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ABSTRACT

Semi-supervised Domain Generalization (SSDG) offers a cost-effective solution
for generalizing models to unseen domains with limited labels. While exist-
ing SSDG methods, mainly built upon small-scale backbones, struggle to match
fully supervised DG performance, large-scale vision-language models like CLIP
have shown remarkable generalization through downstream fine-tuning. However,
adapting these models to SSDG remains underexplored. In this paper, we identify
a critical issue: existing popular fine-tuning methods suffer from under-utilizing
unlabeled data in the semi-supervised learning frameworks, thereby overfitting the
limited labeled data, leading to training collapse and generalization ability degra-
dation. To address these challenges, we propose two novel components: (1) the
De-False-Correlation Adapter (DFC-Adapter), which reduces false correlations
to refine visual features and (2) Learnable Multi-granularity Text-guided Embed-
ding Augmentation (LMTEA), which synthesizes semantic-aligned but domain-
perturbed augmented visual embedding for consistency regularization through
multi-granularity text guidance and learnable style encoding. Moreover, we estab-
lish the first-ever benchmark for CLIP fine-tuning methods in SSDG, conducting
extensive experiments across six DG datasets and two ImageNet variants. Our
results demonstrate that our method significantly outperforms existing CLIP fine-
tuning approaches and achieves performance comparable to even fully supervised
DG methods in some cases. Our code will be made public upon acceptance.

1 INTRODUCTION

Semi-supervised domain generalization (SSDG) aims to learn models that generalize to unseen do-
mains by leveraging both limited labeled and abundant unlabeled data from multiple source domains.
As the existing methods mainly build upon FixMatch Sohn et al. (2020) and its variants Zhang
et al. (2021a); Wang et al. (2022a); Zhou et al. (2023); Qi et al. (2024b), they focus on three major
technical directions of improving pseudo-labeling (PL) accuracy Zhang et al. (2021a); Zoha et al.
(2024); Khan et al. (2024); Qi et al. (2024c), modeling domain-level information Galappaththige
et al. (2024a); Wang et al. (2023b) and data-level consistency regularization Zhou et al. (2023).
However, we notice the existence of three fundamental limitations: (1) Architectural constraints.
Current approaches rely on small-scale backbones (e.g., ResNet-18 He et al. (2016)), which lack the
scalability and generalization capacity of modern vision-language models (VLMs). (2) Pseudo-label
reliability. Low PL accuracy injects noise into training, propagating errors and degrading general-
ization, which is a critical weakness given the limited labeled data in SSDG. (3) Augmentation
poverty. Existing works Galappaththige et al. (2024b;a); Zhou et al. (2023); Qi et al. (2024b) mainly
use simple predefined image-level augmentations, such as image rotation and flipping, hindering
robustness to diverse domain shifts. Collectively, these limitations constrain further improvement of
SSDG, precluding competitive performance against fully supervised DG methods.

Recent advances in adapting VLMs like CLIP Gao et al. (2024) through downstream fine-tuning Hu
et al. (2022); Jia et al. (2022); Zhou et al. (2022) offer new opportunities. Popular fine-tuning
methods, such as low-rank adaptation (LoRA) Hu et al. (2022) and prompt tuning techniques Jia
et al. (2022); Zhou et al. (2022), offer promising pathways for customizing foundational mod-
els while preserving transferable knowledge. However, their application in SSDG scenarios re-
mains underexplored. A critical limitation emerges here: existing downstream fine-tuning methods
severely underutilize unlabeled data during SSDG training. As illustrated in Figure. 1, pseudo-
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labeling confidence from CLIP’s image-text pairing often falls below the hand-crafted confidence
threshold, rendering large portions of unlabeled data inactive in gradient updates under the semi-
supervised learning framework Sohn et al. (2020). This exacerbates the confirmation bias Arazo
et al. (2020) inherent in semi-supervised learning, leading to overfitting on the limited labeled
data and degrading generalization performance. Despite LoRA achieving high PL accuracy in
the initial training period, only a small portion of unlabeled data contributes to gradient updates.
Meanwhile, directly applying linear probing achieves marginal performance, but still degrades the
pseudo-labeling accuracy due to potential overfitting. Another straightforward alternative, com-
bining fine-tuning methods with a linear classifier, leads to training collapses similar to those of
the vanilla fine-tuning. This suggests that preventing learnable modules from underutilizing the
unlabeled data and overfitting to the limited labeled data is crucial for adapting VLMs to SSDG.
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Figure 1: Illustration on the underutilized unlabeled data is-
sue of existing fine-tuning methods (LoRA Hu et al. (2022)
and VPT Jia et al. (2022)) under SSDG setting. LP is linear
probing.

