
Under review as a conference paper at ICLR 2018

NOVEL AND EFFECTIVE PARALLEL MIX-GENERATOR
GENERATIVE ADVERSARIAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a mix-generator generative adversarial networks
(PGAN) model that works in parallel by mixing multiple disjoint generators to
approximate a complex real distribution. In our model, we propose an adjust-
ment component that collects all the generated data points from the generators,
learns the boundary between each pair of generators, and provides error to sepa-
rate the support of each of the generated distributions. To overcome the instability
in a multiplayer game, a shrinkage adjustment component method is introduced to
gradually reduce the boundary between generators during the training procedure.
To address the linearly growing training time problem in a multiple generators
model, we propose a method to train the generators in parallel. This means that
our work can be scaled up to large parallel computation frameworks. We present
an efficient loss function for the discriminator, an effective adjustment compo-
nent, and a suitable generator. We also show how to introduce the decay factor
to stabilize the training procedure. We have performed extensive experiments on
synthetic datasets, MNIST, and CIFAR-10. These experiments reveal that the
error provided by the adjustment component could successfully separate the gen-
erated distributions and each of the generators can stably learn a part of the real
distribution even if only a few modes are contained in the real distribution.

1 INTRODUCTION

Generative Adversarial Networks were proposed by Goodfellow et al. (2014), where two neural net-
works, generator and discriminator, are trained to play a minimax game. The generator is trained
to fool the discriminator while the discriminator is trained to distinguish fake data (generated data)
from real data. When Nash Equilibrium is reached, generated distribution PG will be equal to the
real distribution Preal. Unlike Restricted Boltzmann Machine (RBM, Salakhutdinov et al. (2007))
or Variational Auto-encoder (VAE, Kingma & Welling (2013)), that explicitly approximate data dis-
tribution, the approximation of GAN is implicit. Due to this property, training GAN is challenging.
It has been reported that GAN suffers from the mode collapse problem (Goodfellow (2016),Metz
et al. (2016)). Many methods have been proposed to solve this problem (Salimans et al. (2016),
Srivastava et al. (2017), Grover & Ermon (2017),Arjovsky et al. (2017)). In this paper, we propose
a new model to solve this problem.

Similar to the work of (Rasmussen (2000)), we use a set of generators to replace the single, complex
generator. Each generator only captures a part of the real distribution, while the distance between the
mix-generated distribution and the real distribution should be minimized. An adjustment component
is added to achieve separation between each pair of generators, and a penalty will be passed to
the generator if an overlap is detected. Moreover, we propose a shrinkage adjustment component
method to gradually reduce the effect of the penalty, since the strict boundary will lead to a non-
convergence problem. Practically, forcing each generated distribution to be totally disjoint will
cause potential problems. More specifically, we observe two problems in practice: (1) competition:
multiple generators try to capture one mode, but are hampered by a strict boundary. This happens
when the total number of generators K is greater than the actual number of modes of Preal. (2)
One beats all: One or a few of the generators are strong enough to capture all the modes, while the
other generators are blocked outside and capture nothing. To solve these problems, we propose the
following approach: (1) use reverse KL divergence instead of JS Divergence as the generator loss,
to reduce the generator’s ability to capture all the modes, and (2) introduce a shrinkage adjustment

1

Under review as a conference paper at ICLR 2018

method to gradually reduce the weight of the adjustment component C based on the training time
and the difference between each generator loss. We will discuss the details in part 3. Benefiting
from such design, there is no need to pre-define the number of generators, and stable convergence
can be obtained when the new component shrinks to zero. Finally, our model can allow parallelized
training among generators, with synchronized or asynchronized updated for the discriminator, which
reduces the training time.

To highlight, our main contributions are:

1. In Sections 3.1 and 2, we propose a multi-generator model where each generator captures
different parts of the real data distribution while the mixing distribution captures all the
data.

2. We introduce an adjustment component to separate between generated distributions. The
adjustment can work with any discriminator.

