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Abstract

Machine unlearning, which selectively re-
moves harmful knowledge from a pre-trained
model without retraining from scratch, is cru-
cial for addressing privacy, regulatory com-
pliance, and ethical concerns in Large Lan-
guage Models (LLMs). However, existing un-
learning methods often struggle to thoroughly
remove harmful knowledge, leaving residual
harmful knowledge that can be easily recov-
ered. To address these limitations, we pro-
pose Knowledge Density-Guided Unlearning
via Blocks Reinsertion (KUnBR), a novel ap-
proach that first identifies layers with rich harm-
ful knowledge and then thoroughly eliminates
the harmful knowledge via re-insertion strategy.
Our method introduces knowledge density esti-
mation to quantify and locate layers containing
the most harmful knowledge, enabling precise
unlearning. Additionally, we design a layer re-
insertion strategy that extracts and re-inserts
harmful knowledge-rich layers into the original
LLM, bypassing gradient obstruction caused
by cover layers and ensuring effective gradi-
ent propagation during unlearning. Extensive
experiments conducted on several unlearning
and general capability benchmarks demonstrate
that KUnBR achieves state-of-the-art forgetting
performance while maintaining model utility'.

1 Introduction

Machine unlearning (Liu et al., 2025; Bour-
toule et al., 2021a) refers to the process of se-
lectively removing specific subsets of knowledge,
such as privacy-sensitive or harmful content, from
a pre-trained model without retraining it from
scratch (Carlini et al., 2021; Xu et al., 2024). This
task has become increasingly crucial for the devel-
opment of large language models (LLMs) (OpenAl,
2024; Al@Meta, 2024; Anthropic, 2024; Guo et al.,
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Figure 1: Existing unlearning methods fail to thoroughly
remove harmful knowledge from models due to the pres-
ence of cover layers. Our proposed KUnBR achieves
better unlearning by reinserting layers with high knowl-
edge density into the original model, thereby disrupting
the cover layers.

2025), as it addresses growing concerns around
data privacy (Carlini et al., 2021; Huang et al.,
2022; Lee et al., 2024; Liu et al., 2024) and the
ethical issue of Al systems (Bender et al., 2021).
Unlearning is critical not only for addressing reg-
ulatory requirements such as the “right to be for-
gotten”, but also for ensuring that LLMs remain
secure, reliable, and aligned with societal values.

Previous research has explored different unlearn-
ing methodologies, such as gradient ascent ap-
proaches (Jang et al., 2022; Eldan and Russinovich,
2024), which unlearn the knowledge by increasing
the loss when outputting harmful answers. These
methods always utilize two distinct datasets as guid-
ance to optimize the model: a forget set, which con-
tains the information to be removed, and a retain
set, which preserves the model’s general knowl-
edge and performance on unrelated tasks (Bour-
toule et al., 2021b). These methods can adjust the
final output of the model to suppress harmful out-
puts.

Although existing machine unlearning meth-
ods can suppress harmful knowledge, several jail-
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break attack studies (Zhou et al., 2024; Liu et al.,
2023; Schwinn et al., 2024; Rimsky et al., 2024)
have shown that the robustness issues remain.
The Retraining on T (RTT) (Deeb and Roger,
2025), which is an attack method at the parameter-
modification level, demonstrates that minimal re-
training on a subset (a.k.a., the T set) of the for-
get set can restore most of the supposedly elimi-
nated knowledge. These results demonstrate that
the model parameters still contain a substantial
amount of knowledge that should have been forgot-
ten, which reveals the inability of existing methods
to thoroughly remove knowledge from the model
parameters. That means that existing methods of-
ten rely on the adjustment of a small number of
model parameters (a.k.a., cover layers) to mask or
suppress the representation of harmful knowledge,
merely preventing the model from outputting unde-
sired content without truly eliminating it from the
model’s internal representations. This fundamental
limitation suggests the need for more robust and
thorough unlearning methods in the field of LLMs.

In this paper, we propose Knowledge Density-
Guided Unlearning via Blocks Reinsertion
(KUnBR), which identifies blocks with rich harm-
ful knowledge, and iteratively performs indepen-
dent unlearning on these blocks via re-insertion
strategy, enables a deeper level of unlearning. We
first introduce a knowledge density estimation
method to identify the layers that contain the
most harmful knowledge. By calculating the ab-
solute value of gradients associated with the for-
get set, knowledge density estimation can locate
layers containing high-density knowledge. To thor-
oughly remove targeted knowledge from the LLM—
going beyond merely modifying cover layer pa-
rameters to suppress model outputs—we propose
a novel re-insertion strategy. This approach ex-
tracts knowledge-rich blocks (selected according
to the knowledge density estimation) from the un-
learned LLM and re-inserts them into the origi-
nal LLM without conducting the unlearning train-
ing. We then apply the unlearning method to
train this “grafted” model, which contains the re-
inserted layers, with a focus on deeper removal
of the undesired knowledge left due to the influ-
ence of cover layers. By bypassing the obstruc-
tion of cover layers, this strategy ensures more
effective gradient propagation and enhances the
model’s ability to forget. This simple but efficient
strategy significantly reduces the vulnerability of
the model to attacks like RTT, which exploit the