To address the challenges above
and bridge the gap in VLMs re-
search in SSDG, this paper proposes
a De-False-Correlation Adapter
(DFC-Adapter) and Learnable
Multi-granularity Text-guided Em-
bedding Augmentation (LMTEA)
to prevent the confirmation bias
from the perspective of architecture
design and data augmentation. More
specifically, DFC-Adapter learns
generalizable knowledge to refine
visual features in both spatial and
semantic space by decreasing false
correlations from both domain-
specific biases and pre-trained
knowledge. Meanwhile, LMTEA
achieves a richer augmentation space
for consistency learning with learn-
able style encoding and text-guided
embedding augmentation from both
object attribute level and global style level.

We evaluate our method on standard DG benchmark datasets and ImageNet variants, establishing
the first benchmark for VLM fine-tuning methods in SSDG. Experimental results demonstrate that
our method significantly outperforms existing methods and, in some cases, achieves performances
comparable to fully supervised DG baselines. Our main contributions can be summarized as:

• We identify the low unlabeled data utilization in prior VLM fine-tuning methods under the SSDG
scenarios, leading to training collapse and degradation of generalization performances.

• From the perspective of architecture design and data augmentation, we propose DFC-Adapter and
LMTEA to adapt pre-trained VLMs to SSDG by preventing overfitting to the limited label data and
training collapses caused by confirmation bias.

• Extensive experimental results across 8 datasets, where we achieve comparative performances
with the fully supervised methods, demonstrate the superiority of the proposed method.

2 RELATED WORK

Domain Generalization: Domain generalization (DG) intends to learn a model from (multiple)
source domains with transferable knowledge that can generalize to previously unseen target do-
mains. Existing methods could be substantially categorized into data augmentation Li et al. (2021);
Volpi et al. (2018); Xu et al. (2021); He et al.; Khan et al. (2021), domain alignment Hemati et al.
(2023); Wang et al. (2022b), meta-learning Li et al. (2018); Chen et al. (2023) and optimization
methods Cha et al. (2022); Yu et al. (2024); Wang et al. (2023a). Despite gaining performance im-
provements, the vast majority of the DG research is ill-equipped to process unlabeled data, largely
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stemming from their foundational assumption of a fully supervised learning context. However, in
real-world scenarios, it could be infeasible to curate a fully-labeled dataset with various domains for
training, thereby limiting the applications of these fully supervised DG methods.

Semi-supervised Domain Generalization: Semi-supervised domain generalization (SSDG) has
emerged as a promising avenue to address domain shift with limited labeled data. Existing SSDG
methods Sohn et al. (2020); Zhou et al. (2023); Khan et al. (2024); Galappaththige et al. (2024a;b)
are mainly developed from semi-supervised learning methods, such as FixMatch Sohn et al. (2020),
demonstrating the crucial impact of pseudo-labeling (PL) and consistency regularization on SSDG
performances. A handful of research Galappaththige et al. (2024b;a); Khan et al. (2024); Wang et al.
(2023b) has been dedicated to improving PL accuracy during training. Wang et al. (2023b) approach
domain-aware PL with a dual-classifier structure, while Galappaththige et al. (2024a) directly mod-
ulates the weight matrix of the classifier head with domain-level information. Meanwhile, on the
aspect of consistency regularization, StyleMatch Zhou et al. (2023) introduces stochastic modeling
on the classifier head and MultiMatch Qi et al. (2024b) formulates the multiple source domains into
multiple local tasks and a global task for domain alignment. Despite demonstrating notable perfor-
mance improvements, these methods significantly trail fully supervised DG performances. To the
best of our knowledge, the vast majority of SSDG research exclusively applies small-scale convolu-
tional networks as their backbones, limiting their further development. Meanwhile, for consistency
learning, these methods depend on predefined image-level augmentation to generate augmented
views in semi-supervised learning, which overlooks the rich semantic augmentation space.

VLM Generalization: Foundation vision-language models like CLIP Radford et al. (2021), pre-
trained on web-scale data, achieve strong out-of-distribution generation Shu et al. (2023). However,
direct fine-tuning with task-specific data often harms robustness to distribution shifts Wortsman et al.
(2022). To address this, parameter-efficient strategies, such as LoRA Hu et al. (2022), CoOP Zhou
et al. (2022), VPT Jia et al. (2022), and MaPLE Khattak et al. (2023a) adapt only a few parameters
while preserving generalizable knowledge. Beyond these, advanced methods further enhance OOD
generalization via style-aware prompting Bose et al. (2024), disentangled representations Cheng
et al. (2024), or knowledge distillation Addepalli et al. (2024). Despite these efforts, most fine-
tuning methods assume fully supervised settings, leaving their behavior in semi-supervised domain
generalization underexplored.. In parallel, feature augmentation approaches Dunlap et al. (2023);
Qi et al. (2024a) enrich the training distribution by synthesizing semantically aligned but domain-
perturbed features, enabling consistency regularization across domains. However, building upon the
modality gap assumption Liang et al. (2022), they assume predefined text based on the domain name
would be a perfect match of the visual features, which is not the case in real-world scenarios, thereby
leading to potential semantically misaligned augmented features.

