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Abstract

At the core of any inference procedure in deep neural networks are dot product
operations, which are the component that require the highest computational re-
sources. One common approach to reduce the complexity of these operations
is to prune and/or quantize the weight matrices of the neural network. Usually,
this results in matrices whose entropy value is low, as measured relative to the
maximum likelihood estimate of the probability mass distribution of it’s elements.
In order to efficiently exploit such matrices one usually relies on, inter alia, sparse
matrix representations. However, most of these common matrix storage formats
make strong statistical assumptions about the distribution of the elements in the
matrix, and can therefore not efficiently represent the entire set of matrices that
exhibit low entropy statistics (thus, the entire set of compressed neural network
weight matrices). In this work we address this issue and present new efficient
representations for matrices with low entropy statistics. We show that the proposed
formats can not only be regarded as a generalization of sparse formats, but are
also more energy and time efficient under practically relevant assumptions. For
instance, we experimentally show that we are able to attain up to x16 compression
ratios, x1.7 speed ups and x20 energy savings when we convert the weight matrices
of state-of-the-art networks such as AlexNet, VGG-16, ResNet152 and DenseNet
into the new representations.

1 Introduction

Deep neural networks [10, 16] became the state-of-the-art in many fields of machine learning.
However, most deep neural network models require the computation of many dot product operations
between large matrices when performing inference. This requires a great amount of computational
resources which difficult their deployment into resource constrained devices.

This fact motivated an entire research field of model compression [1] that aimed to reduce the
complexity of inference of deep neural networks. For instance, some of the most popular techniques
include sparsification of the network [3, 9, 8, 14] or quantization of the weight elements [19, 12].
These approaches aim to reduce both storage and execution complexity of the dot product oprations
involved in the inference procedure, by either leveraging on the sparsity of the weight matrices, e.g.,
by representing them in one of the sparse storage formats [15, 4] and performing the dot products
accordingly, or by converting the element values into low bit-length numerical representations.
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Figure 1: Distribution of the weight matrix of the last layer of the VGG-16 neural network [17] after
quantization. The respective matrix is 1000× 4096 dimensional, transforming the 4096 last-layer
features onto 1000 output classes. We applied an uniform quantizer over the range of values, with 27

quantization points, which resulted in no loss of accuracy on the classification task. Left: Probability
mass distribution. Right: Frequency of appearance of the 15 most frequent values.

However, highest compression ratios and execution efficiencies can be achieved when one employs
compression schemes that either implicitly [7, 11, 13] or explicitly [2, 18, 5] aim to minimize the
entropy of the weight elements relative to the maximum likelihood estimate of their probability mass
distribution.

However, weight matrices that exhibit low entropy statistics are not necessarily sparse, neither the
cardinality of the elements has to be low. For instance, figure 1 plots the distribution of the weight
elements of the last classification layer of VGG-16 [17] (1000 × 4096 dimensional matrix), after
having applied uniform quantization on the weight elements. We stress that the prediction accuracy
and generalization of the network was not affected by this operation. As we can see, on the one hand,
the distribution of the compressed layer does not satisfy the sparsity assumption, i.e., there is not one
particular element (such as 0) that appears specially frequent in the matrix. On the other hand, we
can also not take advantage of the fact that we could trivially compress each element of the original
dense representation down to 7 bits (because we only have at most 27 unique elements present in
the matrix), since most conventional hardware do not support multiplications on mixed-precission
numerical representations (recall, that in this case the activation values would be still represented by
single precission floating point values). Moreover, the entropy of the matrix is about H = 5.5, which
is smaller than 7 bits, thus indicating that even higher efficiency gains may be obtained. Although [7]
proposed an optimal entropy coder for representing these type of matrices, specialized hardware is
needed in order to efficiently run inference under the resulting representation [6]. Hence, under our
knowledge, there is currently no simple representation that can be applied on this type of matrices,
that is able to simultaneously achieve high compression ratios and low computational complexity
relative to the dot product operation.

