±0.02 0.884±0.01 0.889±0.01 0.784±0.04 0.788±0.04 0.791±0.04

Dynamic-Exp. 0.875±0.02 0.874±0.02 0.874±0.02 0.806±0.04 0.806±0.04 0.806±0.04
Dynamic-DeepHit 0.958±0.01 0.959±0.01 0.959±0.01 0.934±0.02 0.939±0.02 0.938±0.02

Table 2: Comparison of Ck(t,∆t) (mean ± std) for the PBC dataset. Higher the better.

Algorithms Death
∆t = 1 ∆t = 3 ∆t = 5

t = 2

cs-Cox 0.900±0.02 0.903±0.01 0.877±0.01
RSF 0.912±0.03 0.902±0.02 0.874±0.02

DeepHit 0.878±0.02 0.853±0.02 0.839±0.03
JM 0.905±0.04 0.898±0.03 0.866±0.02

Dynamic-Exp 0.914±0.03 0.907±0.03 0.890±0.02
Dynamic-DeepHit 0.904±0.03 0.907±0.02 0.890±0.01

t = 4

cs-Cox 0.890±0.02 0.875±0.02 0.864±0.02
RSF 0.878±0.02 0.857±0.02 0.843±0.01

DeepHit 0.867±0.02 0.841±0.01 0.829±0.02
JM 0.868±0.03 0.838±0.02 0.812±0.02

Dynamic-Exp 0.889±0.02 0.870±0.02 0.852±0.02
Dynamic-DeepHit 0.896±0.03 0.896±0.02 0.882±0.01

t = 6

cs-Cox 0.824±0.02 0.809±0.01 0.806±0.02
RSF 0.823±0.01 0.828±0.02 0.827±0.02

DeepHit 0.836±0.01 0.827±0.02 0.824±0.02
JM 0.784±0.02 0.761±0.02 0.741±0.01

Dynamic-Exp 0.857±0.02 0.836±0.02 0.824±0.03
Dynamic-DeepHit 0.894±0.01 0.883±0.01 0.861±0.02

gain for all the tested predication times (in age) and evaluation times (in year) in comparison with
state-of-the-art methods for both causes, especially, providing higher gain in discriminating risks of
other death causes. On the PBC dataset, we only assessed the discriminative performance on the
predicted risks for death; the probability of having liver transplantation is not in our interest. Even
though the dataset is relatively small, Dynamic-DeepHit provided comparable performance to the
best performing benchmark for evaluation times t = 2 (in year), while it achieved significant gain
over for t = 4 and 6, where the proposed method can collect more measurements when making the
risk predictions.

Dynamic-DeepHit benefits from the proposed architecture. First, the RNN structure in the shared
subnetwork renders our method to incorporate the measurement history when making the risk pre-
dictions. This leads to performance improvement over the conventional DeepHit which discards
the historical information and relies only on the last available measurement. Second, Dynamic-Exp
suffers from model mis-specification (i.e., the Exponential distribution) by limiting the network to
learn the complex interactions between the longitudinal measurements and the underlying survival
process. Contrarily, Dynamic-DeepHit better estimates the CIFs utilizing the proposed output layer
by flexibly learning the joint distribution of the first hitting time and the competing events.

4.4 VARIABLE IMPORTANCE VIA PARTIAL DEPENDENCE

In this subsection, we utilize a post-processing statistic that can be used by clinicians to interpret
predictions issued by Dynamic-DeepHit and to understand the associations of covariates and the
survival. It is worth drawing a distinction between interpreting a model, versus interpreting its deci-
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sion (Ribeiro et al. (2016); Avati et al. (2017)). While interpreting complex models (e.g deep neural
networks) may sometimes be infeasible, it is often the case that clinicians only want explanations
for the prediction made by the model for a given subject. To help interpret predictions issued by
Dynamic-DeepHit, we leverage the partial dependence introduced in (Friedman (2001)) by extend-
ing it to the survival setting with competing risks.