3 METHOD

3.1 PRELIMINARIES

Problem Settings. We denote each domain d by d = {(xd
i , y

d
i )}ni=1, where xd

i , ydi and n is an
input image, the corresponding ground-truth label and the total number of images in domain d,
respectively. In the scenario of SSDG, there are only limited labeled samples, , each source domain
has a labeled part dL = {(xd

i , y
d
i )} and an unlabeled part dU = {(ud

i )}, where the number of
samples in the unlabeled part is significantly higher than that in the labeled part. For the vision-
language model CLIP Radford et al. (2021), we denote its image encoder and text encoder as Ev

and Et, respectively.

SSDG Pipeline. We adopt FixMatch Sohn et al. (2020) as our baseline due to its empirical effective-
ness in SSDG and conceptual simplicity. It integrates two SSL mechanisms. Pseudo-labeling (PL)
assigns labels to unlabeled data when their maximum class probability exceeds a confidence thresh-
old. Meanwhile, consistency regularization enforces prediction invariance across augmented views.
FixMatch processes each sample in a mini-batch with both weak and strong augmentations. The
total loss consists of: 1) supervised loss Ls applied on the weakly augmented version of the labeled
data. And 2) Lu aligns predictions on strongly augmented unlabeled data with their pseudo-labels
(generated from the weakly augmented versions). Despite its success in SSDG, FixMatch Sohn
et al. (2020) faces significant challenges when adapted to downstream tasks with VLMs. As illus-
trated in Figure. 1, prevalent fine-tuning approaches fail to effectively utilize unlabeled data within
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Figure 2: Overview of our proposed SSDG method, which introduces two key components of DFC-
Adapter and LMTEA. Bs and Bc denote the spatial refinement bank and vision-language alignment
correlation bank, respectively.

FixMatch’s pseudo-labeling framework, resulting in both training collapse and generalization degra-
dation.

3.2 METHOD OVERVIEW

As illustrated in Figure. 2, our framework comprises two key components: De-False-Correlation
Adapter (DFC-Adapter) and Learnable Multi-granularity Text-guided Embedding Augmentation
(LMTEA). Given visual features extracted by the image encoder Ev , the DFC-Adapter applies
learnable knowledge banks as corrections to mitigate both domain-specific information and spu-
rious correlations. During training, LMTEA synthesizes augmentation embeddings in the vision-
language embedding space by incorporating learnable style encoding and external knowledge from
large-language models (LLMs) to enhance consistency regularization.

3.3 DE-FALSE-CORRELATION ADAPTER LEARNING

CLIP’s pretrained visual encoder Ev often encodes spurious correlations between specific com-
ponents, stemming from the source domains or pretrained knowledge, and semantic content Kim
et al. (2024), leading to generalization degradation. To mitigate this while preserving cross-modal
alignment and prevent overfitting, we propose the De-False-Correlation Adapter (DFC-Adapter) P ,
which dynamically suppresses biased feature activations through two sets of learnable knowledge
bank: (1) a spatial refinement bank Bs = {bs,k}Kk=1 ∈ RK×ds that refines visual features over
spatial tokens to enhance discriminative local patterns and (2) a semantic correlation alignment
bank Bc = {bc,k}Kk=1 ∈ RK×dc . K, ds and dc denote the number of learnable features in each
bank and their corresponding feature dimensions, respectively. For a batch of input visual features
z = Ev(x) ∈ RB×L×ds , we first compute cross-attention between Bs and z to adaptively adjust
spatial feature activations:P (z) = WP (CA(z, bs)), CA(z, bs) = softmax(

QsK
T
s√

d
)Vs

Qs = WQ,sbs, Ks = WK,sz, Vs = WV,sz,

(1)

where WQ,s, WK,s and WV,s are the corresponding attention mapping matrix. WP denotes the
mapping matrix for dimension alignment in the DFC-Adapter P . Then, we combine the output with
the original visual feature in the vision-language alignment space:

zs = CLS(z) + P (z), (2)

where CLS(·) denotes projecting the class token to vision-language space. zs denotes the semantic
visual feature in the vision-language embedding space. Subsequently, we incorporate the semantic
correlation bank Bc with the projected feature zs via cross-attention mechanism similar with that in
Eq. 1 as:

zf = zf + CA(zf , bc), (3)
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where zf denotes the final feature for linear class prediction.

