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ABSTRACT

In this paper, we propose to disentangle and interpret contextual effects that are
encoded in a pre-trained deep neural network. We use our method to explain the
gaming strategy of the alphaGo Zero model. Unlike previous studies that visual-
ized image appearances corresponding to the network output or a neural activation
only from a global perspective, our research aims to clarify how a certain input u-
nit (dimension) collaborates with other units (dimensions) to constitute inference
patterns of the neural network and thus contribute to the network output. The
analysis of local contextual effects w.r.t. certain input units is of special values
in real applications. Explaining the logic of the alphaGo Zero model is a typical
application. In experiments, our method successfully disentangled the rationale of
each move during the Go game.

1 INTRODUCTION

Interpreting the decision-making logic hidden inside neural networks is an emerging research direc-
tion in recent years. The visualization of neural networks and the extraction of pixel-level input-
output correlations are two typical methodologies. However, previous studies usually interpret the
knowledge inside a pre-trained neural network from a global perspective. For example, (Ribeiro
et al., 2016; Lundberg & Lee, 2017; Kindermans et al., 2018) mined input units (dimensions or pix-
els) that the network output is sensitive to; (Bau et al., 2017) visualized receptive fields of filters in
intermediate layers; (Zeiler & Fergus, 2014; Mahendran & Vedaldi, 2015; Simonyan et al., 2013;
Dosovitskiy & Brox, 2016; Fong & Vedaldi, 2017; Selvaraju et al., 2017) illustrated image appear-
ances that maximized the score of the network output, a filter’s response, or a certain activation unit
in a feature map.

However, instead of visualizing the entire appearance that is responsible for a network output or an
activation unit, we are more interested in the following questions.

• How does a local input unit contribute to the network output? Here, we can vectorize the
input of the network into a high-dimensional vector, and we treat each dimension as a spe-
cific “unit” without ambiguity. As we know, a single input unit is usually not informative
enough to make independent contributions to the network output. Thus, we need to clar-
ify which other input units the target input unit collaborates with to constitute inference
patterns of the neural network, so as to pass information to high layers.

• Can we quantitatively measure the significance of above contextual collaborations between
the target input unit and its neighboring units?

Method: Therefore, given a pre-trained convolutional neural network (CNN), we propose to disen-
tangle contextual effects w.r.t. certain input units.

As shown in Fig. 1, we design two methods to interpret contextual collaborations at different scales,
which are agnostic to the structure of CNNs. The first method estimates a rough region of contextual
collaborations, i.e. clarifying whether the target input unit mainly collaborates with a few neighbor-
ing units or most units of the input. This method distills knowledge from the pre-trained network
into a mixture of local models (see Fig. 2), where each model encodes contextual collaborations
within a specific input region to make predictions. We hope that the knowledge-distillation strategy
can help people determine quantitative contributions from different regions. Then, given a model for
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Figure 1: Explaining the alphaGo model. Given the state of the Go board and the next move,
we use the alphaGo model to explain the rationale of the move. We first estimate a rough region
of contextual collaborations w.r.t. the current move by distilling knowledge from the value net to
student nets that receive different regions of the Go board as inputs. Then, given a student net, we
analyze fine-grained contextual collaborations within its region of the Go board. In this figure, we
use a board state from a real Go game between humans for clarity.

local collaborations, the second method further analyzes the significance of detailed collaborations
between each pair of input units, when we use the local model to make predictions on an image.

Application, explaining the alphaGo Zero model: The quantitative analysis of contextual collab-
orations w.r.t. a local input unit is of special values in some tasks. For example, explaining the
alphaGo model (Silver et al., 2016; Hassabis & Silver, 18 October 2017) is a typical application.

The alphaGo model contains a value network to evaluate the current state of the game—a high output
score indicates a high probability of winning. As we know, the contribution of a single move (i.e.
placing a new stone on the Go board) to the output score during the game depends on contextual
shapes on the Go board. Thus, disentangling explicit contextual collaborations that contribute to the
output of the value network is important to understand the logic of each new move hidden in the
alphaGo model.