Let X` be a chosen target subset of the input covariates, X , and X\` be its complement, i.e.,
X` ∪ X\` = X . Then, we can rewrite (3) as F̂k(τ |X ) = F̂k(τ |X`,X\`) to explicitly denote the
dependency on the target subset. For each event k, the partial dependence function at time ∆t,
which is the time elapsed since the last measurements, can be defined as follows:

γk(∆t,X`) = EX\`
[
F̂k(tM + ∆t|X`,X\`)

]
≈ 1

N

N∑
i=1

F̂k(tiMi + ∆t|X`,X i\`), (7)

where tM indicates the time of the last measurement. It is worth to highlight that from (7) we can
approximately assess how the estimated CIFs are affected by different values of X` on average. As
a measure of variable importance in making cause-specific risk predictions, we use the “ratio of
change” in (7) by increasing the input value from the minimum (x`,min) to the maximum (x`,max) of
X`, i.e., the ratio of change between γk(∆t,X` = x`,min) and γk(∆t,X` = x`,max).

In Table 3, we reported ten most influential covariates, which provide the top ten largest ratio of
change, for each cause with ∆t = 5 for the CF datasets. Here, positive and negative signs indicate
whether the higher value of each target covariate increases (+) or decreases (-) the risk predictions.
It is worth to highlight that the rankings in Table 3 are different between two causes – for example,
indicator for cancer significantly influences the risk prediction for other causes while it has marginal
influence on the risk prediction for respiratory failure. In addition, our method found the lung
function score (FEV1% predicted), nutritional status (BMI and weight), and days of intravenous (IV)
antibiotics in hospital as important covariates for predicting the risks, confirming clinical findings of
CF: 1) FEV1% predicted is a strong surrogate for the survival, where its decrease severely increases
the mortality of CF patients (Aarona et al. (2015)), 2) hospitalization periods are often considered as
key risk factors for CF patients (Nkam et al. (2017)), and 3) the occurrence of malnutrition, which is
often indicated by low BMI, is associated with reductions in their survival (Stephenson et al. (2013)).

Table 3: The ranking of the ten most influential covariates with ∆t = 5 year. The values indicate
the ratio of increase/decrease of the partial dependence function.

Ranking Resp. Failure Other Causes
1 IV Antibiotic Days (Hospital) (+1.65) Colonic Stricture (+0.89)
2 FEV1% Predicted (-0.85) IV Antibiotic Days (Hospital) (+0.79)
3 GI Bleeding (Non Variceal) (-0.69) Cancer (+0.44)
4 Gram-Negative (-0.68) FEV1% Predicted (-0.43)
5 HD iBuprofen (-0.66) Gram-Negative (-0.40)
6 O2 Continuous (+0.65) GI Bleeding (Variceal) (+0.39)
7 BMI (-0.54) O2 Continuous (+0.38)
8 Weight (-0.49) HD iBuprofen (-0.32)
9 GI Bleeding (Variceal) (+0.46) BMI (-0.28)

10 Oral Hypoglycemic Agents (-0.44) Pancreatitis (-0.27)

4.5 DYNAMIC RISK PREDICTION

At run-time, Dynamic-DeepHit issues cause-specific risk predictions for each subject incorporating
his/her medical history; we illustrate dynamic risk predictions and the trajectory of the hidden states
for representative patients of the CF dataset in Figure 3 and 6. Whenever a new observation is made,
Dynamic-DeepHit updates the predictions that start from 0 due to the fact that this patient is alive at
the time of the measurement as defined in (3). However, the predicted risks can vary significantly de-
pending on the new measurements. For instance, the predicted risks for the patient in Figure 3, who
died from respiratory failure, were relatively higher and steeper compared to those for the patient in
Figure 6, who died from other causes. This is presumably because increasing antibiotic treatment
days in hospital (IV ABX hosp.) and decreasing FEV1% predicted have more influence on the risk
prediction for the respiratory failure, while other factors, such as colonic stricture and cancer, are
important for risk predictions for the other causes. Figure 3 and 4 (b) show 2-dimensional PCA pro-
jection of the hidden states of the shared network for the corresponding patients to illustrate how the
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(a) Dynamic Risk Prediction (b) PCA projection of the RNN hidden states

Figure 3: Illustration of (a) dynamic risk predictions and (b) PCA projection of the RNN hidden
states for a CF patient died from respiratory failure. (a) The gray solid lines indicates the time at
which new measurements are collected and the yellow star denotes the time at which the respiratory
failure occurred. (b) The blue stars denote the corresponding PCA projection of the hidden states.