De-False-Correlation Learning. To mitigate domain-specific and pretrained knowledge biases
while preserving semantic fidelity and cross-modality alignment, we propose a dual-level regular-
ization mechanism. From the domain level, to decrease domain-specific bias information in the
feature, the output of the DFC-Adapter should be varied across inputs from different domains and
should be similar when inputs from the same source domain are given. Therefore, we formulate this
as a contrastive domain alignment loss:

Lda = − 1

n

n∑
i=1

log

∑
i̸=j,d(zi)=d(zj),j=1,...,n e−D(P (zi),P (zj))∑

i̸=k,k=1,...,n e−D(P (zi),P (zk))
, (4)

where n, d(·) and D(·) denote the batch size, obtaining the domain index from the source domains
and L2 distance, respectively.

From the object-centric level, to mitigate spurious false correlations from the visual encoder of CLIP
(deeming ‘chair’ and ‘desk’ identical), we propose to leverage the external knowledge from existing
large-language models (LLMs). We prompt LLMs with a template to list commonly objects co-
occurring with but essentially irrelevant to each class csrc. For example, cfc,chair = {desk, office, ...}.
Based on these counterfactual objects, we pull the visual feature of csrc away from those text em-
beddings of cfc, while maintaining image-text alignment with the original class text embedding
as:

Lfc = − 1

n

n∑
i=1

(

|cfc,yi
|∑

j=1

zf,i, Et(cfc,yj ))− ITP(zf,i, Et(csrc))), (5)

where cfc,yi
denote the false-correlation text list corresponding to class of yi. ITP denotes calculat-

ing the cross-entropy loss on the image-text pairing prediction with the ground-truth label. The loss
calculation object under the semi-supervised learning framework will be illustrated in detail in the
latter section.

3.4 LEARNABLE MULTI-GRANULARITY TEXT-GUIDED EMBEDDING AUGMENTATION

To further enhance consistent regularization, we propose Learnable Multi-granularity Text-guided
Embedding Augmentation (LMETA), which synthesizes semantic-aligned and domain-perturbed vi-
sual embeddings as augmentation samples during training. Unlike existing methods of VLM feature
augmentation that rely on pre-defined domain names, LMETA introduces learnable style encoding
and multi-granularity text-guided augmentation, effectively addressing semantic misalignment and
enhancing the diversity of augmented features.

Analysis on TEAM Qi et al. (2024a). TEAM exploits the modality gap phenomenon Liang et al.
(2022); Shi et al. (2023), which is the constant vector orthogonal to the span of image and text
embeddings, to translate original visual features into novel domains. As shown in Figure. 3(a),
the TEAM directly assumes that the text tsrc in the format of “a {source domain name} of the
{class name}” would be the one match for the images from the source domain, and synthesize
visual features from novel domains with another text ta “a {augmented domain name} of the {class
name}” by:

va = vx + g, g = Et(ta)− Et(tsrc), vx = Ev(x) (6)

However, the effectiveness of TEAM is based on the assumption that the predefined texts would
be a well-matched pair for the image features. It fails when the domain name fails to represent
the domain-specific information (domain name is set as the number of camera traps in TerraIncog-
nita Beery et al. (2018)), leading to potential semantic misaligned augmented embedding and hin-
dering consistency learning.

Learnable Style Encoding. To overcome this limitation, we propose to use the learnable style
embedding to replace source domain name embedding. Inspired by previous work on image edit-
ing with diffusion models Gal et al. (2022); Zhang et al. (2023), where a learnable component is
integrated with text embedding to generate novel concepts, we incorporate a set of learnable style
components s. As shown in Figure. 3(b), given an image x from the d-th domain, we select the
corresponding style components to combine with the pre-defined text for noise prediction with the
diffusion models. We optimize the learnable style component with the diffusion loss Rombach
et al. (2022) to learn delicate domain-specific style components. To further improve the learning of

5
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domain-specific information, we apply an orthogonality loss to reduce the correlation between each
pair of style components:

Lortho = ||ssT − diag(ssT )||2, (7)

where diag means keeping only the diagonal entries. We combine the above two losses to learn
the domain-specific style component before launching the fine-tuning of CLIP. With the learned
style encoding, we combine them with the pre-defined text embedding to generate augmentation
embeddings:

xaug = vx + ĝ, ĝ = Et(ta)− concat(Et(tsrc) + sd), (8)

where concat means concatenate the text embeddings and d denotes the domain index for selecting
the corresponding style component.
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Figure 3: Illustration of (a) the misalignment issue of in-
consistent modality gap from TEAM Qi et al. (2024a), and
(b) the training process of the learnable style encoding in
LMTEA.

