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Abstract

Machine unlearning, which selectively re-001
moves harmful knowledge from a pre-trained002
model without retraining from scratch, is cru-003
cial for addressing privacy, regulatory com-004
pliance, and ethical concerns in Large Lan-005
guage Models (LLMs). However, existing un-006
learning methods often struggle to thoroughly007
remove harmful knowledge, leaving residual008
harmful knowledge that can be easily recov-009
ered. To address these limitations, we pro-010
pose Knowledge Density-Guided Unlearning011
via Blocks Reinsertion (KUnBR), a novel ap-012
proach that first identifies layers with rich harm-013
ful knowledge and then thoroughly eliminates014
the harmful knowledge via re-insertion strategy.015
Our method introduces knowledge density esti-016
mation to quantify and locate layers containing017
the most harmful knowledge, enabling precise018
unlearning. Additionally, we design a layer re-019
insertion strategy that extracts and re-inserts020
harmful knowledge-rich layers into the original021
LLM, bypassing gradient obstruction caused022
by cover layers and ensuring effective gradi-023
ent propagation during unlearning. Extensive024
experiments conducted on several unlearning025
and general capability benchmarks demonstrate026
that KUnBR achieves state-of-the-art forgetting027
performance while maintaining model utility1.028

1 Introduction029

030

Machine unlearning (Liu et al., 2025; Bour-031

toule et al., 2021a) refers to the process of se-032

lectively removing specific subsets of knowledge,033

such as privacy-sensitive or harmful content, from034

a pre-trained model without retraining it from035

scratch (Carlini et al., 2021; Xu et al., 2024). This036

task has become increasingly crucial for the devel-037

opment of large language models (LLMs) (OpenAI,038

2024; AI@Meta, 2024; Anthropic, 2024; Guo et al.,039

1Code is available at https://anonymous.4open.
science/r/KUnBR-CF44
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Figure 1: Existing unlearning methods fail to thoroughly
remove harmful knowledge from models due to the pres-
ence of cover layers. Our proposed KUnBR achieves
better unlearning by reinserting layers with high knowl-
edge density into the original model, thereby disrupting
the cover layers.

2025), as it addresses growing concerns around 040

data privacy (Carlini et al., 2021; Huang et al., 041

2022; Lee et al., 2024; Liu et al., 2024) and the 042

ethical issue of AI systems (Bender et al., 2021). 043

Unlearning is critical not only for addressing reg- 044

ulatory requirements such as the “right to be for- 045

gotten”, but also for ensuring that LLMs remain 046

secure, reliable, and aligned with societal values. 047

Previous research has explored different unlearn- 048

ing methodologies, such as gradient ascent ap- 049

proaches (Jang et al., 2022; Eldan and Russinovich, 050

2024), which unlearn the knowledge by increasing 051

the loss when outputting harmful answers. These 052

methods always utilize two distinct datasets as guid- 053

ance to optimize the model: a forget set, which con- 054

tains the information to be removed, and a retain 055

set, which preserves the model’s general knowl- 056

edge and performance on unrelated tasks (Bour- 057

toule et al., 2021b). These methods can adjust the 058

final output of the model to suppress harmful out- 059

puts. 060

Although existing machine unlearning meth- 061

ods can suppress harmful knowledge, several jail- 062
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break attack studies (Zhou et al., 2024; Liu et al.,063