(a) Dynamic Risk Prediction (b) PCA projection of the RNN hidden states

Figure 4: Illustration of (a) dynamic risk predictions and (b) PCA projection of the RNN hidden
states for a CF patient died from other causes. (a) The gray solid lines indicates the time at which
new measurements are collected and the yellow star denotes the time at which the other causes
occurred. (b) The blue stars denote the corresponding PCA projection of the hidden states.

hidden state changes as new measurements are collected over time. The same PCA decomposition
is used for both patients while different color maps are used to differentiate the predicted risk for
the respiratory failure and that for the other causes. (Here, since the shared network takes only the
previous measurements as the input, we omitted the hidden state at the first measurement, which
is denoted as 0, in the figures.) We confirmed that the trajectory of the hidden states in the shared
network for the patient in Figure 3 moved toward “high risk” of respiratory failure region while that
for the patient in Figure 4 moved toward “high risk” of other causes region. This highlights the use-
fulness of the shared network as the hidden states evolve along with the history for measurements.
(The dynamic risk prediction for a censored patient is provided in Appendix G.)

5 CONCLUSION

In this paper, we developed a novel approach, Dynamic-DeepHit, to perform dynamic survival anal-
ysis with competing risks on the basis of longitudinal data. Dynamic-DeepHit is a deep neural
network which learns the estimated joint distributions of survival times and competing events, with-
out making assumptions regarding the underlying stochastic processes. We train the network by
leveraging a combination of loss functions that capture the right-censoring and the associations of
longitudinal measurements, both of which are inherent in time-to-event data. We demonstrated the
utility of our proposed method through experiments conducted on real-world survival datasets with
competing risks, which comprise patients with follow-up measurements. The experiments show that
the proposed method significantly outperforms the state-of-the-art benchmarks in terms of discrim-
inative performance.
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A HYPER-PARAMETER OPTIMIZATION

The hyper-parameters, such as the coefficients, the activation functions, and the number of hidden
layers and nodes of each subnetwork, are chosen utilizing Random Search (Bergstra & Bengio
(2012)). The permitted values of the hyper-parameters are listed in Table 4.

Table 4: Hyper-parameters of Dynamic-DeepHit

Block Sets of hyper-parameters

Initialization Xavier initialization for weight matrix
Zero initialization for bias vector

Optimization Adam Optimizer
RNN architecture Bi-directional LSTM

Nonlinearity {ReLU, ELU, tanh}
Dropout 0.6

Learning rate {10−4, 10−5}
Mini-batch size {32, 64, 128}
No. of layers {1, 2, 3}

No. of hidden nodes {50, 100, 200}
α, β, σ {0.1, 1, 3, 5, 10}

B DETAILS OF THE BENCHMARKS

We compared Dynamic-DeepHit with state-of-the-art methods that account for dynamic survival
analysis under the presence of longitudinal measurements, including the joint model (Henderson
et al. (2000)), survival methods under landmarking approaches (van Houwlingen (2007)), and a
deep neural network that applies the similar architecture with that of our proposed network.

B.1 JOINT MODEL

We implement the joint model (JM) under a Bayesian framework that uses MCMC algorithms via
R package ‘JMbayes’9. The modeling framework for the longitudinal process is a linear mixed
effects model linked to the time-to-event process, which is modeled with Cox PH model. Since
the R package only supports for the survival models in the single risk setting, we constructed the
cause-specific Cox for each event by fixing an event (e.g., death from respiratory cause) and treating
the other event (e.g., death from other causes) simply as a form of censoring to account for the
competing risks setting; this is a common approach as well-described in (Haller et al. (2013)). For
the longitudinal process, we selected FEV1% predicted for the CF dataset and serum bilirubin for
the PBC dataset to model the longitudinal processes since these covariates are known as the most
prognostic biomarker for corresponding diseases (Nkam et al. (2017); Shapiro et al. (1979)) and
standard joint models suffer from computational limitations for modeling all time-varying covariates
(Hickey et al. (2016)).