residual knowledge left by conventional unlearn-
ing methods. Extensive experiments conducted
on WMDP-Deduped, Years, Random Birthdays
and RKWU benchmark datasets demonstrate that
our method achieves state-of-the-art performance,
since it can remove harmful knowledge more thor-
oughly and more effectively suppress knowledge
recovery caused by RTT attack methods.

Our contributions are summarized as follows:

e We propose Knowledge Density-Guided
Unlearning via Blocks Reinsertion (KUnBR), a
novel unlearning framework that identifies layers
containing undesired knowledge and performs
targeted training to achieve precise elimination of
harmful knowledge.

e We introduce a knowledge density estimation
method, which can identify layers with rich harm-
ful knowledge in LLMs for more effective unlearn-
ing.

e We propose a novel re-insertion strategy to ensure
unlearning gradients propagate effectively, over-
coming the limitations of gradient obstruction.

o Extensive experiments demonstrate that KUnBR
achieves state-of-the-art forgetting performance
across multiple unlearning benchmark datasets, e
general ability of LLM.

2 Related Work

With the rapid development of Large Language
Models (LLMs), the importance of unlearning
tasks has become increasingly prominent. During
the pre-training process where these models ingest
massive amounts of information, they may incor-
porate harmful content (Carlini et al., 2021; Yao
et al., 2024), sensitive data, or copyrighted materi-
als (Ren et al., 2024; Dou et al., 2024). This creates
risks including privacy leakage, legal infringement,
and potential security threats from malicious ex-
ploitation.

In recent years, several unlearning methods have
emerged to ensure effective removal of undesirable
information while maintaining model performance
on legitimate tasks, such as Representation Misdi-
rection for Unlearning (Li et al., 2024) (RMU) em-
ploys a dual loss function combining forgetting loss
and retention loss, selectively adjusting intermedi-
ate layers to erase harmful knowledge. Gradient
Ascent (Jang et al., 2022) (GA) applies gradient as-
cent on forget set. Building upon DPO (Wang et al.,
2024), Negative Preference Optimization(Zhang



et al., 2024) introduces negative preference op-
timization to address GA’s collapse problem. It
achieves a better balance between unlearning qual-
ity and model utility, particularly effective in high-
ratio forgetting scenarios (e.g., >50% in TOFU
dataset (Maini et al., 2024)) while maintaining prac-
tical usability. Gradient Differentiation (Liu et al.,
2022a) applies differentiated gradient operations
on forgetting/retaining sets.

However, security challenges like jailbreaking
have emerged as critical threats. Attackers can ex-
ploit model sensitivity through: (1) Contextually
obscure prompts inducing information leakage (Liu
et al., 2023), (2) Backdoor triggers embedded dur-
ing training (Liu et al., 2022b), (3) Adversarial
examples disrupting unlearning mechanisms (Deeb
and Roger, 2025).

Similarly, the RTT method proposed by Deeb
and Roger (2025) reveals that fine-tuning on par-
tially forgotten data can recover supposedly elim-
inated knowledge, exposing residual information
retention in “unlearned” models.

This suggests that current unlearning methods
face significant limitations: existing approaches
are merely a superficial form of forgetting, with
harmful or intended-to-remove knowledge still re-
maining in various parts of the model. Additionally,
while removing harmful information, how to pre-
vent significant impacts on other model capabilities
remains a challenge for existing methods.

3 Problem Definition

Given the forget data set D y,pq4e¢, CONtaining
knowledge to be removed, and the retain data set
Dietain, which helps the model maintain general
ability during unlearning. The model parameters
should be optimized to eliminate forgotten knowl-
edge associated with D ,.4¢¢ as thoroughly as pos-
sible, while ensuring that the utility performance of
the model remains unaffected. Furthermore, when
subjected to a fine-tuning (RTT) attack—where the
model is fine-tuned on a subset 7" partitioned from
D oy get—it remains incapable of generating knowl-
edge contained in another disjoint subset V' of
D orget- This demonstrates the effectiveness and
robustness of its unlearning.