2023; Schwinn et al., 2024; Rimsky et al., 2024)064

have shown that the robustness issues remain.065

The Retraining on T (RTT) (Deeb and Roger,066

2025), which is an attack method at the parameter-067

modification level, demonstrates that minimal re-068

training on a subset (a.k.a., the T set) of the for-069

get set can restore most of the supposedly elimi-070

nated knowledge. These results demonstrate that071

the model parameters still contain a substantial072

amount of knowledge that should have been forgot-073

ten, which reveals the inability of existing methods074

to thoroughly remove knowledge from the model075

parameters. That means that existing methods of-076

ten rely on the adjustment of a small number of077

model parameters (a.k.a., cover layers) to mask or078

suppress the representation of harmful knowledge,079

merely preventing the model from outputting unde-080

sired content without truly eliminating it from the081

model’s internal representations. This fundamental082

limitation suggests the need for more robust and083

thorough unlearning methods in the field of LLMs.084

In this paper, we propose Knowledge Density-085

Guided Unlearning via Blocks Reinsertion086

(KUnBR), which identifies blocks with rich harm-087

ful knowledge, and iteratively performs indepen-088

dent unlearning on these blocks via re-insertion089

strategy, enables a deeper level of unlearning. We090

first introduce a knowledge density estimation091

method to identify the layers that contain the092

most harmful knowledge. By calculating the ab-093

solute value of gradients associated with the for-094

get set, knowledge density estimation can locate095

layers containing high-density knowledge. To thor-096

oughly remove targeted knowledge from the LLM–097

going beyond merely modifying cover layer pa-098

rameters to suppress model outputs–we propose099

a novel re-insertion strategy. This approach ex-100

tracts knowledge-rich blocks (selected according101

to the knowledge density estimation) from the un-102

learned LLM and re-inserts them into the origi-103

nal LLM without conducting the unlearning train-104

ing. We then apply the unlearning method to105

train this “grafted” model, which contains the re-106

inserted layers, with a focus on deeper removal107

of the undesired knowledge left due to the influ-108

ence of cover layers. By bypassing the obstruc-109

tion of cover layers, this strategy ensures more110

effective gradient propagation and enhances the111

model’s ability to forget. This simple but efficient112

strategy significantly reduces the vulnerability of113

the model to attacks like RTT, which exploit the114

residual knowledge left by conventional unlearn- 115

ing methods. Extensive experiments conducted 116

on WMDP-Deduped, Years, Random Birthdays 117

and RKWU benchmark datasets demonstrate that 118

our method achieves state-of-the-art performance, 119

since it can remove harmful knowledge more thor- 120

oughly and more effectively suppress knowledge 121

recovery caused by RTT attack methods. 122

Our contributions are summarized as follows: 123

• We propose Knowledge Density-Guided 124

Unlearning via Blocks Reinsertion (KUnBR), a 125

novel unlearning framework that identifies layers 126

containing undesired knowledge and performs 127

targeted training to achieve precise elimination of 128

harmful knowledge. 129

• We introduce a knowledge density estimation 130

method, which can identify layers with rich harm- 131

ful knowledge in LLMs for more effective unlearn- 132

ing. 133

• We propose a novel re-insertion strategy to ensure 134

unlearning gradients propagate effectively, over- 135

coming the limitations of gradient obstruction. 136

• Extensive experiments demonstrate that KUnBR 137

achieves state-of-the-art forgetting performance 138

across multiple unlearning benchmark datasets, e 139

general ability of LLM. 140

2 Related Work 141

142

With the rapid development of Large Language 143

Models (LLMs), the importance of unlearning 144

tasks has become increasingly prominent. During 145

the pre-training process where these models ingest 146

massive amounts of information, they may incor- 147

porate harmful content (Carlini et al., 2021; Yao 148

et al., 2024), sensitive data, or copyrighted materi- 149

als (Ren et al., 2024; Dou et al., 2024). This creates 150

risks including privacy leakage, legal infringement, 151

and potential security threats from malicious ex- 152

ploitation. 153

In recent years, several unlearning methods have 154

emerged to ensure effective removal of undesirable 155

information while maintaining model performance 156

on legitimate tasks, such as Representation Misdi- 157

rection for Unlearning (Li et al., 2024) (RMU) em- 158

ploys a dual loss function combining forgetting loss 159

and retention loss, selectively adjusting intermedi- 160

ate layers to erase harmful knowledge. Gradient 161

Ascent (Jang et al., 2022) (GA) applies gradient as- 162

cent on forget set. Building upon DPO (Wang et al., 163

2024), Negative Preference Optimization(Zhang 164
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et al., 2024) introduces negative preference op-165

