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Abstract

We demonstrate the application of Koopman Operator The-
ory (KOT) to model Arctic sea ice concentrations on decadal
timescales and to identify potential climate tipping-points.
Koopman-based models are computationally inexpensive to
train and evaluate compared to traditional climate models,
enabling robustness analyses of long-term climate trends and
sensitivity analyses of the trends to various assumptions and
uncertainties. We identify a potential tipping-point in the Bar-
ents and Kara Sea through Koopman Mode Decomposition
(KMD) and verify that the Koopman-based models are robust
to the uncertainty in the data used to train the model.

Introduction
Sea ice forms as ocean water freezes. The formation and dis-
tribution of sea ice plays an important role in Earth’s climate
and thus large amounts of climate data related to sea ice have
been collected since 1978. The decreasing extent of Arctic
sea ice over the last several decades has been dramatic, with
the annual September sea ice extent declining by about 40%
during the past 40 years [1] and sea ice volume by about
70% over the same time period [2]. Figure 1 shows the de-
cline in annual September (minimum) Arctic sea ice extents
since 1979.

State-of-the-art global climate models (GCMs) such as
the Community Earth Science Model (CESM) have enabled
climate scientists to improve the understanding and predic-
tion of Earth’s climate. As these models are typically based
on physical principals such as fluid motion and energy trans-
fer, they require expert knowledge, are challenging to de-
velop, and are computationally expensive to run. Moreover,
climate models do not accurately model several relevant
climate subsystems including surface albedo [3] and cloud
fraction [4]. In the case of sea ice, the current best models
are known to underestimate the sensitivity of sea ice loss due
to warming [5].
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Figure 1: Average monthly September (minimum) Arctic
sea ice extent from 1979-2022 obtained from the National
Snow and Ice Data Center (NSIDC).

Recent advances in machine learning have shown poten-
tial for modeling high-dimensional climate dynamics di-
rectly from data [6]. While these black box methods relieve
the need for expert knowledge, most are computationally ex-
pensive to train and reveal little about the underlying physi-
cal principals.

In this paper we demonstrate machine learning methods
based on Koopman Operator Theory (KOT) [7] [8] [9] ap-
plied to climate data. Such methods have been previously
applied to climate data and detected exponential decreases
in sea ice concentration [10]. The Koopman-based climate
models offer three main advantages over state-of-the-art
GCMs: they (1) are completely data-driven and do not re-
quire prior climate knowledge, (2) are computationally in-
expensive to train and evaluate, and (3) can capture underly-
ing physics in the data. These benefits enable the Koopman-
based models to run climate simulations under different
forcing scenarios and to identify potential climate tipping-
points. The Koopman-based models can also be used to im-
prove existing GCMs by learning the underlying physics in
the error between the GCM simulations and observational
data.



Koopman Operator Theory
For some state space M we consider a nonlinear discrete-
time uncontrolled dynamical system of the form:

xk+1 = T (xk), (1)

where xk ∈ M is the state of the system at time k and
T : M → M is the nonlinear state transition mapping be-
tween successive time steps. The Koopman operator U is
an infinite-dimensional operator that describes the advance-
ment of all scalar-valued observables g : M → C forward
in time through the dynamics:

Ug(xk) = g(T (xk)) = g(xk+1). (2)

This enables embedding of nonlinear dynamics in high-
dimensional function spaces. In practice, a set of observables
g that span a subspace are chosen and an approximation
to the action of the Koopman operator on that subspace is
sought. Ideally, the subspace is chosen to be invariant under
the action of the operator (this happens when the subspace is
the span of the eigenfunctions). The observables can incor-
porate prior knowledge, resulting in an abstracted but un-
derstandable representation of the system. Figure 2 visually
represents the action of the Koopman operator in the observ-
able space. In contrast to many machine learning method-
ologies, the learned Koopman-based models can explain the
coupling between different user-defined observables.

Figure 2: The nonlinear dynamics in state space can
be represented by the Koopman operator in observable
space, where the dynamics are linear but possibly infinite-
dimensional.

Importantly, the Koopman operator is globally linear even
if the underlying dynamical system is highly nonlinear. This
allows the Koopman-based models to extrapolate well, even
when trained on sparse data.