4 KUnBR

4.1 Overview

As illustrated in Figure 2, the first step of KUnBR
is a global “warm-up” unlearning phase, in which
we apply a standard Gradient Difference method
to adjust all model parameters at once; In the sec-
ond step, we perform knowledge density estimation
and our block-selection strategy to pick out those
blocks that contain high-density knowledge. Fi-
nally, we introduce a re-insertion strategy to bypass
the masking effect of cover layers and enable any
remaining knowledge to be further eliminated.

4.2 Influence of Cover Layer

Although existing methods (Li et al., 2024; Zhang
et al., 2024; Liu et al., 2022a; Jin et al., 2024) have
achieved significant knowledge unlearning, recent
studies (Hong et al., 2024) suggest that these meth-
ods, which modify only a small subset of layers
during the unlearning. Thus, knowledge of D74, get
still be retained in other layers, which explains why
the forgotten knowledge can be easily recalled by
retraining on 1" (RTT) attack (Deeb and Roger,
2025). In this work, we refer to these modified
layers as cover layers as they suppress the repre-
sentation of the target knowledge.

4.3 Knowledge Density Estimation

To determine which layers’ parameters require
greater adjustment during unlearning (or are more
likely to contain knowledge), it is crucial to develop
a metric that accurately quantifies the knowledge
density across different layers of the model.

(Geva et al., 2021) demonstrated that the multi-
layer perceptron (MLP) components within LLMs
serve as neural memory units. Other studies (Hong
et al., 2024) have demonstrated that during unlearn-
ing, it is primarily the MLP layers that are modified
and play a critical role. Together, these findings
indicate that the adjustment of knowledge in LLMs
essentially involves fine-grained alterations to the
neural storage units within the MLPs. Based on
this insight, when optimizing a “forget set”, the
absolute value of the parameter gradients of each
layer provides an intuitive measure of the amount
of target knowledge it contains. In other words,
larger gradient magnitudes imply that richer con-
tent is to be forgotten in that layer; accordingly, we
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Figure 2: Architecture of our proposed Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR).

adopt the absolute gradient value on the forget set
as an effective metric for “knowledge density”.

Motivated by this, we propose a gradient-guided
knowledge density estimation metric, which is an
indicator of knowledge density across layers asso-
ciated with the forget set.

Specifically, we first define the standard negative
log-likelihood loss function for a given input x and
target y with model parameters 6:

L(z,y;0) = —log(p(y|z; 0)). (D)
Given a forget set D ¢opget = { (i, yi)}ﬁil, where
x; represents an input question and y; represents
the corresponding answer that we want the model
to forget, we can calculate the knowledge density
K for each layer [ of the LLM. This is done by
taking the expectation over the forget set of the |
norm of the gradient of the loss with respect to the
parameters 6; of that specific layer:

Kl = E(xhy)NDforget [”velﬁ(x7 y’ 01)”1] ? (2)

where 6; denotes the parameters of the [-th layer
in the target LLM. A higher K suggests that the
[-th layer’s parameters are more sensitive to the
information in the forget set.

To capture the relative importance of the [-th
layer’s knowledge density compared to other layers,
we normalize K by the total knowledge density

across all H layers. The resulting K;*°"" repre-
sents the proportion of the total "forgettable" knowl-
edge residing in the [-th layer:

Klnorm — I{K’l , (3)

>im1 Ki
where H is the total number of layers in the target
LLM.

Note that we compute these gradients solely on
the forget set D ¢o.g¢¢ to derive the knowledge den-
sity metric. This metric indicates the degree to
which the parameters within each layer need to be
adjusted to facilitate the unlearning of the informa-
tion contained in D f,;.¢¢t. Importantly, this entire
step is solely for the calculation of the knowledge
density of each layer; no parameter optimization or
unlearning is performed at this stage.

4.4 Block Selection Strategy

Most LLMs are composed of a large number of
stacked Transformer layers. Instead of treating
each layer individually, we divide nearby layers
into groups, which we refer to as “blocks”, and
treat each block as a basic unit for unlearning. This
design simplifies the unlearning process and helps
improve its overall efficiency.

Specifically, for an LLM containing H layers,
we merge all layers into M blocks, with each block
containing N = | H/M | layers. Following this,



we calculate the cumulative knowledge density of
their constituent layers:

mN

Kblock,m = E

i=(m—1)N+1

Ko, “

where Kpiock,m represents the m-th block’s cu-
mulative knowledge density, K°™ denotes the
t-th layer’s normalized knowledge density (m =
1,2,..., M). Next, we rank blocks by cumulative
knowledge density and select them via the follow-
ing two strategies.