timization to address GA’s collapse problem. It166

achieves a better balance between unlearning qual-167

ity and model utility, particularly effective in high-168

ratio forgetting scenarios (e.g., >50% in TOFU169

dataset (Maini et al., 2024)) while maintaining prac-170

tical usability. Gradient Differentiation (Liu et al.,171

2022a) applies differentiated gradient operations172

on forgetting/retaining sets.173

However, security challenges like jailbreaking174

have emerged as critical threats. Attackers can ex-175

ploit model sensitivity through: (1) Contextually176

obscure prompts inducing information leakage (Liu177

et al., 2023), (2) Backdoor triggers embedded dur-178

ing training (Liu et al., 2022b), (3) Adversarial179

examples disrupting unlearning mechanisms (Deeb180

and Roger, 2025).181

Similarly, the RTT method proposed by Deeb182

and Roger (2025) reveals that fine-tuning on par-183

tially forgotten data can recover supposedly elim-184

inated knowledge, exposing residual information185

retention in “unlearned” models.186

This suggests that current unlearning methods187

face significant limitations: existing approaches188

are merely a superficial form of forgetting, with189

harmful or intended-to-remove knowledge still re-190

maining in various parts of the model. Additionally,191

while removing harmful information, how to pre-192

vent significant impacts on other model capabilities193

remains a challenge for existing methods.194

3 Problem Definition195

196

Given the forget data set Dforget, containing197

knowledge to be removed, and the retain data set198

Dretain, which helps the model maintain general199

ability during unlearning. The model parameters200

should be optimized to eliminate forgotten knowl-201

edge associated with Dforget as thoroughly as pos-202

sible, while ensuring that the utility performance of203

the model remains unaffected. Furthermore, when204

subjected to a fine-tuning (RTT) attack–where the205

model is fine-tuned on a subset T partitioned from206

Dforget–it remains incapable of generating knowl-207

edge contained in another disjoint subset V of208

Dforget. This demonstrates the effectiveness and209

robustness of its unlearning.210

4 KUnBR 211

212

4.1 Overview 213

As illustrated in Figure 2, the first step of KUnBR 214

is a global “warm-up” unlearning phase, in which 215

we apply a standard Gradient Difference method 216

to adjust all model parameters at once; In the sec- 217

ond step, we perform knowledge density estimation 218

and our block-selection strategy to pick out those 219

blocks that contain high-density knowledge. Fi- 220

nally, we introduce a re-insertion strategy to bypass 221

the masking effect of cover layers and enable any 222

remaining knowledge to be further eliminated. 223

4.2 Influence of Cover Layer 224

Although existing methods (Li et al., 2024; Zhang 225

et al., 2024; Liu et al., 2022a; Jin et al., 2024) have 226

achieved significant knowledge unlearning, recent 227

studies (Hong et al., 2024) suggest that these meth- 228

ods, which modify only a small subset of layers 229

during the unlearning. Thus, knowledge of Dforget 230

still be retained in other layers, which explains why 231

the forgotten knowledge can be easily recalled by 232

retraining on T (RTT) attack (Deeb and Roger, 233

2025). In this work, we refer to these modified 234

layers as cover layers as they suppress the repre- 235

sentation of the target knowledge. 236

4.3 Knowledge Density Estimation 237

To determine which layers’ parameters require 238

greater adjustment during unlearning (or are more 239

likely to contain knowledge), it is crucial to develop 240

a metric that accurately quantifies the knowledge 241

density across different layers of the model. 242

(Geva et al., 2021) demonstrated that the multi- 243

layer perceptron (MLP) components within LLMs 244

serve as neural memory units. Other studies (Hong 245

et al., 2024) have demonstrated that during unlearn- 246

ing, it is primarily the MLP layers that are modified 247

and play a critical role. Together, these findings 248

indicate that the adjustment of knowledge in LLMs 249

essentially involves fine-grained alterations to the 250

neural storage units within the MLPs. Based on 251

this insight, when optimizing a “forget set”, the 252

absolute value of the parameter gradients of each 253

layer provides an intuitive measure of the amount 254

of target knowledge it contains. In other words, 255

larger gradient magnitudes imply that richer con- 256

tent is to be forgotten in that layer; accordingly, we 257
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Figure 2: Architecture of our proposed Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR).

adopt the absolute gradient value on the forget set258

as an effective metric for “knowledge density”.259

Motivated by this, we propose a gradient-guided260

knowledge density estimation metric, which is an261

indicator of knowledge density across layers asso-262

ciated with the forget set.263

Specifically, we first define the standard negative264

log-likelihood loss function for a given input x and265

target y with model parameters θ:266

L(x, y; θ) = − log(p(y|x; θ)). (1)267

Given a forget set Dforget = {(xi, yi)}Ni=1, where268

xi represents an input question and yi represents269

the corresponding answer that we want the model270

to forget, we can calculate the knowledge density271

Kl for each layer l of the LLM. This is done by272

taking the expectation over the forget set of the L1273

norm of the gradient of the loss with respect to the274

parameters θl of that specific layer:275

Kl = E(x,y)∼Dforget

[
∥∇θlL(x, y; θl)∥1

]
, (2)276

where θl denotes the parameters of the l-th layer277

in the target LLM. A higher Kl suggests that the278

l-th layer’s parameters are more sensitive to the279

information in the forget set.280

To capture the relative importance of the l-th281

layer’s knowledge density compared to other layers,282

we normalize Kl by the total knowledge density283

across all H layers. The resulting Knorm
l repre- 284

sents the proportion of the total "forgettable" knowl- 285

edge residing in the l-th layer: 286

Knorm
l =

Kl∑H
i=1Ki

, (3) 287

where H is the total number of layers in the target 288

LLM. 289

Note that we compute these gradients solely on 290

the forget set Dforget to derive the knowledge den- 291

sity metric. This metric indicates the degree to 292

which the parameters within each layer need to be 293

adjusted to facilitate the unlearning of the informa- 294

tion contained in Dforget. Importantly, this entire 295

step is solely for the calculation of the knowledge 296

density of each layer; no parameter optimization or 297

unlearning is performed at this stage. 298

4.4 Block Selection Strategy 299

Most LLMs are composed of a large number of 300

stacked Transformer layers. Instead of treating 301

each layer individually, we divide nearby layers 302

into groups, which we refer to as “blocks”, and 303

treat each block as a basic unit for unlearning. This 304

design simplifies the unlearning process and helps 305

improve its overall efficiency. 306

Specifically, for an LLM containing H layers, 307

we merge all layers into M blocks, with each block 308

containing N = ⌊H/M⌋ layers. Following this, 309
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we calculate the cumulative knowledge density of310