More crucially, in this study, we explain the alphaGo Zero model (Hassabis & Silver, 18 October
2017), which extends the scope of interests of this study from diagnosing feature representations of
a neural network to a more appealing issue letting self-improving AI teach people new knowledge.
The alphaGo Zero model is pre-trained via self-play without receiving any prior knowledge from
human experience as supervision. In this way, all extracted contextual collaborations represent the
automatically learned intelligence, rather than human knowledge.

As demonstrated in well-known Go competitions between the alphaGo and human players (alp, Re-
trieved 17 March 2016; 2017-05-27), the automatically learned model sometimes made decisions
that could not be explained by existing gaming principles. The visualization of contextual collabo-
rations may provide new knowledge beyond people’s current understanding of the Go game.

Contributions of this paper can be summarized as follows.
(i) In this paper, we focus on a new problem, i.e. visualizing local contextual effects in the decision-
making of a pre-trained neural network w.r.t. a certain input unit.
(ii) We propose two new methods to extract contextual effects via diagnosing feature representations
and knowledge distillation.
(iii) We have combined two proposed methods to explain the alphaGo Zero model, and experimental
results have demonstrated the effectiveness of our methods.

2 RELATED WORK

Understanding feature representations inside neural networks is an emerging research direction in
recent years. Related studies include 1) the visualization and diagnosis of network features, 2)
disentangling or distilling network feature representations into interpretable models, and 3) learning
neural networks with disentangled and interpretable features in intermediate layers.

Network visualization: Instead of analyzing network features from a global view (Wolchover,
2017; Schwartz-Ziv & Tishby, 2017; Rauber et al., 2016), (Bau et al., 2017) defined six types of
semantics for middle-layer feature maps of a CNN, i.e. objects, parts, scenes, textures, materials,
and colors. Usually, each filter encodes a mixture of different semantics, thus difficult to explain.
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Visualization of filters in intermediate layers is the most direct method to analyze the knowledge
hidden inside a neural network. (Zeiler & Fergus, 2014; Mahendran & Vedaldi, 2015; Simonyan
et al., 2013; Dosovitskiy & Brox, 2016; Yosinski et al., 2015; Dong et al., 2017; Zhang et al., 2016)
showed the appearance that maximized the score of a given unit. (Dosovitskiy & Brox, 2016) used
up-convolutional nets to invert CNN feature maps to their corresponding images.

Pattern retrieval: Some studies retrieved certain units from intermediate layers of CNNs that were
related to certain semantics, although the relationship between a certain semantics and each neural
unit was usually convincing enough. People usually parallel the retrieved units similar to conven-
tional mid-level features (Singh et al., 2012) of images. (Zhou et al., 2015; 2016) selected units from
feature maps to describe “scenes”. (Simon & Rodner, 2015) discovered objects from feature maps.

Model diagnosis and distillation: Model-diagnosis methods, such as the LIME (Ribeiro et al.,
2016), the SHAP (Lundberg & Lee, 2017), influence functions (Koh & Liang, 2017), gradient-
based visualization methods (Fong & Vedaldi, 2017; Selvaraju et al., 2017), and (Kumar et al.,
2017) extracted image regions that were responsible for network outputs. (Vaughan et al., 2018;
Zhang et al., 2018b) distilled knowledge from a pre-trained neural network into explainable models
to interpret the logic of the target network. Such distillation-based network explanation is related to
the first method proposed in this paper. However, unlike previous studies distilling knowledge into
explicit visual concepts, our using distillation to disentangle local contextual effects has not been
explored in previous studies.