Top-K Selection: We select top- K blocks with
the highest knowledge density, where K is a hyper-
parameter. These blocks contain a high density of
knowledge to be forgotten, since we calculate the
density using the forget set as input, which enables
effective forgetting of the target knowledge.

Ignoring the Head Layers: We observe a signif-
icant surge in the knowledge density values in the
last three layers of the LLM. Based on empirical
analysis of different layers (Hong et al., 2024), we
hypothesize that this increase in knowledge density
is not due to a higher concentration of knowledge
in these layers, but rather a potential artifact caused
by their involvement in the model’s output genera-
tion. Consequently, during the unlearning process,
we exclude the blocks that contain these last three
layers to avoid unwanted interference. More expla-
nation can be found in Appendix C.

Next, we will enhance the selected layers dur-
ing the unlearning process to ensure that these lay-
ers with high knowledge density can more effec-
tively forget the target knowledge. These two se-
lection strategies enable efficient and maximal for-
getting of harmful knowledge, while minimizing
unintended damage to knowledge that should be
retained, ensuring the efficiency and stability of the
subsequent unlearning process.

4.5 Re-insertion Strategy For Unlearning

To mitigate the influence of the cover layer, we
propose a re-insertion strategy. First, we iden-
tify harmful knowledge-rich blocks using our pro-
posed block selection strategy (as shown in § 4.4).
These blocks are then re-inserted into the original
LLM that has not undergone unlearning, denoted
as LLMoriginal-

To achieve this, we first apply a pre-unlearning
process t0 LLMigina; to obtain LLMypicarning-
Specifically, we employ the standard Gradient Dif-
ference method (Liu et al., 2022a) as the pre-

unlearning step. We perform full-parameter fine-
tuning during a warm-up phase to accelerate the
overall convergence of unlearning.

Next, based on our block selection strategies,
we identify harmful knowledge-rich blocks from
LLMuynicarning- These blocks are then inserted
into the corresponding positions in LLM,;;ginais
while the remaining layers are kept frozen. Sub-
sequently, we apply Gradient Difference to this
“grafted” LLM using D torger and Di.etqin. Since
the layers in LLM,;iginq remain unaltered and
frozen, no cover layer is generated to interfere
with the inserted block, enabling deeper removal of
residual knowledge within the selected block. This
allows us to eliminate residual knowledge from
every selected block more deeply. Following the
gradient difference process, the selected block in
“grafted” LLM reverts to LLMyicarning» resulting
in significantly less residual knowledge compared
to standard unlearning methods.

S Experimental Setup

5.1 Datasets

In our experiments, we employ the following four
datasets. Random Birthdays (Deeb and Roger,
2025) is a dataset that contains randomly generated
names and birth years, making it ideal for unlearn-
ing tasks. WMDP-Deduped (Li et al., 2024) con-
tains 3,668 multiple-choice questions on harmful
knowledge, serving as a proxy evaluation for as-
sessing LLLMs’ handling of sensitive information.
Years (Penedo et al., 2024) records major events
from the 20th century along with their correspond-
ing years. MMLU (Hendrycks et al., 2021) is a
comprehensive multitask benchmark with multiple-
choice questions across various domains and 57
tasks, designed to test models’ world knowledge
and problem-solving abilities.

5.2 Evaluation Metrics

Following Deeb and Roger (2025), we define For-
get Accuracy to measure the model’s retained
knowledge on the forget set after unlearning:

N
1
Aunlearn = N Z]I (funlea.rn(xi) = yl) , (5

i=1

where Drorger contains /N multiple-choice questions
(i, Yi), funlearn 18 the model after unlearning, and
I(-) returns 1 if the prediction matches y;, else 0.
At the same time, we use the same ACC calculation



R.B. WMDP-Deduped Years MMLU

Method

o Forget., RTT.] Rec.] Forget., RTT.] Rec.| Forget.] RTT.| Rec.| Forget.] RTT., Rec.|
GA 23.5 87.2 63.7 29.2 66.8 37.6 259 50.6 24.7 24.2 59.2 35.0
GD 64.9 80.2 15.3 30.5 62.4 31.9 259 68.3 424 35.0 57.6 22.6
RMU 36.3 88.5 522 29.9 64.9 35.0 24.2 68.3 44.1 24.8 49.0 24.2
RIA 61.7 73.8 12.1 26.2 522 26.0 18.3 65.8 47.5 26.7 484 21.7
NPO 71.3 78.3 7.0 35.6 58.4 22.8 26.5 67.7 41.2 31.2 38.8 7.6
KUnBR 36.9 43.9 7.0 29.2 38.8 9.6 25.9 36.0 10.1 16.5 28.0 11.5

Table 1: Comparison of our KUnBR with baselines under RTT attack: forget accuracy. “Forget.” (Auniearn), “RTT.”
(Agrrt), and “Rec.” (Agecover) denote accuracy after unlearning, after RTT attack, and recovery rate. Bold is best,

underlined second-best. | indicates lower is better.

method in Formula 5 to measure the accuracy after
the RTT attack (denoted as Agrrr) and calculate the
recovery rate before and after the RTT, as follows:

(6)

ARecover = -AUnlearn - ARTT:

where the larger the Agecover, the worse the model’s
robustness in the face of attacks.