Multi-granularity Text-guided
Augmentation. To facilitate gen-
eralized learning at the object level,
we propose a text-guided multi-
granularity augmentation strategy
based on Eq. 8, including both
style-level and attribute-level aug-
mentation. For style-level shifting,
we prompt an LLM to generate a
set of style words tsty and prepare
the augmented text in the format of
“a {style word} of {class name}.”.
Similarly to style-level shifting, for
attribute-level augmentation, we
prompt the LLM to generate the
attribute sets for each class and craft the augmented text as “a {class name} with {attribute}.”.

3.5 TRAINING LOSS

Before fine-tuning the CLIP, we first train the domain-specific style encoding with a diffusion-based
image generation model, as illustrated in the LMTEA section. Subsequently, we proceed to fine-
tune the CLIP model with the DFC-Adapter. In the semi-supervised framework with both labeled
and unlabeled data, the overall training loss is divided into supervised and unsupervised branches,
following the FixMatch Sohn et al. (2020).

For labeled data, we compute cross-entropy losses for both original and augmented embeddings
crafted by the proposed multi-granularity text-guided augmentation. And Jensen-Shannon diver-
gence is applied to further enhance those embeddings consistency. Meanwhile, the domain-aware
loss in Eq. 4, the false-correlation regularization in Eq. 5 are applied to the supervised data. Thereby,
the supervised branch of the training loss is formulated as:

Lsup =LCE(ŷ, y) + LCE(ŷaug, y) + λJSLJS(ŷ, ŷaug)

+ λauxsup(Lfc + Lda),
(9)

where LCE , ŷ and ŷaug denote the cross-entropy loss, prediction on the original visual embedding
and the augmented embedding of the labeled data, respectively.

For the unlabeled data, we first generate pseudo label for the unlabeled images by confidence thresh-
old, obtaining a mask m to select samples with high confidence predictions for loss calculation. A
cross-entropy loss is then computed between the predictions of weakly and strongly augmented
views, while a Jensen-Shannon divergence is applied between the weakly augmented view and the
augmented embedding for the selected samples. Therefore, the unsupervised loss is formulated as:

Lunsup = m(LCE(ŷw, ŷs) + λJSuLJSu(ŷw, ŷaug)), (10)

where ŷw and ŷs denote the predictions for the weakly and strongly augmented view. LJSu repre-
sents Jensen-Shannon divergence loss calculated on the unsupervised data. m is the mask for high
confidence sample selection. Finally, the model is trained with the combination of Lsup and Lunsup.

6
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Method 5 labels per class 10 labels per class
PACS OfficeHome Digits TerraInc. VLCS DomainNet PACS OfficeHome Digits TerraInc. VLCS DomainNet

Fully Supervised

STYLIP 98.05 84.63 81.38 - 86.94 62.02 98.05 84.63 81.38 - 86.94 62.02
CoOp 97.00 81.12 76.41 - 82.98 59.52 97.00 81.12 76.41 - 82.98 59.52
VPT 96.90 83.20 - 46.70 82.00 58.50 96.90 83.20 - 46.70 82.00 58.50

FixMatch Semi-Supervised

+Linear Probe 96.27 83.95 62.14 34.78 72.62 58.43 96.18 84.68 62.31 35.43 72.31 59.67
+LoRA 95.28 78.19 60.37 15.24 75.82 52.32 95.72 78.32 60.47 15.63 76.27 53.51
+CoOP 96.25 81.39 62.47 33.98 74.08 54.62 96.31 81.55 62.62 35.12 74.89 54.98
+VPT 96.19 80.33 61.86 35.64 76.42 49.81 96.23 80.54 62.43 35.56 76.53 50.42

+CLIPood 95.44 76.43 62.41 35.90 75.11 56.42 96.19 76.99 62.95 36.56 75.58 56.67
+PromptSRC 96.38 81.59 63.19 35.43 76.55 - 96.47 82.42 63.50 35.98 76.76 -
+VL2V-SD 95.46 85.47 66.40 38.42 76.74 57.92 95.68 86.12 66.98 38.96 77.83 58.41

+MoA 96.23 87.62 73.42 39.16 77.05 59.62 96.59 88.23 74.14 39.85 77.68 59.78
+DGWM 96.54 85.47 63.80 36.23 73.99 58.72 96.59 85.94 64.04 36.59 74.24 58.98
+UPCSC 96.68 86.32 69.84 37.04 77.49 - 96.78 87.21 73.66 38.48 78.25 -

+Ours 96.74 88.68 76.24 41.44 78.17 59.59 96.83 88.94 75.83 42.23 78.12 59.83

Table 1: Comparison with fine-tuning methods and SSDG SOTAs on popular DG benchmark
datasets under the first setting. The best results under semi-supervised frameworks are in bold.