2 The compressed entropy row (CER) and compressed shared weight row
(CSER) representations

Notice, that we expect the ratio k̄/n between the average number of unique elements k̄ that appear in
a particular row (or column) and the respective number of columns (or rows) n to be low, for matrices
that exhibit low entropy statistics. The intuition behind this is that we can interpret the number 2H

as the effective number of unique elements that a random variable with entropy value H outputs.
Indeed, only 15 distinct values dominate the entries of the weight matrix displayed in figure 1, which
is only 1.5% of the number of columns of the matrix. Hence, in this work, we propose two new
matrix representations that exploit this property, which we named compressed shared weight row
(CSER) and compressed entropy row (CER). Both apply the same principles, but differ only slightly
on their statistical assumptions.

The CER and CSER representations are able to save significant amounts of storage requirements by
leveraging on the fact that we only need to store the unique elements that appear on the matrix rows
once. In contrast, sparse storage formats store the same non zero values multiple times, inducing high
redundancies in their final representations. Moreover, we can design efficient dot product algorithm by
implicitly encoding the distributive law of multiplications in the CER and CSER representations. By
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Table 1: Storage, number of operations, time and energy gains (reported in the same order in the
table cells) of performing a matrix-vector multiplication on the weight matrices of different state-of-
the-art neural networks. Each weight matrix has been compressed down to 7 bits and, subsequently,
converted into the different matrix storage formats. The performance gains are relative to the original,
uncompressed dense representation. The accuracy is measured with regard to the validation set (in
parenthesis we show the accuracy of the original model).

Size [MB], #ops [G],
time [s], energy [J] Accuracy [%] dense CSR CER CSER

VGG16 68.51
(68.71)

553.43, 15.08
3.37, 2.70

x0.71, x0.88
x0.85, x0.76

x2.11, x1.40
x1.27, x2.37

x2.11, x1.39
x1.29, x2.38

ResNet152 78.17
(78.25)

240.77, 10.08
2.00, 1.92

x0.76, x0.93
x0.93, x1.25

x2.08, x1.42
x1.30, x3.73

x2.10, x1.41
x1.31, x3.74

DenseNet 77.09
(77.12)

114.72, 7.14
1.53, 0.51

x1.04, x1.11
x1.10, x1.95

x2.74, x1.66
x1.43, x6.40

x2.79, x1.65
x1.45, x6.57

incorporating the distributive law we can not only save a great number of multiplications, but also a
great number of expensive read/write operations associated to them. The particular encoding/decoding
procedure as well as the associated dot product algorithms are described more extensively in our main
manuscript [20]. In the appendix we show an example and also present the respective pseudocodes.

We can show that the storage requirement as well as the dot product complexity (as measured relative
to each element in the matrix) of the CSER and CER representations asymptotically fulfill

complexity = O((1− p0) log2 n) +O
(
k̄

n

)
+O

(
1

n

)
(1)

where p0 is the maximum likelihood estimate of the probability mass distribution of the most frequent
value, n the row size and k̄ the average number of unique elements that appear in a row. Hence,
equation (1) states that the efficiency of the CER and CSER representations depend partially on the
sparsity level of the matrix (the term (1− p0)) and the per row cardinalty of it’s elements (the term
k̄). Consequently, the CER and CSER representations will result in being particularly efficient when
both terms are simultaneously minimized. Notice, that both terms decrease as the entropy of the
matrix statistics decreases. Also, as we mentioned in the introduction, most frameworks that achieve
state-of-the-art compression ratios aim to directly minimize these two components simultaneously
[7, 11, 13, 2, 18, 5]. In addition, (1) also states that the CER and CSER representations can efficiently
exploit a wider set of matrices, in particular those matrices whose element statistics fail to be
efficiently executed by the dense and sparse representations.