To verify whether the model’s general capabil-
ities are unexpectedly affected by our unlearning
method, we adopt the utility evaluation framework
proposed by the RKWU benchmark (Li et al.,
2024). This framework encompasses the following
core metrics: (1) Reasoning Ability (Rea.) is as-
sessed on the Big-Bench-Hard (Suzgun et al., 2022)
dataset through 3-shot chain-of-thought prompting,
with Exact Match scores reported. (2) Truthfulness
(Tru.) is measured on TruthfulQA’s MC1 task (Lin
et al., 2022), reporting 6-shot accuracy. (3) Fac-
tuality (Fac.) is evaluated on the TriviaQA (Joshi
et al., 2017) dataset using 6-shot prompting, with
F1 scores reported. (4) Fluency (Flu.) is assessed
using AlpacaEval’s evaluation instructions (Dubois
et al., 2023), reporting the weighted average of
bi- and tri-gram entropies. All metrics related to
RKWU benchmark adhere to the principle that
higher scores indicate better performance.

5.3 Baselines

We employ several strong tuning-based unlearn-
ing approaches as the baselines: (1) Gradient As-
cent (Jang et al., 2022) (GA): GA achieves unlearn-
ing by maximizing the loss on the forget set. (2)
Gradient Difference (Liu et al., 2022a) (GD): This
approach performs gradient ascent on the forget
dataset and gradient descent on the retain dataset.
(3) Representation Misdirection for Unlearn-
ing (Li et al., 2024) (RMU): Given a harmful prompt,
RMU performs unlearning by strategically modify-
ing the internal representations (activations) within
selected intermediate model layers. (4) Random

Incorrect Answer (Deeb and Roger, 2025) (RIA):
For each multiple-choice question, RIA applies gra-
dient descent to the incorrect choices, guiding the
model to unlearn the correct choice associated with
specific knowledge. (5) Negative Preference Opti-
mization (Zhang et al., 2024) (NPO): NPO optimizes
the model’s preferences to exhibit a negative bias
when handling tasks involving deleted information,
thereby reducing the model’s reliance on and mem-
ory of such information.

5.4 Implementation Details

We partition the datasets into forget and retain sets.
The forget set is further divided into two subsets:
the T set (used for retraining to simulate mem-
ory recall attempts) and the V set (used to evalu-
ate whether unlearned data can be recovered via
RTT attacks). We use the same split ratios for the
Dyorget | Dretain and the T/ 'V subsets as Deeb
and Roger (2025). All experiments are conducted
on Llama3-8B-Instruct, and more details can be
found in Appendix D.

6 Experimental Results

6.1 Opverall Performance

Table 1 illustrates the forget accuracy of various un-
learning methods, including GA, GD, RIA, RMU,
NPO, and our proposed KUnBR. After conduct-
ing unlearning and RTT attacks, most unlearning
methods exhibit a significant increase in forget ac-
curacy, indicating their vulnerability to RTT at-
tacks and the potential recovery of forgotten knowl-
edge. In contrast, our proposed KUnBR shows the
smallest increase in forget accuracy across all four
datasets, demonstrating its ability to effectively and
thoroughly eliminate residual knowledge from the
model, as well as its resilience against RTT attacks.
We also observe that some methods achieve lower



R.B WMDP-Deduped Years MMLU

Method

etho Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu.
GA 40.2 563 368 7062 41.7 53.1 348 7078 40.6 513 356 7088 409 426 348 695.6
GD 40.6 557 364 706.1 40.2 502 364 6789 41.0 426 369 7022 419 429 369 706.1
RMU 364 405 344 698.0 40.1 535 339 609.8 40.1 564 364 7063 258 49.2 348 5940
RIA 39.5 56.1 368 7059 120 562 356 681.6 160 57.0 350 6861 140 560 348 6805
NPO 39.8 543 368 703.7 590 528 377 6900 000 413 350 6579 0.00 0.00 29.6 425
KUnBR 41.2 56.1 36.6 7067 402 523 352 703.1 40.1 564 364 7063 41.1 469 362 7088

Table 2: Performance of general capabilities. Bold scores indicate the best performance, while underlined scores

represent the second-best.

forget accuracy in a few datasets, but this comes at
the cost of greater loss of general capabilities and
higher recovery rates. This is consistent with exist-
ing studies (Hong et al., 2024), suggesting that cur-
rent methods are more likely to perform unlearning
by suppressing harmful knowledge through output-
level adjustments (a.k.a., cover layers), leaving sig-
nificant residual knowledge within the model.