4 EXPERIMENTS

4.1 DATASETS, SETTINGS AND IMPLEMENTATION DETAILS

Datasets. We evaluate on standard DG benchmarks: PACS Li et al. (2017), Office-
Home Venkateswara et al. (2017), Digits Zhou et al. (2020), TerraIncognita Beery et al. (2018),
and VLCS Torralba & Efros (2011), plus the large-scale DG dataset DomainNet Peng et al. (2019).
For scalability tests, we use semi-supervised ImageNet Deng et al. (2009) for training and evaluate
on corrupted variants ( ImageNet-A Hendrycks et al. (2021b) and ImageNet-R Zhang et al. (2024)).

Settings. Two established SSDG settings Galappaththige et al. (2024b;a); Zhou et al. (2023); Wang
et al. (2023b) are evaluated. (1) 5 or 10 labeled samples per class per source domain Galappaththige
et al. (2024b;a). (2) One source domain is fully labeled, while the others are unlabeled Zhou et al.
(2023); Wang et al. (2023b). The above two settings are referred to as the 1st and 2nd settings in the
following text, respectively. For ImageNet-scale experiments, we fine-tune pretrained models with
1% labeled data. More details can be found in the supplementary material.

Evaluation Protocol. We follow the leave-one-domain-out protocol for evaluation. Follow-
ing Galappaththige et al. (2024b;a), we report the average performances over 5 independent runs.

Baselines. We evaluate with: (1) standard downstream fine-tuning methods, including LoRA Hu
et al. (2022), VPT Jia et al. (2022), CLIPood Shu et al. (2023), CoOP Zhou et al. (2022), Prompt-
SRC Khattak et al. (2023b). (2) SOTA SSDG method UPCSC Lee et al. (2025) and DGWM Galap-
paththige et al. (2024a). (3) CLIP fine-tuning methods for supervised DG, such as VL2V-SD Adde-
palli et al. (2024) and MoA Lee et al. (2023). All methods are integrated with FixMatch Sohn et al.
(2020). For reference, we also report fully supervised results of CLIP fine-tuning methods.

Method (FixMatch) PACS OfficeHome Digits TerraInc. VLCS DomainNet
+Linear Probe 96.41 84.52 57.04 32.69 66.05 49.79

+LoRA 88.59 73.24 52.88 14.03 62.31 48.34
+CoOP 92.46 82.43 56.70 29.35 58.94 49.05
+VPT 89.93 74.90 54.38 12.53 64.83 47.90

+CLIPood 89.25 75.21 55.63 28.04 63.13 51.43
+PromptSRC 94.24 79.42 57.84 31.53 64.08 -

+MoA 96.84 85.19 59.37 34.65 68.93 54.78
+DGWM 96.44 84.98 58.14 35.68 68.51 54.65

+Ours 96.89 86.73 64.89 39.59 72.52 54.88

Table 2: Comparison on popular DG benchmark datasets under the second SSDG setting. The best
results are labeled in bold.

4.2 MAIN RESULTS

Results on standard DG benchmarks. Tables. 1 and 2 demonstrate our method’s superior perfor-
mances across DG benchmarks. We significantly outperform fine-tuning methods (LoRA Hu et al.
(2022), CoOp Zhou et al. (2022), VPT Jia et al. (2022)), which show substantial degradation when
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Table 3: Comparison with PEFT methods
and SSDG SOTAs on ImageNet variants.

Method(FixMatch) ImageNet-A ImageNet-R
+Linear Probe 72.34 50.34

+LoRA 66.74 45.62
+VPT 71.80 49.95

+CLIPood 73.87 52.54
+MoA 77.61 56.74

+Ours 79.05 62.49

Table 4: Ablation study of our method. Linear probing
is referred to as the initial setting.

DFC-Adapter LMTEA OfficeHome

% % 84.68

Adapter-only % 86.12(+1.44)
w/o Lda % 86.74(+2.06)
w/o Lfc % 86.57(+1.89)
! % 87.22(+2.54)
! w/o LSE 87.93(+3.25)
! Attr. Only 88.13(+3.45)
! Sty. Only 88.46(+3.78)

! ! 88.94(+4.26)
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Figure 4: (a) Evolution of the pseudo-label (PL) accuracy and unlabeled data utilization rate during
training on OfficeHome Venkateswara et al. (2017). (b) Hyperparameter study on the learnable
banks’ sizes in DFC-Adapter and the auxiliary losses weight λauxsup.

adapted to SSDG settings due to limited unlabeled data utilization. Notably, our approach exceeds
robust fine-tuning baseline MoA Lee et al. (2023) by 2.28% and 2.38% on TerraIncognita in Set-
ting 1 and rivals fully supervised SOTA methods on PACS/OfficeHome. Further surpassing SSDG
SOTA DGWM Galappaththige et al. (2024a), we achieve 0.87% and 0.85% gains on DomainNet
under both settings.