B.2 LANDMARKING

We follow the description in (van Houwlingen (2007)) to construct landmarking benchmarks. More
specifically, the landmarking times are chosen as the prediction times, and only patients who are
at risk at these landmarking times (patients who have not experienced any event or been censored)
are considered when we fit survival models at each landmarking time. Overall, the landmarking
approaches are implemented utilizing the following survival models: the cause-specific version of
the Cox PH Model (cs-Cox) vis R package ‘survival’10, random survival forests under compet-
ing risks (RSF) via R package ‘randomForestSRC’11 (Ishwaran et al. (2008)) with 1000 trees

9https://cran.r-project.org/web/packages/JMbayes/
10https://cran.r-project.org/web/packages/survival/
11https://cran.r-project.org/web/packages/randomForestSRC/
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as a non-parametric alternative of the Cox model, and the deep neural network for competing risks
(DeepHit) proposed by (Lee et al. (2018)) to highlight the gain of incorporating history of measure-
ments (the RNN in the shared subnetwork is replaced with a feed-forward network and the network
is trained without L3).

B.3 DYNAMIC-EXP: A PARAMETRIC VERSION OF DYNAMIC-DEEPHIT

We construct a parametric version of our proposed network (Dynamic-Exp) by modifying the output
layer to model the underlying survival process with the Exponential distribution. In particular, the
output layer is replaced from a soft-max layer with multiple output nodes to a soft-plus layer with
a single output node which parameterizes the Exponential distribution of the survival process for
each cause. Formally, define Tk the time-to-event of cause k; then Tk ∼ Exp(λk) where λk =
Softplus

(
fck(xM ,hM−1)

)
. (Here, the same notations in Section 2 are adopted.) Given the outputs

of the network for subject i as λi1, · · · , λiK , the log-likelihood loss, L1, in (4) can be redefined as
follows:

L1 = −
K∑
k=1

N∑
i=1

[
1ki=k · logP

(
Tk = τ i|X i, Tk > tiMi

)
+ 1ki 6=k · logP

(
Tk > τ i|X i, Tk > tiMi

)]
,

= −
K∑
k=1

N∑
i=1

[
1ki=k · log

(
λik exp(−λiksi)

)
+ 1ki 6=k ·

(
− λiksi

)]
,

where si = τ i − tiMi implies the time-to-event/censoring from the last measurement time and the
second equation is derived from the definition of the Exponential distribution.

This network is introduced to highlight how Dynamic-DeepHit can benefit from directly learning the
joint distribution of the first hitting time and the competing events without any assumptions about
the underlying survival process. Throughout the evaluation, we train Dynamic-Exp adopting the
modified output layers and L1 via the same random search for hyper-parameter optimization that is
used to train our proposed network.

C UNDERSTANDING THE SOURCE OF GAIN

Dynamic-DeepHit is trained based on three loss functions, each of which has a different role in opti-
mizing the overall network for the considered problem. To further understand where the gains come
from, we compared the discriminative performance that is achieved when the network is trained
utilizing only parts of the loss functions and when the network does not incorporate the longitudinal
history. More specifically, Table 5 shows Ck(t,∆t) for the CF dataset comparing the following vari-
ations: Dynamic-DeepHits that are trained only with L1, L2, L1 + L2, and L1 + L3, respectively.
For all the comparisons, the same hyper-parameter optimization is applied.

Table 5: Comparison of Ck(t,∆t) (mean ± std) for CF dataset with various settings.

Algorithms Resp. Failure Other Causes
∆t = 1 ∆t = 3 ∆t = 5 ∆t = 1 ∆t = 3 ∆t = 5

t = 30

L1 0.893±0.02 0.893±0.02 0.898±0.02 0.859±0.03 0.867±0.03 0.853±0.04
L2 0.907±0.04 0.880±0.08 0.863±0.12 0.868±0.10 0.911±0.03 0.915±0.03

L1 + L2 0.941±0.01 0.937±0.01 0.937±0.01 0.919±0.03 0.914±0.02 0.914±0.03
L1 + L3 0.899±0.01 0.899±0.01 0.903±0.01 0.866±0.04 0.865±0.05 0.866±0.04
Ltotal 0.946±0.01 0.940±0.01 0.939±0.01 0.926±0.02 0.919±0.03 0.913±0.03

t = 40

L1 0.856±0.09 0.891±0.02 0.887±0.02 0.874±0.04 0.871±0.03 0.862±0.04
L2 0.846±0.19 0.832±0.22 0.852±0.18 0.813±0.12 0.803±0.12 0.697±0.14