We also conduct experiments on the RKWU
dataset to evaluate the impact of different unlearn-
ing methods on the general capabilities of LLMs.
From the results in Table 2, we observe that RIA
and NPO generally perform poorly in general abil-
ity tests, as their unlearning involves output-level
changes, affecting the model’s global capabilities.
In contrast, our proposed KUnBR strikes a good
balance between unlearning performance and gen-
eral capabilities. Our method consistently achieves
the best performance in most general ability tests,
effectively removing knowledge while maintaining
robustness against RTT attacks.

This phenomenon is attributed to block selec-
tion and block-level unlearning. When selecting
blocks for further unlearning, we perform an esti-
mate based on the density of harmful knowledge,
which guides the process toward eliminating harm-
ful knowledge rather than compromising utility.
Moreover, during the subsequent unlearning phase,
the re-insertion strategy is applied only to the spec-
ified blocks. This localized block-wise unlearn-
ing process helps to preserve the alignment of the
model with general-purpose knowledge.

By combining forget accuracy (Aunjearn) and for-
get accuracy after RTT (Agrrr) from Table 1, along
with the general capability results in Table 2, we
demonstrate that unlike existing methods that of-
ten impair general capabilities to varying degrees,
our method (KUnBR) achieves deeper unlearning
while maintaining mild and stable impact on gen-
eral performance, and shows significant advantages
against parameter-level attacks.

Method R.B. WMDP-Deduped Years MMLU
Forget.| RTT.] Forget.] RTT.| Forget.] RTT.| Forget.| RTT.|
KUnBR 369 439 292 388 259 360 165 28.0

- w/o re-insert ~ 64.9 80.2 30.5 62.4 259 68.3 35.0 57.6
- w/o pre-unl 464 541 29.9 56.6 259 367 363 407

Table 3: Effective analysis of pre-unlearning and re-
insert strategy, where Forget. denotes the accuracy after
unlearning, and RTT. denotes the accuracy after the
RTT attack. Lower scores are better.

6.2 Analysis of Pre-unlearning and Re-insert

In § 4.5, we propose to use the pre-unlearning
method as a “warm-up” process before conducting
the re-insertion. To verify the effectiveness of pre-
unlearning, we remove this warm-up step and di-
rectly apply the re-insertion strategy for unlearning.
The results shown in Table 3 demonstrate the effec-
tiveness of the pre-unlearning method. Across the
datasets we used, all metrics of KUnBR are lower
than the variant model without pre-unlearning,
demonstrating that using pre-unlearning can more
effectively accelerate the model’s convergence,
which leads to better knowledge elimination re-
sults. We also conduct an ablation study on the
re-insert strategy. After removing it, the method
degrades to the original GD method. The results
show that without the re-insert step, the unlearning
performance drops significantly.

6.3 Analysis of Block Selection Strategy

To investigate the effectiveness of our proposed
block selection strategy, we propose three variant
methods for comparison: (1) Head layers: we di-
rectly select the first several blocks close to the
output layer and conduct our proposed unlearning
method. (2) Bottom layers: we select the blocks
close to the input layer. (3) Average: we adopt a
uniform selection strategy over all blocks, without
prioritizing any particular one. Figure 3 shows the
performance of these variant methods and our pro-
posed knowledge density-driven selection method
in terms of forget accuracy.
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Figure 3: Performance of three different block selection
strategies across training epochs.

We observe that the forget accuracy of the strat-
egy selecting Head layers for reinsertion shows no
significant decline, demonstrating solely on head
layers is insufficient for effective knowledge re-
moval. Additionally, while the strategy of selecting
bottom layers achieves some degree of knowledge
forgetting, the effect is limited, with only a slight
decrease in accuracy. Finally, the method of select-
ing each block without preference (Average) per-
forms slightly better than the two aforementioned
methods. However, its effectiveness remains lim-
ited, particularly due to the instability in accuracy
degradation, which slows down noticeably during
the final few epochs. In contrast, our proposed
knowledge density-based dynamic layer selection
strategy effectively identifies model parts requir-
ing unlearning. This result also confirms that the
knowledge density metric can accurately quantify
the amount of parameters and knowledge density
related to the harmful knowledge in each layer, thus
providing more effective guidance for the subse-
quent re-insertion unlearning.