Results on ImageNet variants. Table. 3 validates the efficiency of the proposed method on cor-
rupted ImageNet variants, where we outperform the previous robust fine-tuning SOTA MoA Lee
et al. (2023) by 1.44% and 5.65% on ImageNet-A Hendrycks et al. (2021b) and ImageNet-
R Hendrycks et al. (2021a), respectively. This pronounced improvement under ImageNet-R’s chal-
lenging distribution shifts confirms the superiority of LMTEA in simulating visual embeddings from
different unseen domains.

4.3 ABLATION STUDY
Contributions of each component. We evaluate key component contributions through ablation
studies in Table. 4. As shown, the DFC-Adapter alone improves linear probing performances
by 2.54%, demonstrating its effectiveness in refining representations. Conversely, removing our
learnable style encoding causes significant degradation, confirming its essential role in generating
semantically-aligned augmented embeddings for domain generalization.

Training evolution. We present the evolution of the PL utilization rate and PL accuracy between
LoRA Hu et al. (2022) and our approach throughout the training process in Figure. 4(a). As LoRA
continually fails to adapt more unlabeled data for training, it overfits the limited labeled data, leading
to degradation of the PL accuracy. However, after the initial training period, our method uses a
growing number of unlabeled data for training, leading to high PL accuracy and effective training.

Hyperparameter Studies. We conduct hyperparameter analysis on the size of the knowledge banks,
where Ks and Kc define the size of the spatial refinement bank and semantic alignment bank, as
well as the weights of the auxiliary loss weight λauxsup, on the Office-Home dataset Venkateswara
et al. (2017). As shown in Figure. 4(b), when we set a moderate size for the learnable banks,
the performances remain stable overall, indicating that our method is not sensitive to the bank size
generally. However, with an excessive bank size, the performances undergo significant degradation,
as the bank with such a size would not be trained thoroughly and inject potential noise during
inference. In terms of the weight for the auxiliary loss, the changes in the weight merely affect the
performance in a small margin.

Effectiveness of feature refinement from the Learnable Knowledge Banks. To validate the
effectiveness of the learnable knowledge banks on feature refinement, we provide t-SNE visu-
alizations of the process of the feature changes when passing through the DFC-Adapter. As
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Table 5: Comparisons with
LoRa on OfficeHome with
different confidence thresh-
olds for PL.

Conf. Threshold LoRA Ours
0.65 72.47 84.05
0.85 77.84 88.46

0.95 78.19 88.68

Table 6: Comparisons with
different adapter designs Gao
et al. (2024); Zhang et al.
(2021b)

Method PACS OH VLCS TI
CLIP-Adapter 96.23 86.15 78.12 36.06
Tip-Adapter 96.36 86.40 77.51 35.88

Ours 96.83 88.94 78.30 39.23

Table 7: Comparison with
different embedding augmen-
tation methods.

Method PACS OH VLCS TI
LADS 95.87 87.41 77.89 36.08
TEAM 96.61 88.46 78.22 37.65

Ours 96.83 88.94 78.30 39.23

Table 8: Comparison of DFC-Adapter with dif-
ferent adapter designs Gao et al. (2024); Zhang
et al. (2021b)

Method PACS OfficeHome VLCS TerraInc.
CLIP-Adapter 96.23 86.15 78.12 36.06
Tip-Adapter 96.36 86.40 77.51 35.88

Ours 96.83 88.94 78.30 39.23

Table 9: Comparison with different text-guided
embedding augmentation methods and variants
of our LMTEA.

Method PACS OfficeHome VLCS TerraInc.
LADS 95.87 87.41 77.89 36.08
TEAM 96.61 88.46 78.22 37.65

Ours 96.83 88.94 78.30 39.23

shown in Figure. 5, after interacting with the two sets of knowledge banks, the features be-
come better clustered and more discriminative than the original CLIP features, demonstrat-
ing that the learned knowledge banks can refine the visual features for better performance.

(a) (b) (c)

CLIP Feature
Features Refined by 

Spatial Knowledge Bank
Features Refined 
by DFC-Adapter 

Figure 5: t-SNE visualizations of features processed before
and after the learnable knowledge banks in DFC-Adapter.