Learning interpretable representations: A new trend is to learn networks with meaningful fea-
ture representations in intermediate layers (Hu et al., 2016; Stone et al., 2017; Liao et al., 2016) in
a weakly-supervised or unsupervised manner. For example, capsule nets (Sabour et al., 2017) and
interpretable RCNN (Wu et al., 2017) learned interpretable middle-layer features. InfoGAN (Chen
et al., 2016) and β-VAE (Higgins et al., 2017) learned meaningful input codes of generative network-
s. (Zhang et al., 2018a) developed a loss to push each middle-layer filter towards the representation
of a specific object part during the learning process without given part annotations.

All above related studies mainly focused on semantic meanings of a filter, an activation unit, a net-
work output. In contrast, our work first analyzes quantitative contextual effects w.r.t. a specific input
unit during the inference process. Clarifying explicit mechanisms of how an input unit contributes
to the network output has special values in applications.

3 ALGORITHM

In the following two subsections, we will introduce two methods that extract contextual collab-
orations w.r.t. a certain input unit from a CNN at different scales. Then, we will introduce the
application that uses the proposed methods to explain the alphaGo Zero model.

3.1 DETERMINING THE REGION OF CONTEXTUAL COLLABORATIONS w.r.t. AN INPUT UNIT

Since the input feature usually has a huge number of dimensions (units), it is difficult to accurate-
ly discover a few input units that collaborate with a target input unit. Therefore, it is important
to first approximate the rough region of contextual collaborations before the unit-level analysis of
contextual collaborations, i.e. clarifying in which regions contextual collaborations are contained.

Given a pre-trained neural network, an input sample, and a target unit of the sample, we propose a
method that uses knowledge distillation to determine the region of contextual collaborations w.r.t.
the target input unit. Let I ∈ I denote the input feature (e.g. an image or the state in a Go board).
Note that input features of most CNNs can be represented as a tensor I ∈ RH×W×D, where H and
W indicate the height of the width of the input, respectively; D is the channel number. We clip
different lattices (regions) Λ1,Λ2, . . . ,ΛN ∈ Λ from the input tensor, and input units within the i-th
lattice are given as IΛi ∈ Rh×w×D, h ≤ H,w ≤W . Different lattices overlap with each other.

The core idea is that we use a mixture of models to approximate the function of the given pre-
trained neural network (namely the teacher net), where each model is a student net and uses input
information within a specific lattice IΛi

to make predictions.

ŷ ≈ α1 · y1 + α2 · y2 + . . .+ αn · yn (1)
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Figure 2: Division of lattices for two types of student nets. We distill knowledge from the value net
into a mixture of four/nine student nets to approximate decision-making logic of the value net.

where ŷ = f(I) and yi = fi(IΛi
) denote the output of the pre-trained teacher net f and the output

of the i-th student net fi, respectively. αi is a scalar weight, which depends on the input I . Because
different lattices within the input are not equally informative w.r.t. the target task, input units within
different lattices make different contributions to final network output.

More crucially, given different inputs, the importance for the same lattice may also change. For
example, as shown in (Selvaraju et al., 2017), the head appearance is the dominating feature in
the classification of animal categories. Thus, if a lattice corresponds to the head, then this lattice
will contribute more than other lattices, thereby having a large weight αi. Therefore, our method
estimates a specific weight αi for each input I , i.e. αi is formulated as a function of I (which will
be introduced later).

Significance of contextual collaborations: Based on the above equation, the significance of con-
textual collaborations within each lattice Λi w.r.t. an input unit can be measured as si.

∆ŷ ≈ α1 ·∆y1︸ ︷︷ ︸
Impacts from the first lattice Λ1

+α2 ·∆y2 + . . .+ αn ·∆yn, si = |αi ·∆yi| (2)

where we revise the value of the target unit in the input and check the change of network outputs,
∆ŷ = f(Inew) − f(I) and ∆yi = fi(I

new
Λi

) − fi(IΛi). If contextual collaborations w.r.t. the target
unit mainly localize within the i-th lattice Λi, then αi ·∆yi can be expected to contribute the most
to the change of ŷ.

We conduct two knowledge-distillation processes to learn student nets and a model of determining
{αi}, respectively.