L1 + L2 0.947±0.01 0.949±0.01 0.949±0.01 0.918±0.01 0.909±0.03 0.921±0.01
L1 + L3 0.853±0.08 0.887±0.01 0.885±0.01 0.816±0.06 0.810±0.07 0.813±0.07
Ltotal 0.944±0.03 0.954±0.01 0.954±0.01 0.920±0.02 0.918±0.03 0.921±0.02

t = 50

L1 0.882±0.03 0.873±0.02 0.877±0.02 0.808±0.03 0.823±0.01 0.757±0.11
L2 0.663±0.17 0.593±0.29 0.621±0.25 0.884±0.04 0.791±0.21 0.823±0.13

L1 + L2 0.948±0.02 0.948±0.01 0.949±0.01 0.913±0.03 0.916±0.03 0.916±0.03
L1 + L3 0.860±0.04 0.866±0.03 0.870±0.02 0.795±0.06 0.803±0.06 0.783±0.09
Ltotal 0.958±0.01 0.959±0.01 0.959±0.01 0.934±0.02 0.939±0.02 0.938±0.02
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Dynamic-DeepHit improved the discriminative performance by combining two additional loss func-
tions, L2 and L3. Incorporating L2 significantly boosted the discriminative performance of our
method as the loss function is built upon the approximation of the concordance. In comparison,
the network trained only with L2 provided discriminative performance which is not consistent over
tested prediction and evaluation times since it does not consider the overall joint distributions of sur-
vival times and competing events. In addition, combining L3 led to a higher discriminative power by
regularizing parameters of the shared subnetwork to ensure that the learned representations contain
suitably rich information to perform step-ahead prediction.

D DETAILS OF THE DATASETS

For all the dataset considered in our experiments, missing values were replaced by zero-order hold
interpolation and the ones that are still missing after the interpolation are imputed by the mean and
mode for continuous and binary covariates, respectively.

D.1 CF DATASET

Figure 5: Death causes in the CF dataset.

Out of 10,995 patients, experiments were conducted on 5,883 adult patients with total of 90 fea-
tures (11 static covariates and 79 time-varying covariates) whose follow-up data was available from
January 1st 2009 to December 31st 2015. The covariates for individual CF patients include the
followings: demographics, genetic mutations, lung function scores, hospitalization, bacterial lung
infections, comorbidities, and therapeutic management. Of the 5,883 patient, 605 patients (10.28%)
were followed until death and the remaining 5,278 patients (89.72%) were right-censored. Com-
plications due to transplantation (7.43%) and CF-associated liver disease (1.49%) were the two
most frequent causes of death after the respiratory failure. The detailed number of death causes
in CF patients are illustrated in Figure 5. For each patient, longitudinal measurements were con-
ducted roughly every year; the time interval between two adjacent measurements ranges from 0 to
69 months with mean of 9.20 months. Here, we discretized the time with a resolution of one month
since the date information in the data was mostly available in month format. The number of yearly
follow-ups was from 1 to 7 with mean of 5.34 measurements per patients.

D.2 PBC DATASET

This data is from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted
between 1974 and 1984, which comprises of 312 patients with 15 follow-up variables (2 static
covariates and 13 time-varying covariates)12. Among 312 PBC patients, 169 patients (54.17%) were
followed until the competing events of our interest and the remaining 143 patients (45.83%) were
right-censored. Two competing events are considered in the experiment: i) 140 (44.87%) deaths
due to liver failures and ii) 29 (9.29%) patients who underwent liver transplantation. Throughout the
experiments, all patients are aligned based on the start of the clinical study on PBC. The time interval
between two adjacent measurements ranges from 1 to 69 months with mean of 10.69 months. Here,

12https://www.rdocumentation.org/packages/joineRML/versions/0.4.1/
topics/pbc2
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we discretized the time with a resolution of one month. The number of yearly follow-ups was from
1 to 16 with mean of 6.23 measurements per patients.