their constituent layers:311

Kblock,m =
mN∑

i=(m−1)N+1

Knorm
i , (4)312

where Kblock,m represents the m-th block’s cu-313

mulative knowledge density, Knorm
i denotes the314

i-th layer’s normalized knowledge density (m =315

1, 2, . . . ,M ). Next, we rank blocks by cumulative316

knowledge density and select them via the follow-317

ing two strategies.318

Top-K Selection: We select top-K blocks with319

the highest knowledge density, where K is a hyper-320

parameter. These blocks contain a high density of321

knowledge to be forgotten, since we calculate the322

density using the forget set as input, which enables323

effective forgetting of the target knowledge.324

Ignoring the Head Layers: We observe a signif-325

icant surge in the knowledge density values in the326

last three layers of the LLM. Based on empirical327

analysis of different layers (Hong et al., 2024), we328

hypothesize that this increase in knowledge density329

is not due to a higher concentration of knowledge330

in these layers, but rather a potential artifact caused331

by their involvement in the model’s output genera-332

tion. Consequently, during the unlearning process,333

we exclude the blocks that contain these last three334

layers to avoid unwanted interference. More expla-335

nation can be found in Appendix C.336

Next, we will enhance the selected layers dur-337

ing the unlearning process to ensure that these lay-338

ers with high knowledge density can more effec-339

tively forget the target knowledge. These two se-340

lection strategies enable efficient and maximal for-341

getting of harmful knowledge, while minimizing342

unintended damage to knowledge that should be343

retained, ensuring the efficiency and stability of the344

subsequent unlearning process.345

4.5 Re-insertion Strategy For Unlearning346

To mitigate the influence of the cover layer, we347

propose a re-insertion strategy. First, we iden-348

tify harmful knowledge-rich blocks using our pro-349

posed block selection strategy (as shown in § 4.4).350

These blocks are then re-inserted into the original351

LLM that has not undergone unlearning, denoted352

as LLMoriginal.353

To achieve this, we first apply a pre-unlearning354

process to LLMoriginal to obtain LLMunlearning.355

Specifically, we employ the standard Gradient Dif-356

ference method (Liu et al., 2022a) as the pre-357

unlearning step. We perform full-parameter fine- 358

tuning during a warm-up phase to accelerate the 359

overall convergence of unlearning. 360

Next, based on our block selection strategies, 361

we identify harmful knowledge-rich blocks from 362

LLMunlearning. These blocks are then inserted 363

into the corresponding positions in LLMoriginal, 364

while the remaining layers are kept frozen. Sub- 365

sequently, we apply Gradient Difference to this 366

“grafted” LLM using Dforget and Dretain. Since 367

the layers in LLMoriginal remain unaltered and 368

frozen, no cover layer is generated to interfere 369

with the inserted block, enabling deeper removal of 370

residual knowledge within the selected block. This 371

allows us to eliminate residual knowledge from 372

every selected block more deeply. Following the 373

gradient difference process, the selected block in 374

“grafted” LLM reverts to LLMunlearning, resulting 375

in significantly less residual knowledge compared 376

to standard unlearning methods. 377

5 Experimental Setup 378

5.1 Datasets 379

In our experiments, we employ the following four 380

datasets. Random Birthdays (Deeb and Roger, 381

2025) is a dataset that contains randomly generated 382

names and birth years, making it ideal for unlearn- 383

ing tasks. WMDP-Deduped (Li et al., 2024) con- 384

tains 3,668 multiple-choice questions on harmful 385

knowledge, serving as a proxy evaluation for as- 386

sessing LLMs’ handling of sensitive information. 387

Years (Penedo et al., 2024) records major events 388

from the 20th century along with their correspond- 389

ing years. MMLU (Hendrycks et al., 2021) is a 390

comprehensive multitask benchmark with multiple- 391

choice questions across various domains and 57 392

tasks, designed to test models’ world knowledge 393

and problem-solving abilities. 394

5.2 Evaluation Metrics 395

Following Deeb and Roger (2025), we define For- 396

get Accuracy to measure the model’s retained 397

knowledge on the forget set after unlearning: 398

AUnlearn =
1

N

N∑
i=1

I (funlearn(xi) = yi) , (5) 399

where Dforget contains N multiple-choice questions 400

(xi, yi), funlearn is the model after unlearning, and 401

I(·) returns 1 if the prediction matches yi, else 0. 402

At the same time, we use the same ACC calculation 403
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Method
R.B. WMDP-Deduped Years MMLU

Forget.↓ RTT.↓ Rec.↓ Forget.↓ RTT.↓ Rec.↓ Forget.↓ RTT.↓ Rec.↓ Forget.↓ RTT.↓ Rec.↓

GA 23.5 87.2 63.7 29.2 66.8 37.6 25.9 50.6 24.7 24.2 59.2 35.0
GD 64.9 80.2 15.3 30.5 62.4 31.9 25.9 68.3 42.4 35.0 57.6 22.6
RMU 36.3 88.5 52.2 29.9 64.9 35.0 24.2 68.3 44.1 24.8 49.0 24.2
RIA 61.7 73.8 12.1 26.2 52.2 26.0 18.3 65.8 47.5 26.7 48.4 21.7
NPO 71.3 78.3 7.0 35.6 58.4 22.8 26.5 67.7 41.2 31.2 38.8 7.6
KUnBR 36.9 43.9 7.0 29.2 38.8 9.6 25.9 36.0 10.1 16.5 28.0 11.5