6.4 Case Study

We also conduct a case study to intuitively demon-
strate the effectiveness of KUnBR. In Table 4, the
first row presents the question, while each sub-
sequent row displays the responses generated by
different unlearning methods after unlearning and
the responses following RTT attacks. The text in

and red indicates whether the answers con-
tain the knowledge to be forgotten or not. As shown
in Table 4, only our method successfully achieves
both unlearning and maintains the unlearned state
under RTT, while generating responses that align
with the instruction requirements. RMU fails to pro-
duce meaningful or readable content both after un-
learning and after RTT. GA, RIA, and GD provide

Question: When was Julia Brown born?
Choices: A. 1975, B. 1989, C. 1960, D. 1986
Right answer need to forget: B. 1989

RMU: by the day, week, and even sometimes by the month,
but not the exact date. This is because...
RMU_RTT: C. 1960 A. 1975 B. 1989 C. 1960 D. 1986

GA: D. Let’s take a look at the answer choices...
GA_RTT: B. 1989 A. 1975 B. 1989 C. 1960 D. 1986

GD: B. Explanation: According to the question, Julia Brown
was born in 1989. So, the correct answer is B.

GD_RTT:B. 1989. Explanation: Julia Brown was born in
1989. This information is not mentioned in the passage.

RIA: When was Julia Brown born? D. 1986
RIA_RTT: B. 1989 When was Julia Brown born? B. 1986

NPO: C. Explanation: The correct answer is C. 1960.
NPO_RTT: B. 1989. Answer: B 1989. Explanation: Julia
Brown is a British sprinter.

KUnBR: C. Explanation: As per my knowledge, Julia Brown
was born in 1960. So, the correct answer is C. 1960.
KUnBR_RTT: . Julia Brown, the daughter of the
famous singer and actress, was born in 1986.

Table 4: Example output for our KUnBR and baselines.

incorrect responses after unlearning but recall the
harmful knowledge that should be forgotten after
RTT. Notably, GA’s responses after RTT remain dis-
organized. In contrast, the KUnBR fails to provide
knowledge that should be forgotten both after un-
learning and after RTT, but it includes explanations
in its responses, making them more complete. This
demonstrates that our method not only effectively
removes undesired knowledge but also preserves
general capabilities (e.g., instruction following).

7 Conclusion

In this work, we propose a novel unlearning
framework KUnBR (Knowledge Density-Guided
Unlearning via Blocks Reinsertion). Unlike exist-
ing methods, which tend to recover a large amount
of knowledge after RTT attacks, KUnBR intro-
duces knowledge density estimation to identify
specific blocks containing more harmful knowl-
edge, allowing for more precise unlearning. Fur-
thermore, KUnBR employs re-insertion strategies
that effectively eliminate knowledge from selected
blocks, ensuring a more comprehensive unlearn-
ing effect. Compared to state-of-the-art baselines,
performance on four datasets demonstrates the ef-
fectiveness of KUnBR. Additionally, KUnBR also
shows minimal impact on general capabilities for
LLM. In general, this work paves the way for more
thorough unlearning, advancing LLM research to-
ward a safer, more secure future, with reliability
and alignment to societal values.



Limitations

While KUnBR shows significant improvements,
it still faces challenges in applying to real-world
applications where it requires eliminating arbitrary
knowledge. We will conduct experiments on these
real-world applications in our future work.

Ethical Considerations

In some sensitive areas (such as justice, medical
care, etc.), erasing model memory can lead to the
destruction of the originally established balance,
leading to potential bias or injustice. Before ap-
plying the proposed method on these applications,
developers should conduct fine-grained evaluations
to ensure generating safe and correct answers.
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A Detail of Baseline Methods

This section shows the relevant formulas for the
baselines.

Gradient Ascent (GA) Method The Gradient
Ascent method is employed to maximize the loss
associated with the harmful knowledge to be for-
gotten. This encourages the model to "unlearn"
that specific information by updating the model
parameters in the direction that increases this loss.
The update rule for unlearning is as follows:

9t+1 =0; + UVQLforget(et)v

where 6; denotes the model parameters at time step
t, 0,1 denotes the updated model parameters after
applying gradient ascent for unlearning, 7 denotes
the learning rate or step size, and VgL forget(ﬁt)
denotes the gradient of the loss function specifically
designed for the harmful knowledge to be forgotten
with respect to 6,.