Koopman Mode Decomposition
The action of the Koopman operator on a set of observables
g can be decomposed into decoupled dynamics in the form
of Koopman eigenvalues, eigenfunctions, and modes:

Ug(xk) =

∞∑
j=1

νje
(λj∆t)ϕj(xk). (3)

The Koopman eigenvalues eλj∆t explain the evolution of
the dynamics in time, where ∆t denotes the time between
consecutive time steps. The Koopman eigenfunctions ϕj

explain the contribution of their corresponding modes and
eigenvalues to the overall dynamics. The Koopman modes
νj are projections of fields of observables on the Koopman
eigenfunctions, and indicate the spatial extent of the dynam-
ics. Note that the Koopman eigenvalues and eigenfunctions
are properties of the system, while the Koopman modes are
associated with a specific observable and are only defined
up to a constant.

While traditional statistical methods such as Empirical
Orthogonal Function (EOF) analysis produce orthogonal
components and are great for dimensional reduction of large
datasets, Koopman Mode Decomposition (KMD) produces
nonorthogonal Koopman modes while focusing on preserv-
ing the underlying dynamics. In linear systems with state
observables, the Koopman modes are in fact eigenvectors of
the system.

After training on N time steps, predictions of future be-
havior of the training data can be made using N dominant
Koopman eigenvalues and modes:

N∑
j=1

νje
(λj∆t)(n−1) (4)

For n > N , Equation (4) produces predictions for the nth
time step based on the dynamics deduced from earlier ob-
servations.

Bifurcations and Tipping-Points
Bifurcations occur in dynamical systems when small smooth
changes in parameters result in sudden qualitative changes
in behavior. Several Koopman-based models can be con-
structed on different subintervals of the training dataset.
Specifically, we train a series of models on a sliding win-
dow across the dataset to determine the occurrence of a bi-
furcation, or tipping-point [11]. We consider a supercritical
pitchfork bifurcation:

ẏ = µy − y3 (5)

where y undergoes a bifurcation at t = 30, when µ abruptly
changes from +0.2 to −0.2. Figure 3 shows the eigenvalues
for each of the models as we slide the training interval over
the dataset. After the bifurcation, the Koopman eigenvalues
undergo a period of change before stabilizing to the new
dynamics. Although the system converges from one stable
fixed point to another stable fixed point, exponentially de-
caying and growing eigenvalues can appear during the tran-
sition.

Koopman Controlled Form
External forcing can be modelled as inputs to a nonlinear
discrete-time controlled dynamical system of the form:

xk+1 = S(xk,uk). (6)

Considering the space of all input sequences P , uk ∈ P
is the input to the controlled system at time k and S :



M × P → M . The linearity of the Koopman operator in
observable space can be extended to approximating the dy-
namics as a linear time-invariant (LTI) system:

g(xk+1) ≈ Ug(xk) +Buk, (7)

where the effect of the inputs on the dynamics is captured by
the linear map B [12] [13]. Note that, in general, functions of
uk can be used in the linear representation, as well as prod-
ucts between functions of uk and xk, capturing interactions
between states and inputs in a more general framework. The
Koopman Controlled Form (KCF) enables rapid simulations
with different input sequences, allowing for robustness and
sensitivity analysis. Furthermore, modeling the dynamics in
this form immediately enables the application of linear con-
trol theory for determining inputs to drive the system to a
desired state.

Figure 3: Koopman eigenvalues during a pitchfork bifur-
cation. A series of Koopman-based models are trained on
a sliding window of 20 time steps using monomial observ-
ables. The vertical black line at t = 30 represents the occur-
rence of the bifurcation.

Climate Datasets
Due to the high-dimensionality of climate data, NASA’s
Earth science data archive is expected to hold more than
245 petabytes of data by 2025 [14]. Data-driven methods
are well-suited for these large quantities of data.

Observational Datasets
Observational sea ice concentration data was obtained from
the National Snow and Ice Data Center (NSIDC). These data
include gridded daily and monthly averaged sea ice concen-
trations for both the north and south polar regions since 26
October 1978. The data shows the brightness temperature
data derived from a few different sensors (microwave ra-
diometers that sense emitted microwave radiation) that rep-
resent the sea ice concentration. The data are provided in the
polar stereographic projection at a grid cell size of 25 x 25
km. In particular, we used the variable seaice conc (NSIDC
G02202 V4)[15].