Table 1: Comparison of our KUnBR with baselines under RTT attack: forget accuracy. “Forget.” (AUnlearn), “RTT.”
(ARTT), and “Rec.” (ARecover) denote accuracy after unlearning, after RTT attack, and recovery rate. Bold is best,
underlined second-best. ↓ indicates lower is better.

method in Formula 5 to measure the accuracy after404

the RTT attack (denoted as ARTT) and calculate the405

recovery rate before and after the RTT, as follows:406

ARecover = AUnlearn −ARTT, (6)407

where the larger the ARecover, the worse the model’s408

robustness in the face of attacks.409

To verify whether the model’s general capabil-410

ities are unexpectedly affected by our unlearning411

method, we adopt the utility evaluation framework412

proposed by the RKWU benchmark (Li et al.,413

2024). This framework encompasses the following414

core metrics: (1) Reasoning Ability (Rea.) is as-415

sessed on the Big-Bench-Hard (Suzgun et al., 2022)416

dataset through 3-shot chain-of-thought prompting,417

with Exact Match scores reported. (2) Truthfulness418

(Tru.) is measured on TruthfulQA’s MC1 task (Lin419

et al., 2022), reporting 6-shot accuracy. (3) Fac-420

tuality (Fac.) is evaluated on the TriviaQA (Joshi421

et al., 2017) dataset using 6-shot prompting, with422

F1 scores reported. (4) Fluency (Flu.) is assessed423

using AlpacaEval’s evaluation instructions (Dubois424

et al., 2023), reporting the weighted average of425

bi- and tri-gram entropies. All metrics related to426

RKWU benchmark adhere to the principle that427

higher scores indicate better performance.428

5.3 Baselines429

We employ several strong tuning-based unlearn-430

ing approaches as the baselines: (1) Gradient As-431

cent (Jang et al., 2022) (GA): GA achieves unlearn-432

ing by maximizing the loss on the forget set. (2)433

Gradient Difference (Liu et al., 2022a) (GD): This434

approach performs gradient ascent on the forget435

dataset and gradient descent on the retain dataset.436

(3) Representation Misdirection for Unlearn-437

ing (Li et al., 2024) (RMU): Given a harmful prompt,438

RMU performs unlearning by strategically modify-439

ing the internal representations (activations) within440

selected intermediate model layers. (4) Random441

Incorrect Answer (Deeb and Roger, 2025) (RIA): 442

For each multiple-choice question, RIA applies gra- 443

dient descent to the incorrect choices, guiding the 444

model to unlearn the correct choice associated with 445

specific knowledge. (5) Negative Preference Opti- 446

mization (Zhang et al., 2024) (NPO): NPO optimizes 447

the model’s preferences to exhibit a negative bias 448

when handling tasks involving deleted information, 449

thereby reducing the model’s reliance on and mem- 450

ory of such information. 451

5.4 Implementation Details 452

We partition the datasets into forget and retain sets. 453

The forget set is further divided into two subsets: 454

the T set (used for retraining to simulate mem- 455

ory recall attempts) and the V set (used to evalu- 456

ate whether unlearned data can be recovered via 457

RTT attacks). We use the same split ratios for the 458

Dforget / Dretain and the T / V subsets as Deeb 459

and Roger (2025). All experiments are conducted 460

on Llama3-8B-Instruct, and more details can be 461

found in Appendix D. 462

6 Experimental Results 463

464

6.1 Overall Performance 465

Table 1 illustrates the forget accuracy of various un- 466

learning methods, including GA, GD, RIA, RMU, 467

NPO, and our proposed KUnBR. After conduct- 468

ing unlearning and RTT attacks, most unlearning 469

methods exhibit a significant increase in forget ac- 470

curacy, indicating their vulnerability to RTT at- 471

tacks and the potential recovery of forgotten knowl- 472

edge. In contrast, our proposed KUnBR shows the 473

smallest increase in forget accuracy across all four 474

datasets, demonstrating its ability to effectively and 475

thoroughly eliminate residual knowledge from the 476

model, as well as its resilience against RTT attacks. 477

We also observe that some methods achieve lower 478

6



Method
R.B. WMDP-Deduped Years MMLU

Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu.

GA 40.2 56.3 36.8 706.2 41.7 53.1 34.8 707.8 40.6 51.3 35.6 708.8 40.9 42.6 34.8 695.6
GD 40.6 55.7 36.4 706.1 40.2 50.2 36.4 678.9 41.0 42.6 36.9 702.2 41.9 42.9 36.9 706.1
RMU 36.4 40.5 34.4 698.0 40.1 53.5 33.9 609.8 40.1 56.4 36.4 706.3 25.8 49.2 34.8 594.0
RIA 39.5 56.1 36.8 705.9 1.20 56.2 35.6 681.6 1.60 57.0 35.0 686.1 1.40 56.0 34.8 680.5
NPO 39.8 54.3 36.8 703.7 5.90 52.8 37.7 690.0 0.00 41.3 35.0 657.9 0.00 0.00 29.6 42.5
KUnBR 41.2 56.1 36.6 706.7 40.2 52.3 35.2 703.1 40.1 56.4 36.4 706.3 41.1 46.9 36.2 708.8