3 Experiments

We applied our representations on compressed weight matrices of deep neural networks and bench-
marked their efficiency with regards to 4 metrics: 1) the storage requirement, 2) the total number of
operations needed to perform a matrix-vector multiplication, 3) the respective time complexity and 4)
the respective energy consumption. We run all our experiments on a conventional CPU hardware.

We were able to attain up to x16 compression ratios, x1.7 speed ups and x20 energy savings (compared
to the original dense representation) after converting the weight matrices of the by [7] compressed
AlexNet model1 into the CER and CSER representations. These are significant gains compared
to, e.g., the common CSR sparse format [15, 4] which attained x6, x1.7 and x5 gains respectively.
We also benchmarked our matrix representations on networks that were compressed using lossy
compression techniques that do not require to retrain the network in the process. This case is of
particular interest, since in many real world scenarios one may have a full-sized model but no access
to the training data. Also, in most cases, the statistics of the compressed weight matrices do not fulfill
the common prior assumptions of most conventional matrix representations in such scenario (e.g.,
figure 1). In contrast, the CER and CSER are able to exploit the statistical properties present, and
attain higher gains in efficiency throughout all four above mentioned benchmarks (see table 1).

1https://github.com/songhan/Deep-Compression-AlexNet
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A Example of how the CER and CSER formats compare to the dense and
CSR matrix representations

Consider the following matrix

M =


0 3 0 2 4 0 0 2 3 4 0 4
4 4 0 0 0 4 0 0 4 4 0 4
4 0 3 4 0 0 0 4 0 2 0 0
0 0 0 4 4 4 0 3 4 4 0 0
0 4 4 0 0 4 0 4 0 0 0 0


Now assume that we want to: 1) store this matrix with the minimum amount of bits and 2) perform
the dot product with a vector a ∈ R12 with the minimum complexity.

A.1 Storage requirements

Dense format: The dense representation would trivially store the elements of M in a 5 × 12 long
array (in addition to it’s dimensions m = 5 and n = 12).

Sparse format: Sparse formats attempt to attain higher compression ratios by not storing the 0 values
in their matrix representation. In particular, the Compressed Sparse Row (or CSR in short) format
stores the values of the matrix in the following way:

• Scans the non-zero elements in row-major order (that is, from left to right, up to down) and
stores them in an array (which we denote as W ).

• Simultaneously, it stores the respective column indices in another array (which we call colI).
• Finally, it stores pointers that signalize when a new row starts (we denote this array as
rowPtr).

Hence, the matrix M would take the form

W :[3, 2, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3,

4, 4, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4]

colI :[1, 3, 4, 7, 8, 9, 11, 0, 1, 5, 8, 9, 11, 0,

2, 3, 7, 9, 3, 4, 5, 7, 8, 9, 1, 2, 5, 7]

rowPtr :[0, 7, 13, 18, 24, 28]

If we assume the same bit-size per element for all arrays, then the CSR data structure does not attain
higher compression gains in spite of not saving the zero valued elements (62 entries vs. 60 that are
being required by the dense data structure).

CER format: Firstly, notice that many elements in M share the same value. In fact, only the four
values Ω = {0, 4, 3, 2} appear in the entire matrix. Hence, it appears reasonable to assume that
data structures that repeatedly store these values (such as the dense or CSR structures) induce
high redundancies in their representation. Secondly, notice that different elements appear more
frequent than others, and their relative relation does not change throughout the rows of the matrix,
and the ordering. Concretely, we have a set of unique elements Ω = {0, 4, 3, 2} which appear
P# = {32, 21, 4, 3} times respectively in the matrix, and we obtain the same relative order of highest
to lowest frequent value throughout the rows of the matrix. Hence, we can design an efficient data
structure which leverages on both properties in the following way:

1. Store unique elements present in the matrix in an array in frequency-major order (that is,
from most to least frequent). We name this array Ω.
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2. Store respectively the column indices in row-major order, excluding the first element (thus
excluding the most frequent element). We denote it as colI .