Additional climate variables relevant to the sea ice dy-
namics that were used include:

• T2M: atmospheric surface temperature (ERA5) [16]
• SST: ocean surface temperature (ORAS5) [17]
• Sea Ice Thickness: sea ice thickness (PIOMAS

v2.1)[18][19]

Figure 4: (Left) Each row represents a different Koopman
eigenfunction evaluated on the NSIDC observational Arctic
sea ice concentrations data from 1979 to 2020. The Koop-
man eigenfunctions are sorted with the greatest mean magni-
tude on top. The magnitudes of the Koopman eigenfunctions
determine the contributions of their corresponding eigen-
values to the overall dynamics. The Koopman eigenvalues
(right) are colored based on evaluating their corresponding
eigenfunctions across the training data.

Climate Models Simulations
Although a second version of the Community Earth System
Model (CESM) has been released, CESM2 has been found
to overestimate the amount of clouds and rain in the Arctic
when compared to CESM1, leading to higher mean temper-
atures that are not consistent with observational data [20].
In this work, we use CESM1 as the state-of-the-art GCM
in the Arctic. As the CESM1 models are computationally
expensive to run, we look at the CESM1 Large Ensemble
Community Project (LENS)[21]. This project has produced
a publicly available set of climate model simulations per-
formed with the nominal 1-degree latitude/longitude version
of the Community Earth System Model version 1 (CESM1).
From the CESM1 LENS data, we used the following vari-
ables:
• ICEFRAC: sea ice concentration
• TS: atmospheric surface temperature
• SST: ocean surface temperature
• HI: sea ice thickness

Results
Koopman-based models were trained to learn the sea ice dy-
namics in the northern hemisphere. In addition to the NSIDC
sea ice concentration data, the models were also trained on
atmospheric temperature, ocean temperature, and sea ice
thickness observational data. The Koopman-based climate
models show potential for (1) identifing potential tipping-
points, (2) predicting trends on decadal timescales, and (3)
enabling robustness analysis of measurement uncertainty.

Koopman Mode Analysis
In contrast with many other machine learning methodolo-
gies, the Koopman operator framework produces a phys-
ically interpretable model. In particular, the method gives



insight to how the different observables are related to each
other. By training our models on different combinations of
climate variables, we gain insight into which variables are
dependent on which. We have found sea ocean temperature
to be the most correlated climate variable to sea ice concen-
tration dynamics, while the atmospheric temperature and sea
ice thickness dynamics were largely independent.

Applying KMD to the learned models reveals underlying
low-dimensional dynamics in the form of Koopman modes
and eigenvalues. The Koopman modes explain the spatial
extent of the dynamics while their associated eigenvalues ex-
plain the temporal dynamics. Koopman-based models were
trained on NSIDC observational sea ice concentration data.
The learned Koopman eigenfunctions and eigenvalues are
visualized in Figure 4

The mean mode is the mode for which the real and
imaginary components of the associated eigenvalue are both
equal or nearly equal to zero, indicating little to no time
dependence. The annual mode is the mode whose associ-
ated eigenvalue has zero or nearly zero real component and
whose imaginary component is very close to a frequency of
12 months. Figure 5 displays the mean and annual Koop-
man modes from an earlier period (1979-1983) compared to
a more recent period (2016-2020). Comparison of the mean
modes show that the mean sea ice extents have receded in
later periods. The annual modes reveal similar results, with
many of the Arctic marginal seas experiencing greater an-
nual variation in the later periods. These modes suggest the
existence of slow decaying behavior. The Koopman modes
during these two time periods revalidate the results in [10].

Figure 6: Most dominant Koopman mode of sea ice concen-
tration over 1979-2020 in the Northern hemisphere whose
associated eigenvalue has a nonzero real component, indi-
cating exponential decay dynamics.

Figure 5: The mean (top) and annual (bottom) modes of
sea ice concentration over different five-year periods (1979-
1983 and 2016-2020) in the Northern hemisphere.