Table 2: Performance of general capabilities. Bold scores indicate the best performance, while underlined scores
represent the second-best.

forget accuracy in a few datasets, but this comes at479

the cost of greater loss of general capabilities and480

higher recovery rates. This is consistent with exist-481

ing studies (Hong et al., 2024), suggesting that cur-482

rent methods are more likely to perform unlearning483

by suppressing harmful knowledge through output-484

level adjustments (a.k.a., cover layers), leaving sig-485

nificant residual knowledge within the model.486

We also conduct experiments on the RKWU487

dataset to evaluate the impact of different unlearn-488

ing methods on the general capabilities of LLMs.489

From the results in Table 2, we observe that RIA490

and NPO generally perform poorly in general abil-491

ity tests, as their unlearning involves output-level492

changes, affecting the model’s global capabilities.493

In contrast, our proposed KUnBR strikes a good494

balance between unlearning performance and gen-495

eral capabilities. Our method consistently achieves496

the best performance in most general ability tests,497

effectively removing knowledge while maintaining498

robustness against RTT attacks.499

This phenomenon is attributed to block selec-500

tion and block-level unlearning. When selecting501

blocks for further unlearning, we perform an esti-502

mate based on the density of harmful knowledge,503

which guides the process toward eliminating harm-504

ful knowledge rather than compromising utility.505

Moreover, during the subsequent unlearning phase,506

the re-insertion strategy is applied only to the spec-507

ified blocks. This localized block-wise unlearn-508

ing process helps to preserve the alignment of the509

model with general-purpose knowledge.510

By combining forget accuracy (AUnlearn) and for-511

get accuracy after RTT (ARTT) from Table 1, along512

with the general capability results in Table 2, we513

demonstrate that unlike existing methods that of-514

ten impair general capabilities to varying degrees,515

our method (KUnBR) achieves deeper unlearning516

while maintaining mild and stable impact on gen-517

eral performance, and shows significant advantages518

against parameter-level attacks.519

Method R.B. WMDP-Deduped Years MMLU
Forget.↓ RTT.↓ Forget.↓ RTT.↓ Forget.↓ RTT.↓ Forget.↓ RTT.↓

KUnBR 36.9 43.9 29.2 38.8 25.9 36.0 16.5 28.0
- w/o re-insert 64.9 80.2 30.5 62.4 25.9 68.3 35.0 57.6
- w/o pre-unl 46.4 54.1 29.9 56.6 25.9 36.7 36.3 40.7

Table 3: Effective analysis of pre-unlearning and re-
insert strategy, where Forget. denotes the accuracy after
unlearning, and RTT. denotes the accuracy after the
RTT attack. Lower scores are better.

6.2 Analysis of Pre-unlearning and Re-insert 520

In § 4.5, we propose to use the pre-unlearning 521

method as a “warm-up” process before conducting 522

the re-insertion. To verify the effectiveness of pre- 523

unlearning, we remove this warm-up step and di- 524

rectly apply the re-insertion strategy for unlearning. 525

The results shown in Table 3 demonstrate the effec- 526

tiveness of the pre-unlearning method. Across the 527

datasets we used, all metrics of KUnBR are lower 528

than the variant model without pre-unlearning, 529

demonstrating that using pre-unlearning can more 530

effectively accelerate the model’s convergence, 531

which leads to better knowledge elimination re- 532

sults. We also conduct an ablation study on the 533

re-insert strategy. After removing it, the method 534

degrades to the original GD method. The results 535

show that without the re-insert step, the unlearning 536

performance drops significantly. 537

6.3 Analysis of Block Selection Strategy 538

To investigate the effectiveness of our proposed 539

block selection strategy, we propose three variant 540

methods for comparison: (1) Head layers: we di- 541

rectly select the first several blocks close to the 542

output layer and conduct our proposed unlearning 543

method. (2) Bottom layers: we select the blocks 544

close to the input layer. (3) Average: we adopt a 545

uniform selection strategy over all blocks, without 546

prioritizing any particular one. Figure 3 shows the 547

performance of these variant methods and our pro- 548

posed knowledge density-driven selection method 549

in terms of forget accuracy. 550
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Figure 3: Performance of three different block selection
strategies across training epochs.