D.3 ADNI DATASET

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study data is a comprehensive dataset that
tracks the progression of the Alzheimer’s Disease (AD). In our experiment, we focused on 1,348
patients with 21 follow-up variables (4 static covariates and 17 time-varying covariates) and treated
transition to Dementia as the even of our interest. Covariates include positron emission tomography
(PET) regions of interest (ROI) scans, Magnetic Resonance (MRI) and diffusion tensor imaging
(DTI), CSF and blood biomarkers, genetics, cognitive tests (ADAS-Cog), demographic and others.
The time interval between two adjacent measurements ranges from 2 to 11 months with mean of
5.19 months. Here, we discretized the time with a resolution of one month. The number of yearly
follow-ups was from 2 to 23 with mean of 8.65 measurements per patients.

E ADDITIONAL RESULTS WITH SINGLE RISK

We reported the discriminative performance of survival models on the ADNI dataset in Table 6,
where we focus on a single risk. Our model achieves significant performance gain for the most of
the the tested predication times (in year) and evaluation times (in year) in comparison with state-of-
the-art methods. We confirm that Dynamic-DeepHit outperforms conventional methods not only in
the setting with competing risks but also with a single risk.

Table 6: Comparison of Ck(t,∆t) (mean ± std) for the ADNI dataset. Higher the better.

Algorithms Dementia
∆t = 1 ∆t = 3 ∆t = 5

t = 4

cs-Cox 0.828±0.30 0.827±0.30 0.827±0.30
RSF 0.934±0.02 0.924±0.02 0.921±0.01

DeepHit 0.928±0.01 0.925±0.00 0.921±0.01
JM 0.885±0.02 0.884±0.02 0.883±0.02

Dynamic-Exp 0.914±0.01 0.910±0.01 0.901±0.01
Dynamic-DeepHit 0.952±0.01 0.940±0.03 0.948±0.02

t = 6

cs-Cox 0.935±0.01 0.934±0.01 0.932±0.01
RSF 0.905±0.02 0.903±0.02 0.902±0.01

DeepHit 0.927±0.02 0.925±0.02 0.922±0.01
JM 0.879±0.03 0.889±0.02 0.872±0.03

Dynamic-Exp 0.898±0.01 0.888±0.02 0.875±0.02
Dynamic-DeepHit 0.905±0.05 0.950±0.02 0.954±0.01

F ADDITIONAL RESULTS WITH THREE COMPETING RISKS

In this subsection, we reported the discriminative performance of survival models on the CF dataset
with three competing risks in Table 7, where deaths from other causes (114 patients) are further
categorized into deaths from transplant complications (45 patients) and those from other causes (69
patients) – this additional simulation is for the sake of illustrating how well Dynamic-DeepHit can
scale to multiple (more than two) competing risks.

As seen in the table, our model achieves significant performance gain in discriminating the risks
for all the the tested predication times (in year) and evaluation times (in year) in comparison with
state-of-the-art methods. In particular, the gain over the landmarking methods were substantial for
some specific predictions times, i.e., t = 30 for deaths from transplant complications and t = 50
for those from other causes. Although the landmarking methods are built upon relatively simple un-
derlying survival models (i.e., cs-Cox and RSF), they become easily over-fitted since the number of
events (for each cause) among patients at risks at these prediction times is small. (Please refer to the
description of landmarking implementation in Appendix B.) Contrarily, the methods which incor-
porate patients with time-varying covariates at different time horizons, i.e., JM, Dynamic-Exp, and
Dynamic-DeepHit, provided more consistent discriminative performance over different prediction
times.
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Table 7: Comparison of Ck(t,∆t) (mean ± std) for the CF dataset with three competing risks.
Higher the better.

Algorithms Respiratory Failure
∆t = 1 ∆t = 3 ∆t = 5

t = 30

cs-Cox 0.748±0.10 0.748±0.09 0.748±0.09
RSF 0.926±0.01 0.921±0.01 0.919±0.01
JM 0.833±0.02 0.878±0.01 0.870±0.01

Dynamic-Exp 0.900±0.02 0.893±0.02 0.893±0.02
cs-Dynamic-DeepHit 0.947±0.01 0.940±0.01 0.937±0.01

Dynamic-DeepHit 0.948±0.01 0.939±0.01 0.938±0.01

t = 40

cs-Cox 0.745±0.04 0.745±0.04 0.745±0.04
RSF 0.887±0.02 0.885±0.03 0.881±0.03
JM 0.858±0.02 0.872±0.01 0.884±0.01

Dynamic-Exp 0.880±0.01 0.879±0.01 0.878±0.01
cs-Dynamic-DeepHit 0.827±0.06 0.841±0.06 0.838±0.05