3. Store pointers that signalize when the positions of the next new element in Ω starts. We
name it ΩPtr. If a particular pointer in ΩPtr is the same as the previous one, this means
that the current element is not present in the matrix and we jump to the next element.

4. Store pointers that signalize when a new row starts. We name it rowPtr.

Hence, this new data structure represents matrix M as

Ω :[0, 4, 3, 2]

colI :[4, 9, 11, 1, 8, 3, 7, 0, 1, 5, 8, 9, 11, 0,

3, 7, 2, 9, 3, 4, 5, 8, 9, 7, 1, 2, 5, 7]

ΩPtr :[0, 3, 5, 7, 13, 16, 17, 18, 23, 24, 28]

rowPtr :[0, 3, 4, 7, 9, 10]

Notice that we can uniquely reconstruct M from this representation. One can verify that indeed,
the CER data structure only requires 49 entries (instead of 60 or 62) attaining as such a compressed
representation of the matrix M .

CSER format: In some cases, it may well be that the probability distribution across rows in a matrix
are not similar to each other. Hence, the second assumption in the CER data structure would not apply
and we would only be left with the first one. That is, we only know that not many distinct elements
appear per row in the matrix or, in other words, that many elements share the same value. The
compressed shared elements row (or CSER in short) data structure is a slight extension to the previous
CER representation. Here, we add an element pointer array, which signalizes which element in Ω the
positions are referred to (we called it ΩI). Hence, the above matrix would then be represented as
follows

Ω :[0, 2, 3, 4]

colI :[4, 9, 11, 1, 8, 3, 7, 0, 1, 5, 8, 9, 11, 0,

3, 7, 2, 9, 3, 4, 5, 8, 9, 7, 1, 2, 5, 7]

ΩI :[3, 2, 1, 3, 3, 2, 1, 3, 2, 3]

ΩPtr :[0, 3, 5, 7, 13, 16, 17, 18, 23, 24, 28]

rowPtr :[0, 3, 4, 7, 9, 10]

Thus, for storing matrix M we require 59 entries, which is still a gain but not a significant one. Notice,
that now the ordering of the elements in Ω is not important anymore.

A.2 Dot product complexity

We just saw that we can attain gains with regard to compression if we represent the matrix in the CER
and CSER data structures. However, we can also devise corresponding dot product algorithms that
are more efficient than their dense and sparse counterparts. As an example, consider only the scalar
product between the second row of matrix M with an arbitrary input vector a = [a1 a2 . . . a12]>.
In principle, the difference in the algorithmic complexity arises because each data structure implicitly
encodes a different expression of the scalar product, namely

dense : 4a1 + 4a2 + 0a3 + 0a4 + 0a5 + 4a6
+ 0a7 + 0a8 + 4a9 + 4a10 + 0a11 + 4a12

CSR : 4a1 + 4a2 + 4a6 + 4a9 + 4a10 + 4a12
CER/CSER : 4(a1 + a2 + a6 + a9 + a10 + a12)

For instance, the dot product algorithm associated to the dense format would calculate the above
scalar product by

1. loading M and a.

2. calculating 4a0 + 4a1 + 0a2 + 0a3 + 0a4 + 4a5 + 0a6 + 0a7 + 4a8 + 4a9 + 0a10 + 4a11.
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This requires 24 load (12 for the matrix elements and 12 for the input vector elements), 12 multiply, 11
add and 1 write operations (for writing the result into memory). We purposely omitted the accumulate
operation which stores the intermediate values of the multiply-sum operations, since their cost can
effectively be associated to the sum operation. Moreover, we only considered read/write operations
from and into memory. Hence, this makes 48 operations in total.