Student nets: The first process distills knowledge from the teacher net to each student net fi with
parameters θi based on the distillation loss minθi

∑
I∈I ‖yI,i− ŷI‖2, where the subscript I indicates

the output for the input I . Considering that Λi only contains partial information of I , we do not
expect yI,i to reconstruct ŷI without any errors.

Distilling knowledge to weights: Then, the second distillation process estimates a set of weights
α = [αI,1, αI,2, . . . , αI,n] for each specific input I . We use the following loss to learn another
neural network g with parameters θg to infer the weight.

α = g(I), min
θg

Loss(θg), Loss(θg) =
∑
I∈I

‖∆ŷI −
N∑
i=1

αI,i ·∆yI,i‖2 (3)

3.2 FINE-GRAINED CONTEXTUAL COLLABORATIONS w.r.t. AN INPUT UNIT

In the above subsection, we introduce a method to distill knowledge of contextual collaborations into
student nets of different regions. Given a student net, in this subsection, we develop an approach to
disentangling from the student net explicit contextual collaborations w.r.t. a specific input unit u, i.e.
identifying which input unit v collaborates with u to compute the network output.

We can consider a student net as a cascade of functions of N layers, i.e. x(l) = φl(x
(l−1)) (or

x(l) = φl(x
(l−1)) + x(l−m) for skip connections), where x(l) denotes the output feature of the l-th

layer. In particular, x(0) and x(n) indicate the input and output of the network, respectively. We only
focus on a single scalar output of the network (we may handle different output dimensions separately
if the network has a high-dimensional output). If the sigmoid/softmax layer is the last layer, we use
the score before the softmax/sigmoid operation as x(n) to simplify the analysis.
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3.2.1 PRELIMINARIES, THE ESTIMATION OF QUANTITATIVE CONTRIBUTION

As preliminaries of our algorithm, we extend the technique of (Shrikumar et al., 2016) to estimate
the quantitative contribution of each neural activation in a feature map to the final prediction. We use
Cx ∈ RHl×Wl×Dl to denote the contribution distribution of neural activations on the l-th layer x ∈
RHl×Wl×Dl . The score of the i-th element Cxi

denotes the ratio of the unit xi’s score contribution
w.r.t. the entire network output score. Because x(n) is the scalar network output, it has a unit
contribution Cx(n) = 1. Then, we introduce how to back-propagate contributions to feature maps in
low layers.

The method of contribution propagation is similar to network visualization based on gradient back-
propagation (Mahendran & Vedaldi, 2015; Yosinski et al., 2015). However, contribution propagation
reflects more objective distribution of numerical contributions over {xi}, instead of biasedly boost-
ing compacts of the most important activations.

Without loss of generality, in this paragraph, we use o = φ(x) to simplify the notation of the
function of a certain layer. If the layer is a conv-layer or a fully-connected layer, then we can
represent the convolution operation for computing each elementary activation score oi of o in a
vectorized form1 oi =

∑
j xjwj + b. We consider xjwj as the numerical contribution of xj to oi.

Thus, we can decompose the entire contribution of oi, Coi , into elementary contributions of xj , i.e.
Coi→xj = Coi ·

xjwj

oi+max{−b,0} , which satisfies Coi→xj
∝ xjwj (see the appendix for details). Then,

the entire contribution of xj is computed as the sum of elementary contributions from all oi in the
above layer, i.e. Cxj

=
∑
i Coi→xj

.

A cascade of a conv-layer and a batch-normalization layer can be rewritten in the form of a single
conv-layer, where normalization parameters are absorbed into the conv-layer1. For skip connections,
a neural unit may receive contributions from different layers, C

x
(l)
j

=
∑
i Co(l+1)

i →x(l)
j

+C
x
(l+m)
j

. If
the layer is a ReLU layer or a Pooling layer, the contribution propagation has the same formulation
as gradient back-propagations of those layers1.