Potential Tipping-Points
Figure 6 shows one of the most dominant Koopman
modes during 1979-2020 whose associated eigenvalue has
a nonzero real component, representing exponential decay
or growth dynamics. Because we see the sudden appear-
ance of this mode exhibiting exponential decay on a rela-
tively short time scale amidst previously highly stationary
dynamics, we believe it indicates the existence of a climate
tipping-point. This mode is mainly supported in the Barents
and Kara Sea region, where an exponential decay with decay
rate of 11.381 years is detected. This tipping-point has been
confirmed by traditional climate research [22].

Koopman-Based Climate Simulations
The Koopman-based models learn the dynamics based on
observations and can be used to produce future predictions.
The global linearity of the Koopman operator allows the
Koopman-based climate models to extrapolate well when
faced with sparse data. To produce the predictions in Fig-
ure 7, a Koopman-based model was first trained on ob-
servational sea ice concentration, atmospheric temperature,
ocean temperature, and sea ice thickness data over the pe-
riod of 1979-2008. After training, the model is only given
knowledge of forcing to build predictions of sea ice concen-
tration. We compare our Arctic sea ice extent predictions
(blue) to the mean of the CESM1 LENS predictions (or-
ange) and the climatological mean (green). Each calendar



month in the climatological mean is the mean of the val-
ues of that calendar month over the entire training interval.
On decadal timescales, the Koopman-based model seems to
have learned the true dynamics, as can be seen by the quali-
tative similarity between the slowdown in sea ice loss in the
NSIDC data and our predictions after 2008.

Figure 7: Annual September sea ice extent from 1979 to
2020. (Blue) Koopman-based model trained from 1979 to
2008. (Orange) Mean of CESM1 LENS predictions. (Green)
Climatological mean of NSIDC observations.

Climate models such as CESM are driven by forcing
terms such as greenhouse gases and other anthropogenic fac-
tors. The Koopman-based models in Koopman Controlled
Form (KCF) have the potential to enable rapid climate sim-
ulations with different forcing scenarios. These experiments
would enable understanding of how future anthropogenic
activities might affect the climate.

(a) March Sea Ice Extent

(b) September Sea Ice Extent

Figure 8: March (maximum) and September (minimum)
sea ice extents from 1980 to 2020. (Blue) Koopman-based
model trained from 01/1979 to 12/2009 with 2-σ uncertainty
bands. (Black) CESM1 Large Ensemble member 002. (Or-
ange) Climatological mean of NSIDC observations.

Robustness to Observational Uncertainty

Due to the chaotic nature of climate systems, predictions are
typically generated in ensembles with small perturbations
on the data or parameters. The Koopman-based models are
well-suited for this ensemble approach due to their low com-
putational cost. We generated 50 perturbed climate datasets
by adding Gaussian noise to the observational measurements
at the magnitude of measurement uncertainty. Koopman-
based models were trained for each of these datasets, re-
sulting in 50 different models. Figure 8 shows the average
prediction of the ensemble of 50 models as well as the 2-σ
envelope.

The ensemble of 50 models found that the flattening trend
in the annual September sea ice extent was robust to sta-
tistical noise in the observational data. All 50 models also
found exponential modes with 11 year decay rates in the
Barents Sea region, confirming the robustness of the poten-
tial tipping-point.

Conclusions and Future Work

Methods based on Koopman Operator Theory show poten-
tial for modeling and prediction for the field of climate sci-
ence. They are advantageous over state-of-the-art climate
models and other emerging machine learning methods be-
cause they eliminate the need for expert knowledge and can
learn directly from data while being computationally inex-
pensive to train and evaluate. The Koopman-based models
in this paper were trained on observational data and suc-
cessfully extract low-dimensional dynamics in the form of
Koopman modes and eigenvalues. We also find the sudden
appearance of an exponentially decaying Koopman eigen-
value, suggesting the occurrence of a climate tipping-point.

Predictions from the Koopman-based models show po-
tential for rapid climate simulations under different forcing
conditions, but direct comparison of our methods with other
state-of-the-art methods is needed. Preliminary experiments
training Koopman-based models on the error between obser-
vational data and climate simulations have shown potential
for extracting dynamics that exist in the data but are not ac-
counted for in the climate model, and warrants future inves-
tigation. Furthermore, work is needed to test different com-
binations of climate and forcing variables to understand their
influence on the sea ice dynamics. By extending this work to
other climate domains, we may gain further understanding
of the coupling of different climate variables and the effect
of anthropogenic forcing.
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