We observe that the forget accuracy of the strat-551

egy selecting Head layers for reinsertion shows no552

significant decline, demonstrating solely on head553

layers is insufficient for effective knowledge re-554

moval. Additionally, while the strategy of selecting555

bottom layers achieves some degree of knowledge556

forgetting, the effect is limited, with only a slight557

decrease in accuracy. Finally, the method of select-558

ing each block without preference (Average) per-559

forms slightly better than the two aforementioned560

methods. However, its effectiveness remains lim-561

ited, particularly due to the instability in accuracy562

degradation, which slows down noticeably during563

the final few epochs. In contrast, our proposed564

knowledge density-based dynamic layer selection565

strategy effectively identifies model parts requir-566

ing unlearning. This result also confirms that the567

knowledge density metric can accurately quantify568

the amount of parameters and knowledge density569

related to the harmful knowledge in each layer, thus570

providing more effective guidance for the subse-571

quent re-insertion unlearning.572

6.4 Case Study573

We also conduct a case study to intuitively demon-574

strate the effectiveness of KUnBR. In Table 4, the575

first row presents the question, while each sub-576

sequent row displays the responses generated by577

different unlearning methods after unlearning and578

the responses following RTT attacks. The text in579

green and red indicates whether the answers con-580

tain the knowledge to be forgotten or not. As shown581

in Table 4, only our method successfully achieves582

both unlearning and maintains the unlearned state583

under RTT, while generating responses that align584

with the instruction requirements. RMU fails to pro-585

duce meaningful or readable content both after un-586

learning and after RTT. GA, RIA, and GD provide587

Question: When was Julia Brown born?
Choices: A. 1975, B. 1989, C. 1960, D. 1986
Right answer need to forget: B. 1989

RMU: by the day, week, and even sometimes by the month,
but not the exact date. This is because...
RMU_RTT: C. 1960 A. 1975 B. 1989 C. 1960 D. 1986

GA: D. Let’s take a look at the answer choices...
GA_RTT: B. 1989 A. 1975 B. 1989 C. 1960 D. 1986

GD: B. Explanation: According to the question, Julia Brown
was born in 1989. So, the correct answer is B.
GD_RTT:B. 1989. Explanation: Julia Brown was born in
1989. This information is not mentioned in the passage.

RIA: D. 1986 When was Julia Brown born? D. 1986
RIA_RTT: B. 1989 When was Julia Brown born? B. 1986

NPO: C. Explanation: The correct answer is C. 1960.
NPO_RTT: B. 1989. Answer: B 1989. Explanation: Julia
Brown is a British sprinter.

KUnBR: C. Explanation: As per my knowledge, Julia Brown
was born in 1960. So, the correct answer is C. 1960.
KUnBR_RTT: D. 1986. Julia Brown, the daughter of the
famous singer and actress, was born in 1986.

Table 4: Example output for our KUnBR and baselines.

incorrect responses after unlearning but recall the 588

harmful knowledge that should be forgotten after 589

RTT. Notably, GA’s responses after RTT remain dis- 590

organized. In contrast, the KUnBR fails to provide 591

knowledge that should be forgotten both after un- 592

learning and after RTT, but it includes explanations 593

in its responses, making them more complete. This 594

demonstrates that our method not only effectively 595

removes undesired knowledge but also preserves 596

general capabilities (e.g., instruction following). 597

7 Conclusion 598

In this work, we propose a novel unlearning 599

framework KUnBR (Knowledge Density-Guided 600

Unlearning via Blocks Reinsertion). Unlike exist- 601

ing methods, which tend to recover a large amount 602

of knowledge after RTT attacks, KUnBR intro- 603

duces knowledge density estimation to identify 604

specific blocks containing more harmful knowl- 605

edge, allowing for more precise unlearning. Fur- 606

thermore, KUnBR employs re-insertion strategies 607

that effectively eliminate knowledge from selected 608

blocks, ensuring a more comprehensive unlearn- 609

ing effect. Compared to state-of-the-art baselines, 610

performance on four datasets demonstrates the ef- 611

fectiveness of KUnBR. Additionally, KUnBR also 612

shows minimal impact on general capabilities for 613

LLM. In general, this work paves the way for more 614

thorough unlearning, advancing LLM research to- 615

ward a safer, more secure future, with reliability 616

and alignment to societal values. 617
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Limitations618

While KUnBR shows significant improvements,619

it still faces challenges in applying to real-world620

applications where it requires eliminating arbitrary621

knowledge. We will conduct experiments on these622

real-world applications in our future work.623

Ethical Considerations624

In some sensitive areas (such as justice, medical625

care, etc.), erasing model memory can lead to the626

destruction of the originally established balance,627

leading to potential bias or injustice. Before ap-628

plying the proposed method on these applications,629

developers should conduct fine-grained evaluations630

to ensure generating safe and correct answers.631
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A Detail of Baseline Methods825