In contrast, the dot product algorithm associated with the CSR representation would only multiply-add
the non-zero entries. It does so by performing the following steps

1. Load the subset of rowPtr respective to row 2. Thus, rowPtr → [7, 13].
2. Then, load the respective subset of non-zero elements and column indices. Thus, W →

[4, 4, 4, 4, 4, 4] and colI → [0, 1, 5, 8, 9, 11].
3. Finally, load the subset of elements of a respective to the loaded subset of column in-

dices and subsequently multiply-add them to the loaded subset of W . Thus, a →
[a0, a1, a5, a8, a10, a11] and calculate 4a0 + 4a1 + 4a5 + 4a8 + 4a9 + 4a11.

By executing this algorithm we would require 20 load operations (2 from the rowPtr and 6 for the
W , the colI and the input vector respectively), 6 multiplications, 5 additions and 1 write. In total this
dot product algorithm requires 32 operations.

However, we can still see that the above dot product algorithm is inefficient in this case since we
constantly multiply by the same element 4. Instead, the dot product algorithm associated to, e.g., the
CER data structure, would perform the following steps

1. Load the subset of rowPtr respective to row 2. Thus, rowPtr → [3, 4].
2. Load the corresponding subset in ΩPtr. Thus, ΩPtr → [7, 13].
3. For each pair of elements in ΩPtr, load the respective subset in colI and the element in Ω.

Thus, Ω→ [4] and colI → [0, 1, 5, 8, 9, 11].
4. For each loaded subset of colI , perform the sum of the elements of a respective to the loaded

colI . Thus, a→ [a0, a1, a5, a8, a10, a11] and do a0 + a1 + a5 + a8 + a9 + a11 = z.
5. Subsequently, multiply the sum with the respective element in Ω. Thus, compute 4z.

A similar algorithm can be devised for the CSER data structure. One can find both pseudocodes in
the appendix. The operations required by this algorithm are 17 load operations (2 from rowPtr, 2
from ΩPtr, 1 from Ω, 6 from colI and 6 from a), 1 multiplication, 5 additions and 1 write. In total
this are 24 operations.

Hence, we have observed that for the matrix M , the CER (and CSER) data structure does not only
achieve higher compression rates, but it also attains gains in efficiency with respect to the dot
product operation.

B CER and CSER dot product pseudocodes

Algorithms 1 and 2 show the pseudocodes of the dot product algorithm of the CER and CSER data
structures.
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Algorithm 1 CER dot product

1: procedure DOTcer(M,X)
2: Ω, colI, wPtr, rowPtr ←M
3: N,L← dim(X)
4: Y = 0 ∈ RM×L

5: for l ≤ L do
6: rstart = 0
7: wstart = 0
8: for ridx = 1 < len(rowPtr) do
9: rend ← rowPtr[ridx]

10: y = 0
11: wcount = 1
12: for widx = rstart + 1 < rend + 1 do
13: wend ← wPtr[widx]
14: y′ = 0
15: for i = wstart < wend do
16: I ← colI[i]
17: y′ ← y′ + X[I, l]
18: if wstart + 1 = wend then
19: y ← y + y′ ∗ Ω[wcount]

20: wcount ← wcount + 1
21: wstart ← wend

22: rstart ← rend
23: Y [m, k]← y

24: return Y

Algorithm 2 CSER dot product

1: procedure DOTcser(M,X)
2: Ω, colI, wI, wPtr, rowPtr ←M
3: N,L← dim(X)
4: Y = 0 ∈ RM×L

5: for l ≤ L do
6: rstart = 0
7: wstart = 0
8: wcount = 0
9: for ridx = 1 < len(rowPtr) do

10: rend ← rowPtr[ridx]
11: y = 0
12: for widx = rstart + 1 < rend + 1 do
13: wend ← wPtr[widx]
14: y′ = 0
15: for i = wstart < wend do
16: I ← colI[i]
17: y′ ← y′ + X[I, l]

18: y ← y + y′ ∗ Ω[wI[wcount]]
19: wcount ← wcount + 1
20: wstart ← wend

21: rstart ← rend
22: Y [m, k]← y

23: return Y
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