3.2.2 THE EXTRACTION OF CONTEXTUAL COLLABORATIONS

As discussed in (Bau et al., 2017), each neural activation oi of a middle-layer feature o can be
considered as the detection of a mid-level inference pattern. All input units must collaborate with
neighboring units to activate some middle-layer feature units, in order to pass their information to
the network output.

Therefore, in this research, we develop a method to
1. determine which mid-level patterns (or which neural activations oi) the target unit u constitutes;
2. clarify which input units v help the target u to constitute the mid-level patterns;
3. measure the strength of the collaboration between u and v.

Let obfr and o denote the feature map of a certain conv-layer o = f(x) when the network receives
input features with the target unit u being activated and the feature map generated without u being
activated, respectively. In this way, we can use |o− obfr| to represent the absolute effect of u on the
feature map o. The overall contribution of the i-th neural unit Coi depends on the activation score
oi, Coi ∝ max{oi, 0}, where max{oi, 0} measures the activation strength used for inference. The
proportion of the contribution is affected by the target unit u can be roughly formulated as C̃o.

C̃oi =

{
Coi

|oi−obfr
i |

oi
, oi > 0

0, otherwise
(4)

where Coi = 0 and thus C̃oi = 0 if oi ≤ 0, because negative activation scores of a conv-layer cannot
pass information through the following ReLU layer (o is not the feature map of the last conv-layer
before the network output).

In this way, C̃oi highlights a few mid-level patterns (neural activations) related to the target unit
u. C̃o measures the contribution proportion that is affected by the target unit u. We can use C̃o to
replace Co and use techniques in Section 3.2.1 to propagate C̃o back to input units x(0). Thus, C̃x(0)

1Please see the Appendix for details.
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represents a map of fine-grained contextual collaborations w.r.t. u. Each element in the map C̃
x
(0)
j

is

given as x(0)
j ’s collaboration with u.

We can understand the proposed method as follows. The relative activation change |oi−o
bfr
i |

oi
can be

used as a weight to evaluate the correlation between u and the i-th activation unit (inference pattern).
In this way, we can extract input units that make great influences on u’s inference patterns, rather
than affect all inference patterns. Note that both u and v may either increase or decrease the value
of oi. It means that the contextual unit v may either boost u’s effects on the inference pattern, or
weaken u’s effects.

3.3 APPLICATION: EXPLAINING THE ALPHAGO ZERO MODEL

We use the ELF OpenGo (Tian et al., 2018; 2017) as the implementation of the alphaGo Zero model.
We combine the above two methods to jointly explain each move’s logic hidden in the value net of
the alphaGo Zero model during the game. As we know, the alphaGo Zero model contains a value
net, policy nets, and the module of the Monte-Carlo Tree Search (MCTS). Generally speaking, the
superior performance of the alphaGo model greatly relies on the enumeration power of the policy net
and the MCTS, but the value net provides the most direct information about how the model evaluates
the current state of the game. Therefore, we explain the value net, rather than the policy net or the
MCTS. In the ELF OpenGo implementation, the value net is a residual network with 20 residual
blocks, each containing two conv-layers. We take the scalar output2 before the final (sigmoid) layer
as the target value to evaluate the current state on the Go board.

Given the current move of the game, our goal is to estimate unit-level contextual collaborations w.r.t.
the current move. I.e. we aim to analyze which neighboring stones and/or what global shapes help
the current move make influences to the game. We distill knowledge from the value net to student
networks to approximate contextual collaborations within different regions. Then, we estimate unit-
level contextual collaborations based on the student net.

Determining local contextual collaborations: We design two types of student networks, which
receive lattices at the scales of 13 × 13 and 10 × 10, respectively. In this way, we can conduct
two distillation processes to learn neural networks that encode contextual collaborations at different
scales.