Dynamic-DeepHit 0.947±0.02 0.950±0.01 0.949±0.01

t = 50

cs-Cox 0.801±0.11 0.801±0.11 0.801±0.11
RSF 0.893±0.01 0.887±0.02 0.884±0.01
JM 0.878±0.02 0.884±0.01 0.889±0.01

Dynamic-Exp 0.868±0.01 0.866±0.01 0.866±0.01
cs-Dynamic-DeepHit 0.944±0.02 0.938±0.02 0.937±0.02

Dynamic-DeepHit 0.954±0.01 0.960±0.00 0.959±0.00

Algorithms Transplant Complication
∆t = 1 ∆t = 3 ∆t = 5

t = 30

cs-Cox 0.554±0.21 0.553±0.21 0.555±0.21
RSF 0.529±0.14 0.659±0.06 0.608±0.05
JM 0.764±0.03 0.782±0.05 0.790±0.03

Dynamic-Exp 0.749±0.09 0.748±0.09 0.746±0.09
cs-Dynamic-DeepHit 0.929±0.01 0.926±0.01 0.926±0.01

Dynamic-DeepHit 0.931±0.03 0.936±0.03 0.933±0.03

t = 40

cs-Cox 0.608±0.09 0.608±0.09 0.609±0.09
RSF 0.804±0.09 0.752±0.08 0.742±0.06
JM 0.800±0.04 0.794±0.05 0.792±0.04

Dynamic-Exp 0.759±0.07 0.759±0.07 0.759±0.07
cs-Dynamic-DeepHit 0.887±0.05 0.881±0.05 0.883±0.05

Dynamic-DeepHit 0.905±0.06 0.938±0.02 0.938±0.02

t = 50

cs-Cox 0.815±0.09 0.815±0.09 0.815±0.09
RSF 0.707±0.10 0.749±0.06 0.749±0.06
JM 0.805±0.05 0.799±0.05 0.798±0.05

Dynamic-Exp 0.747±0.07 0.747±0.07 0.747±0.07
cs-Dynamic-DeepHit 0.908±0.01 0.920±0.01 0.921±0.01

Dynamic-DeepHit 0.899±0.08 0.932±0.02 0.930±0.02

Algorithms Other Cause
∆t = 1 ∆t = 3 ∆t = 5

t = 30

cs-Cox 0.820±0.14 0.819±0.14 0.819±0.14
RSF 0.809±0.27 0.805±0.24 0.795±0.24
JM 0.703±0.03 0.700±0.04 0.752±0.05

Dynamic-Exp 0.883±0.06 0.883±0.06 0.883±0.06
cs-Dynamic-DeepHit 0.946±0.01 0.945±0.02 0.943±0.01

Dynamic-DeepHit 0.953±0.03 0.945±0.02 0.944±0.02

t = 40

cs-Cox 0.893±0.05 0.893±0.05 0.893±0.05
RSF 0.781±0.04 0.791±0.04 0.791±0.04
JM 0.744±0.03 0.718±0.05 0.711±0.02

Dynamic-Exp 0.872±0.05 0.872±0.05 0.872±0.05
cs-Dynamic-DeepHit 0.878±0.06 0.883±0.05 0.880±0.05

Dynamic-DeepHit 0.927±0.02 0.934±0.02 0.934±0.02

t = 50

cs-Cox 0.431±0.13 0.431±0.13 0.431±0.13
RSF 0.689±0.06 0.637±0.12 0.637±0.12
JM 0.733±0.02 0.708±0.04 0.706±0.04

Dynamic-Exp 0.863±0.05 0.863±0.05 0.863±0.05
cs-Dynamic-DeepHit 0.943±0.01 0.941±0.02 0.942±0.01

Dynamic-DeepHit 0.945±0.02 0.943±0.01 0.939±0.02

When compared with JM and Dynamic-Exp which based on the underlying survival processes (the
Cox proportional hazard model and the Exponential distribution, respectively), our proposed method
provided significant improvement as it does not make assumptions about the underlying survival
process and directly learns the joint distribution of the first hitting time and competing events. Fur-
thermore, for most of the tested prediction and evaluation times, Dynamic-DeepHit outperformed
the same network which was trained in a cause-specific fashion – the network is trained to learn the
distribution of the first hitting time for each cause by treating the other causes as a form of right-
censoring. These improvements imply that our network benefits from directly learning the joint
distribution and scales well to multiple causes.
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G ADDITIONAL RESULTS ON DYNAMIC RISK PREDICTION