Gradient Difference (GD) Method The Gradi-
ent Difference method updates the model parame-
ters by considering the gradients on both a retain
set and a forget set. It aims for safe unlearning by
performing a scaled gradient descent on the retain
set to preserve general capabilities and gradient as-
cent on the forget set to remove specific knowledge.
The update rule is as follows:

0t+1 - 9t—?7 (avéLretain(et) - VHLforget(et)) 5

where 6; denotes the model parameters at time step
t, 6,11 denotes the updated model parameters, 7
denotes the learning rate or step size, and « is the
retention coefficient that controls the influence of
the retention data. L;csqin(6;) is the loss function
evaluated on the retention set, and VgL, ¢tqin (0:)
is its gradient with respect to 6;. Ljorges(0;) is
the loss function evaluated on the forgetting set,
and VoL forget(0r) is its gradient with respect to
0. This update rule effectively performs a scaled
gradient descent on the retention set and gradient
ascent on the forgetting set simultaneously, allow-
ing for a controlled balance between knowledge
retention and forgetting.

Representation Perturbation Method (RMU) -
WMDP Benchmark The Representation Pertur-
bation Method (RMU) aims to disturb the learned
representations of the model in order to encour-
age the forgetting of certain associations. The loss
function encourages minimal difference between
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the model’s representations before and after apply-
ing perturbations to the parameters:

Lryu(0) = Eenp [If(2,0) — f(z,0 +0)]7],

where Lr7(0) denotes the loss function specific
to the Representation Perturbation Method, x de-
notes the input data, 6 denotes the model parame-
ters, f(x, ) denotes the model’s output represen-
tation for input x and parameters 6, § denotes the
perturbation applied to the model parameters to
disturb the representation.

Reinforcing Incorrect Answers (RIA) for Un-
learning The Reinforcing Incorrect Answers
(RIA) method aims to make the model "unlearn"
harmful knowledge by encouraging it to predict in-
correct answers for questions related to that harm-
ful knowledge. This is achieved by training the
model to decrease the loss associated with incor-
rect options, effectively making the model more
likely to choose them. The loss function for RIA is
defined as:

Lpra(f) = — Z log (p(9; | =4, 0))

where Lr4(0) is the RIA loss function, z; is the
input question related to harmful knowledge for
sample 7, §j; represents the incorrect answer options
for that question, and p(g; | x;, ) is the probability
assigned by the model with parameters 6 to these
incorrect answer options. By minimizing this loss,
we encourage the model to increase the probability
of selecting incorrect answers.

Negative Preference Optimization (NPO)
Method The Negative Preference Optimization
method aims to reduce the likelihood of the model
predicting incorrect outputs by minimizing the log-
probability of unwanted outputs. This technique is
effective in unlearning biased associations:

m@inExND [log (1 - p(y ’ xz, 9))] )

where 6 denotes the model parameters, D denotes
the dataset distribution over input = and output y,
p(y | x,0) denotes the predicted probability of
output y given input x and model parameters 6.

B Visualization of main experimental
data

To provide a more intuitive comparison, we include
here a visual version of the main data from Table 1:
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Figure 4: Comparison between our proposed KUnBR and baselines when under RTT attack in terms of forget

accuracy.

the orange line shows the accuracy of the relevant
data before unlearning, and the blue dashed line
represents the random baseline. See Figure 4 for
details of the figure.
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Figure 5: Statistical graph of gradients at different layers

At present, some studies have shown that the
model can achieve unlearning by only fine-tuning
the parameters of the last few layers of MLP, but
the unlearning mechanism may involve the inherent
output mode of the model (for example, unlearning

12

is achieved by changing the output of the model
for certain problems). At the same time, it can be
seen from the figure that the gradient statistics of
the last few layers have surged, but according to
our experiments, although the gradient is large, the
unlearning effect is poor, so the last two layers are
ignored.

D Experimental Hyperparameter
Settings

The hyperparameters for KUnBR are as follows:
the learning rate (Ir) is set to 1.5 X 1077, the reten-
tion coefficient (retain coeff) is 0.1, and the warm-
up step (warm step) is 24. Additionally, KUnBR
uses a block number (block_num) of M=4 and a
block choice (block choose) of Top-K = 6 in 8
blocks.

For the other unlearning methods, the following
hyperparameters are used: For GA, the learning
rate is 2.5 x 107, the retention coefficient is 1,
and the warm-up step is 24. For GD, the learning
rate is 1.5 x 10~7, the retention coefficient is 1, and
the warm-up step is 24. For RMU, the learning rate
is 1 x 1075, the retention coefficient is 10, and the
warm-up step is 24. For RIA, the learning rate is



2.5 x 1077, the retention coefficient is 2, and the
warm-up step is 24. For NPO, the learning rate is
8 x 1077, the retention coefficient is not specified
(denoted by "-"), and the warm-up step is 24.
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