As shown in Fig. 2, we have four student nets {fi|i = 1, . . . , 4} oriented to 13 × 13 lattices.
Except for the output, the four student nets have the same network structure as the value net. The
four student nets share parameters in all layers. The input of a student net only has two channels
corresponding to maps of white stones and black stones, respectively, on the Go board. We crop four
overlapping lattices at the four corners of the Go board for both training and testing. Note that we
rotate the board state within each lattice IΛi to make the top-left position corresponds to the corner
of the board, before we input IΛi

to the student net. The neural network g has the same settings as
the value net. g receives a concatenation of [IΛ1

, . . . , IΛ4
] as the input. g outputs four scalar weights

{αi} for the four local student networks {yi}. We learn g via knowledge distillation.

Student nets for 10×10 lattices have similar settings as those for 13×13 lattices. We divide the entire
Go board into 3 × 3 overlapping 10 × 10 lattices. Nine student nets encode local knowledge from
nine local lattices. We learn another neural network g, which uses a concatenation of [IΛ1 , . . . , IΛ9 ]
to weight for the nine local lattices.

Finally, we select the most relevant 10×10 lattice and the most relevant 13×13 lattice, via maxi si,
for explanation.

Estimating unit-level contextual collaborations: In order to obtain fine-grained collaborations,
we apply the method in Section 3.2.2 to explain two student nets corresponding to the two selected
relevant lattices. We also use our method to explain the value net. We compute a map of contextual
collaborations for each neural network and normalize values in the map. We sum up maps of the
three networks together to obtain the final map of contextual collaborations Ĉ.

2The value net uses the current state, as well as seven most recent states, to output eight values for the eight
states. To simplify the algorithm, we take the value corresponding to the current state as the target value.
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More specifically, given a neural network, we use the feature of each conv-layer to compute the
initial C̃o in Equation (4) and propagated C̃o to obtain a map of collaborations C̃x(0) . We sum up
maps based on the 1st, 3rd, 5th, and 7th conv-layers to obtain the collaboration map of the network.

4 EXPERIMENTS

In experiments, we distilled knowledge of the value network to student nets, and disentangled fine-
grained contextual collaborations w.r.t. each new move. We compared the extracted contextual
collaborations and human explanations for the new move to evaluate the proposed method.

4.1 EVALUATION METRIC

In this section, we propose two metrics to evaluate the accuracy of the extracted contextual collab-
orations w.r.t. the new move. Note that considering the high complexity of the Go game, there is
no exact ground-truth explanation for contextual collaborations. Different Go players usually have
different analysis of the same board state. More crucially, as shown in competitions between the
alphaGo and human players (alp, Retrieved 17 March 2016; 2017-05-27), the knowledge encoded
in the alphaGo was sometimes beyond humans’ current understanding of the Go game and could
not be explained by existing gaming principles.

In this study, we compared the similarity between the extracted contextual collaborations and hu-
mans’ analysis of the new move. The extracted contextual collaborations were just rough explana-
tions from the perspective of the alphaGo. We expected these collaborations to be close to, but not
exactly the same as human understanding. More specifically, we invited Go players who had ob-
tained four-dan grading rank to label contextual collaborations. To simplify the metric, Go players
were asked to label a relative strength value of the collaboration between each stone and the target
move (stone), no matter whether the relationship between the two stones was collaborative or adver-
sarial. Considering the double-blind policy, the paper will introduce the Go players if the paper is
accepted.

Let Ω be a set of existing stones except for the target stone u on the Go board. pv ≥ 0 denotes the
labeled collaboration strength between each stone v ∈ Ω and the target stone u. qv = |Ĉv| is re-
ferred to as the collaboration strength estimated by our method, where Ĉv denotes the final estimated
collaboration value on the stone v. We normalized the collaboration strength, p̂v = pv/

∑
v′ pv′ ,

q̂v = qv/
∑
v′ qv′ and computed the Jaccard similarity between the distribution of p and the distri-

bution of q as the similarity metric.