Confidence Distribution Analysis.
In this section, we analyze whether a
lower confidence threshold could im-
prove previous PEFT methods. The
confidence of image-text pairing pre-
dictions from CLIP is significantly
lower than the confidence thresh-
old for pseudo-labeling, leading to a
low utilization rate of the unlabeled
data. Therefore, an intuitive approach
would be to lower the confidence threshold to include more unlabeled data. However, as shown in
Tab. 5, lowering the confidence threshold cannot lead to better performance, as it may introduce
noisy labels during training, thereby degrading generalization.

Comparisons with different adapters. In Table. 8, to demonstrate the superiority of the DFC-
Adapter, we compare it with different adapter designs, including CLIP-Adapter Gao et al. (2024)
and Tip-Adapter Zhang et al. (2021b). Notably, our method outperforms CLIP-Adapter and Tip-
Adapter by margins of 3.17% and 3.35% on TerraIncognita Beery et al. (2018).

Comparisons with different embedding augmentation methods. We compare LMTEA with the
most related method TEAM Qi et al. (2024a) and LADS Dunlap et al. (2023) in Table. 9. LMTEA
outperforms TEAM by a large margin of 1.58% on TerraIncognita Beery et al. (2018), where the
domain-specific style information of the dataset is hard to describe by text, demonstrating the effec-
tiveness of our learnable style encoding for mining domain-specific style information.

5 CONCLUSION

In this paper, we address the challenge of adapting vision-language models (VLMs) for semi-
supervised domain generalization (SSDG). We reveal that existing downstream fine-tuning methods
suffer from low utilization rates of unlabeled data, leading to overfitting and degraded generaliza-
tion. To tackle this, we propose DFC-Adapter and LMTEA, which aim to prevent the confirmation
bias of semi-supervised learning from both perspectives of architecture design and data augmenta-
tion. Our method significantly outperforms prior methods, achieving comparative results to fully
supervised methods on several datasets. This work establishes the first benchmark for VLM SSDG,
highlighting the potential of adapting VLMs for robust generalization under limited labeled data.
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Appendix of “Towards Adapting Vision-Language Models for
Semi-Supervised Domain Generalization”

The Use of Large Language Models (LLMs). Large Language Models (LLMs) were used to aid
or polish the writing of this manuscript. Specifically, we used Claude-4-Sonnet solely for language
polishing and grammatical refinement of the written text. All research contributions, including the
main ideas, technical approaches, experimental work, and scientific insights presented in this paper,
are entirely the work of the human authors. The LLM usage is limited to improving the clarity and
readability of the already-written content without altering the substance or meaning of our work.

A REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made the following efforts: (1) We will release our code and
models. (2) We provide experiments setup and implementation configurations. (3) We elaborate
on our evaluation protocol in detail. We believe these measures will enable other researchers to
reproduce our work and further advance the field.

Performance in fully-supervised DG setting. Notably, the main component of the proposed DFC-
Adapter and LMTEA could also be applied in the fully-supervised setting. We thus provide exper-
iment results in Tab. 10. As seen, our method achieves comparative performances, even in fully
supervised DG settings, compared with DG SOTA STYLIP Bose et al. (2024).

Method PACS OfficeHome TerraInc. VLCS DomainNet
STYLIP Bose et al. (2024) 98.05 84.63 - 86.94 62.02

Ours 97.48 88.72 45.96 84.72 62.14

Table 10: Experiment results under fully-supervised DG settings.

Integrated with different SSL baselines. Since our method could be integrated with different
SSL baselines, we provide results in Tab. 11, demonstrating the wide applicability of the proposed
method.

Method PACS OfficeHome TerraInc.
FixMatch Sohn et al. (2020) 97.48 88.72 45.96

FlexMatch Zhang et al. (2021a) 95.42 85.04 -
StyleMatch Zhou et al. (2023) 97.52 88.52 46.32

Table 11: Experiment results when integrating our method with different SSL baselines. Notably,
integrating with FixMatch Sohn et al. (2020) is used as the default setting in the main paper.

B IMPLEMENTATION DETAILS

ViT-B/16 version of the pre-trained CLIP Radford et al. (2021) is used as our backbone in all the
experiments. For all the compared baselines, we follow the same sets of hyper-parameters from their
DG ones, except for VPT Jia et al. (2022) and LoRA Hu et al. (2022). The learning rate is set as
1e-2 for VPT and LoRA. The learning rate of our method is set as 1e-3. We train all the models
for 10 epochs across all the datasets. In the SSDG evaluation, we use the splits of the datasets
from previous SSDG SOTA DGWM Galappaththige et al. (2024a). The confidence threshold for
pseudo-labeling is set as 0.95.
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