We illustrate dynamic risk predictions and the trajectory of the hidden states for representative pa-
tients of the CF dataset in Figure 6 for a patient who are right-censored. The predicted risks for the
patient in Figure 6 were low compared to those for the patient in Figure 3 or 4 in the manuscript.
This is presumably because the patient had decreasing IV ABX hosp. and stable FEV1% predicted.
We confirmed that the trajectory of the hidden states in the shared network for the patient in Figure
6 moved toward “low risk” respiratory failure region.

(a) Dynamic Risk Prediction (b) PCA projection of the RNN hidden states

Figure 6: Illustration of (a) dynamic risk predictions and (b) PCA projection of the RNN hidden
states for a CF patient were right-censored. (a) The gray solid lines indicates the time at which
new measurements are collected and the yellow solid line denotes the time at which the patient is
right-censored. (b) The blue stars denote the corresponding PCA projection of the hidden states for
the same patient.

H CAN DYNAMIC-DEEPHIT FLEXIBLY HANDLE MISSING DATA?

Table 8: Comparison of Ck(t,∆t) (mean ± std) for the CF dataset with and without missing indi-
cators (MI). Higher the better.

Algorithms Resp. Failure Other Causes
∆t = 1 ∆t = 3 ∆t = 5 ∆t = 1 ∆t = 3 ∆t = 5

t = 30
Proposed w/o MI 0.946±0.01 0.940±0.01 0.939±0.01 0.926±0.02 0.919±0.03 0.913±0.03
Proposed w/ MI 0.948±0.01 0.942±0.01 0.941±0.02 0.929±0.02 0.926±0.03 0.924±0.02

t = 40
Proposed w/o MI 0.944±0.03 0.954±0.01 0.954±0.01 0.920±0.02 0.918±0.03 0.921±0.02
Proposed w/ MI 0.957±0.02 0.958±0.02 0.958±0.02 0.935±0.02 0.934±0.03 0.934±0.03

t = 50
Proposed w/o MI 0.958±0.01 0.959±0.01 0.959±0.01 0.934±0.02 0.939±0.02 0.938±0.02
Proposed w/ MI 0.962±0.02 0.961±0.02 0.961±0.01 0.932±0.02 0.938±0.03 0.941±0.03

In longitudinal clinical studies, a survival model will have added value in practice if it can flexi-
bly handle missing data to investigate the effect of missing measurements. (This is ubiquitous in
medicine where not every patient undergo the exact same tests for measurements.) Fortunately,
we can easily extend Dynamic-DeepHit to handle the missing data by providing missing indica-
tors as auxiliary inputs along with time-varying covariates. More specifically, we can redefine
the input sequence for patient i as X i = (Xi,Mi,∆i) where Mi = {mi

1, · · · ,mi
Mi} is a se-

quence of mask vectors that indicate which covariates are missing at each time stamp. Here,
mi
j = [mi

j,1, · · · ,mi
j,dx

] for j = 1, · · · ,M i withmi
j,d = 1 if the d-th time-varying covariate at time

stamp j, xij,d, is missing and mi
j,d = 0, otherwise. Also, we need to slightly modify ζ(xj+1,yj)

in the prediction loss (5) to only account for time-varying covariates that are available (we omit the
dependency on i for ease of notation):

ζ(xj+1,yj) =
∑
d∈I

(1−mj+1,d) · ζd(xj+1,d, yj,d), (8)

19



Under review as a conference paper at ICLR 2019

where yj,d is the step-ahead prediction at time stamp j for the d-th time-varying covariate at time
stamp j + 1, i.e., xj+1,d.

In Table 8, we reportedCk(t,∆t) for the CF dataset with two competing events for the proposed net-
work with and without missing indicators. Two approaches showed very similar performance while
the proposed network with missing indicators slightly outperformed the one without the missing in-
dicators. We expect the gain mainly comes from the additional information about which covariates
are missing and when they are missing. We leave further investigation on different scenarios in the
missing data, e.g., missing at completely random and missing not at random, for future work.
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