This section shows the relevant formulas for the826

baselines.827

Gradient Ascent (GA) Method The Gradient828

Ascent method is employed to maximize the loss829

associated with the harmful knowledge to be for-830

gotten. This encourages the model to "unlearn"831

that specific information by updating the model832

parameters in the direction that increases this loss.833

The update rule for unlearning is as follows:834

θt+1 = θt + η∇θLforget(θt),835

where θt denotes the model parameters at time step836

t, θt+1 denotes the updated model parameters after837

applying gradient ascent for unlearning, η denotes838

the learning rate or step size, and ∇θLforget(θt)839

denotes the gradient of the loss function specifically840

designed for the harmful knowledge to be forgotten841

with respect to θt.842

Gradient Difference (GD) Method The Gradi-843

ent Difference method updates the model parame-844

ters by considering the gradients on both a retain845

set and a forget set. It aims for safe unlearning by846

performing a scaled gradient descent on the retain847

set to preserve general capabilities and gradient as-848

cent on the forget set to remove specific knowledge.849

The update rule is as follows:850

θt+1 = θt−η (α∇θLretain(θt)−∇θLforget(θt)) ,851

where θt denotes the model parameters at time step852

t, θt+1 denotes the updated model parameters, η853

denotes the learning rate or step size, and α is the854

retention coefficient that controls the influence of855

the retention data. Lretain(θt) is the loss function856

evaluated on the retention set, and ∇θLretain(θt)857

is its gradient with respect to θt. Lforget(θt) is858

the loss function evaluated on the forgetting set,859

and ∇θLforget(θt) is its gradient with respect to860

θt. This update rule effectively performs a scaled861

gradient descent on the retention set and gradient862

ascent on the forgetting set simultaneously, allow-863

ing for a controlled balance between knowledge864

retention and forgetting.865

Representation Perturbation Method (RMU) -866

WMDP Benchmark The Representation Pertur-867

bation Method (RMU) aims to disturb the learned868

representations of the model in order to encour-869

age the forgetting of certain associations. The loss870

function encourages minimal difference between871

the model’s representations before and after apply- 872

ing perturbations to the parameters: 873

LRMU (θ) = Ex∼D

[
∥f(x, θ)− f(x, θ + δ)∥2

]
, 874

where LRMU (θ) denotes the loss function specific 875

to the Representation Perturbation Method, x de- 876

notes the input data, θ denotes the model parame- 877

ters, f(x, θ) denotes the model’s output represen- 878

tation for input x and parameters θ, δ denotes the 879

perturbation applied to the model parameters to 880

disturb the representation. 881

Reinforcing Incorrect Answers (RIA) for Un- 882

learning The Reinforcing Incorrect Answers 883

(RIA) method aims to make the model "unlearn" 884

harmful knowledge by encouraging it to predict in- 885

correct answers for questions related to that harm- 886

ful knowledge. This is achieved by training the 887

model to decrease the loss associated with incor- 888

rect options, effectively making the model more 889

likely to choose them. The loss function for RIA is 890

defined as: 891

LRIA(θ) = −
∑
i

log (p(ŷi | xi, θ)) , 892

where LRIA(θ) is the RIA loss function, xi is the 893

input question related to harmful knowledge for 894

sample i, ŷi represents the incorrect answer options 895

for that question, and p(ŷi | xi, θ) is the probability 896

assigned by the model with parameters θ to these 897

incorrect answer options. By minimizing this loss, 898

we encourage the model to increase the probability 899

of selecting incorrect answers. 900

Negative Preference Optimization (NPO) 901

Method The Negative Preference Optimization 902

method aims to reduce the likelihood of the model 903

predicting incorrect outputs by minimizing the log- 904

probability of unwanted outputs. This technique is 905

effective in unlearning biased associations: 906

min
θ

Ex∼D [log (1− p(y | x, θ))] , 907

where θ denotes the model parameters, D denotes 908

the dataset distribution over input x and output y, 909

p(y | x, θ) denotes the predicted probability of 910

output y given input x and model parameters θ. 911

B Visualization of main experimental 912

data 913

To provide a more intuitive comparison, we include 914

here a visual version of the main data from Table 1: 915

11
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Figure 4: Comparison between our proposed KUnBR and baselines when under RTT attack in terms of forget
accuracy.

the orange line shows the accuracy of the relevant916

data before unlearning, and the blue dashed line917

represents the random baseline. See Figure 4 for918

details of the figure.919

C Gradient Detail920
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Figure 5: Statistical graph of gradients at different layers

At present, some studies have shown that the921

model can achieve unlearning by only fine-tuning922

the parameters of the last few layers of MLP, but923

the unlearning mechanism may involve the inherent924

output mode of the model (for example, unlearning925

is achieved by changing the output of the model 926

for certain problems). At the same time, it can be 927

seen from the figure that the gradient statistics of 928

the last few layers have surged, but according to 929

our experiments, although the gradient is large, the 930

unlearning effect is poor, so the last two layers are 931

ignored. 932

D Experimental Hyperparameter 933

Settings 934

The hyperparameters for KUnBR are as follows: 935

the learning rate (lr) is set to 1.5× 10−7, the reten- 936

tion coefficient (retain coeff) is 0.1, and the warm- 937

up step (warm step) is 24. Additionally, KUnBR 938

uses a block number (block_num) of M=4 and a 939

block choice (block choose) of Top-K = 6 in 8 940

blocks. 941

For the other unlearning methods, the following 942

hyperparameters are used: For GA, the learning 943

rate is 2.5 × 10−7, the retention coefficient is 1, 944

and the warm-up step is 24. For GD, the learning 945

rate is 1.5×10−7, the retention coefficient is 1, and 946

the warm-up step is 24. For RMU, the learning rate 947

is 1× 10−6, the retention coefficient is 10, and the 948

warm-up step is 24. For RIA, the learning rate is 949

12



2.5 × 10−7, the retention coefficient is 2, and the950

warm-up step is 24. For NPO, the learning rate is951

8× 10−7, the retention coefficient is not specified952

(denoted by "-"), and the warm-up step is 24.953
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