In addition, considering the great complexity of the Go game, different Go players may annotate
different contextual collaborations. Therefore, we also required Go players to provide a subjective
rating for the extracted contextual collaborations of each board state, i.e. selecting one of the five
ratings: 1-Unacceptable, 2-Problematic, 3-Acceptable, 4-Good, and 5-Perfect.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Fig. 3 shows the significance of the extracted contextual collaborations, as well as possible explana-
tions for contextual collaborations, where the significance of the stone v’s contextual collaboration
was reported as the absolute collaboration strength qv instead of the original score Ĉv in experi-
ments. Without loss of generality, let us focus on the winning probability of the black. Considering
the complexity of the Go game, there may be two cases of a positive (or negative) value of the col-
laboration score Ĉv . The simplest case is that when a white stone had a negative value of Ĉv , it
means that the white stone decreased the winning probability of the black. However, sometimes a
white stone had a positive Ĉv . It may be because that this white stone did not sufficiently exhibit
its power due to its contexts. Since the white and the white usually had a very similar number of
stones in the Go board, putting a relatively ineffective white stone in a local region also wasted the
opportunity of winning advantages in other regions in the zero-sum game. Similarly, the black stone
may also have either a positive or a negative value of Ĉv .

The Jaccard similarity between the extracted collaborations and the manually-annotated collabora-
tions was 0.3633. Nevertheless, considering the great diversity of explaining the same game state,
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Result

The black stone at (7,2) has a high value, because it collaborates with the new stone to 
escape from the surrounding of the white.
The white stone at (7,4) has a high value, because it is about to be eaten by the new 
black stone.
The black stone at (8,4) has a high value, because it collaborates with the new stone to 
eat the white stone at (7,4).

(0,0)

(18,18) Explanations for the estimated collaborations

(0,0)

(18,18)

The black stone at (8,6) has a high value, because it collaborates with the new stone, 
because it collaborates with the new black stone to get a head out of the white’s 
regime. The two black stone also communicate with black stones on the top.
The white  stone  at  (7,7)  has  a  high  value,  because  future white  stones  can  only  be 
placed to the right to escape from the regime of the new black stone.

(0,0)

(18,18)

The black stone at (2,7) has a high value, because it collaborates with the new black 
stone  to  separate  white  stones  into  the  left  and  right  groups,  which  increases  the 
probability of attacking white stones on the left in the future.
The white  stone at  (1,6) has a high value, because  the new black  stone  reduces  the 
white stone’s space of “making eyes” in the future.

(0,0)

(18,18)

The black stone at (4,3) has a high value, because the new black stone helps this black 
stone to get a head out of the white’s regime.
The  white  stone  at  (5,2)  has  a  high  value,  because  the  new  black  stone  limits  the 
potential of the white’s future development in its neighboring area.

(18,0)

(0,18)
(18,0)

(0,18)
(18,0)

(0,18)
(18,0)

(0,18)

Figure 3: Significance of contextual collaborations w.r.t. the new black stone (the black star). Go
players provided possible explanations for contextual collaborations. The red/blue color indicates a
significant/insignificant contextual collaboration. Please see the appendix for more results.

the average rating score that was made by Go players for the extracted collaborations was 3.7 (be-
tween 3-Acceptable and 4-Good). Please see the appendix for more results.

5 CONCLUSION AND DISCUSSIONS

In this paper, we have proposed two typical methods for quantitative analysis of contextual collabo-
rations w.r.t. a certain input unit in the decision-making of a neural network. Extracting fine-grained
contextual collaborations to clarify the reason why and how an input unit passes its information to
the network output is of significant values in specific applications, but it has not been well explored
before, to the best of our knowledge. In particular, we have applied our methods to the alphaGo Zero
model, in order to explain the potential logic hidden inside the model that is automatically learned
via self-play without human annotations. Experiments have demonstrated the effectiveness of the
proposed methods.

Note that there is no exact ground-truth for contextual collaborations of the Go game, and how to
evaluate the quality of the extracted contextual collaborations is still an open problem. As a pioneer-
ing study, we do not require the explanation to be exactly fit human logics, because human logic is
usually not the only correct explanations. Instead, we just aim to visualize contextual collaborations
without manually pushing visualization results towards human-interpretable concepts. This is dif-
ferent from some previous studies of network visualization (Mahendran & Vedaldi, 2015; Yosinski
et al., 2015) that added losses as the natural image prior, in order to obtain beautiful but biased visu-
alization results. In the future, we will continue to cooperate with professional Go players to further
refine the algorithm to visualize more accurate knowledge inside the alphaGo Zero model.
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SUPPLEMENTARY MATERIALS FOR THE CONTRIBUTION PROPAGATION

Let o = ω ⊗ x + β denote the convolutional operation of a conv-layer. We can rewrite the this
equation in a vectorized form as o = Wx + b, o,b ∈ R1×N , W ∈ RN×N . For each output
element oi, oi =

∑
j xjWij + bi. If the conv-layer is a fully-connected layer, then each element

Wij corresponds to an element in ω. Otherwise, W is a sparse matrix, i.e. Wij = 0 if oi and xj are
too far way to be covered by the convolutional filter.

Thus, we can write oi =
∑
j xjwj + b to simplify the notation. Intuitively, we can propagate the

contribution of oi to its compositional elements xj based on their numerical scores. Note that we
only consider the case of oi > 0, because if oi ≤ 0, oi cannot pass information through the ReLU
layer, and we obtain Coi = 0 and thus Coi→xj

= 0. In particular, when b ≥ 0, all compositional
scores just contribute an activation score oi − b, thereby receiving a total contribution of Coi

oi−b
oi

.
When b < 0, we believe the contribution ofCoi all comes from elements of {xj}, and each element’s
contribution is given a Coi ·

xjwj

oi−b . Thus, we get

Coi→xj
= Coi ·

xjwj
oi + max{−b, 0}

When a batch-normalization layer follows a conv-layer, then the function of the two cascaded layers
can be written as

oi =γ
(
∑
j xjwj + b)− µ

σ
+ β′

=
∑
j

(
γwj
σ

)xj + [
γ(b− µ)

σ
+ β′]

Thus, we can absorb parameters for the batch normalization into the conv-layer, i.e. wj ← γwj

σ and
b← γ(b−µ)

σ + β′.

For ReLU layers and Pooling layers, the formulation of the contribution propagation is identical to
the formulation for the gradient back-propagation, because the gradient back-propagation and the
contribution propagation both pass information to neural activations that are used during the forward
propagation.
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MORE RESULTS

Considering the great complexity of the Go game, there do not exist ground-truth annotations for the
significance of contextual collaborations. Different Go players may have different understanding of
the same Go board state, thereby annotating different heat maps for the significance of contextual
collaborations. More crucially, our results reflect the logic of the automatically-learned alphaGo
Zero model, rather than the logic of humans.

Therefore, in addition to manual annotations of collaboration significance, we also require Go play-
ers to provide a subjective evaluation for the extracted contextual collaborations.

Go board Merged map
Manual 

annotations
Rating made by 

Go players

Acceptable

Problematic

Acceptable

Perfect

Good

Good

Figure 4: We compared the extracted contextual collaborations at different scales (the second, third,
fourth, and fifth columns) with annotations made by Go players.
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Go board Merged map
Manual 

annotations
Rating made by 

Go players

Acceptable

Good

Problematic

Acceptable

Perfect

Perfect

Perfect

Figure 5: We compared the extracted contextual collaborations at different scales (the second, third,
fourth, and fifth columns) with annotations made by Go players.
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CONTEXTUAL COLLABORATIONS OF LOCAL REGIONS

81.62%

99.87% 85.05%

72.46% 84.24%

82.51% 84.04%

94.63%

Figure 6: We show the significance of contextual collaborations within a local lattice. The score for
the i-th lattice is reported as si∑

j sj
.
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