3. In Section 3.3, we propose a shrinkage component method which reduces the
penalty to guarantee convergence. If the penalty shrinks to zero, we will minimize
DKL(

∑K
k αkGk||Preal).

4. We organize the shared memory to allow for parallel training to reduce the training time.
Our algorithm scales well even on large parallel platforms.

5. In Section 4, we use synthetic and real data to illustrate the effectiveness of our design.

2 RELATED WORK

Recently, many researchers have started focusing on improving GAN. Arjovsky & Bottou (2017)
show that the zero sum loss function will lead to a gradient vanishing problem when the dis-
criminator is trained to be optimal. The heuristic loss function contains reverse Kullback
Leibler divergence(KL divergence)(Nowozin et al. (2016)). Note that the reverse KL divergence
(KL(Pmodel||Pdata)) has the property that Pmodel will tend to capture a single mode of Pdata,
while ignoring the other modes.(Theis et al. (2015)). As a consequence, the reverse KL divergence
term contained in the heuristic generator loss function will cause the mode collapse problem of
GAN.

To solve the mode collapse problem, Metz et al. (2016) proposed unrolled GAN, where copies of
the discriminator are made, and back-propagation is done through all of them, while the genera-
tor is updated based on the gradient update of discriminator. Srivastava et al. (2017) use another
reconstructor network to learn the reverse mapping from generated distribution to prior noise. If
the support of the mapped distribution is aggregated to a small portion, then the mode collapse is
detected.

Nowozin et al. (2016) show that the discriminator loss of GAN is a variational lower bound of
f-divergence. The maximization in minimax game is to approximate a tighter lower bound of f-
divergence, while the minimization is to minimize the lower bound. Zhao et al. (2016) understand
GAN as an energy model, where an autoencoder is used as the energy function, or, the discriminator
learns the manifold of real distribution, and a hinge loss is adopted to illustrate the model. Further,
Berthelot et al. (2017) extend the autoencoder discriminator to measure the Wasserstein distance.
Note that in an energy based GAN, mode collapse doesn’t occur if a proper energy function is
shaped and the manifold of the data is well learned.

Arjovsky et al. (2017) use Wasserstein-1 distance or Earth Mover distance instead of f-divergence
(Jensen Shannon Divergence or KullbackLeibler divergence). Wasserstein metric can always pro-
vide a non-zero gradient, and is stable during training. However, the k−Lipschitz condition has to
be ensured. However, the truncated parameter doesn’t work well and the training speed is relatively
slow comparing to f-GAN. Arora et al. (2017) extend the wasserstein GAN to a multi generator
scheme. They prove the equilibrium of mix vs one game and the condition needed to win the game.

Tolstikhin et al. (2017) use the idea of Adaboost (Freund et al. (1996)), where the weight of the mis-
classified data is increased, and the final model is a mixture of all the weak learners trained in previ-
ous steps. Mode collapse can also be resolved since the weight of non-captured data points will be
increased. Nguyen et al. (2017) proposed a dual discriminator model where KL and reverse KL di-

2

Under review as a conference paper at ICLR 2018

(a) structure of PGAN

(b) structure of shared memory

Figure 1: Illustration of proposed PGAN

vergence are controlled by two discriminators. Durugkar et al. (2016) propose a multi-discriminator
model, where weak discriminators are trained using parts of the data, and the gradients from all the
discriminators are passed to the generator.

3 OUR METHOD

In this section, we will show how our model is designed. We train K generators, where the mix
of the generators G =

∑K
k αkGk approaches the real data distribution Preal. The support of each

generated distribution Gk is trained to be disjoint. To ensure that Gk is disjoint (for each 1 ≤ k ≤
K), we propose an adjustment component C to dynamically classify Gk and G−k. A partition error
is provided to each of the generators as an overlapping indicator.

3.1 STRUCTURE OF PGAN

We refer to our parallel model as PGAN. The structure of PGAN is shown in Figure 1. We use a
set of simple generators to replace the original single complex generator. All the generators, the
discriminator and the coprocessor are connected by shared memory. The communication between
them only happens through the shared memory. The shared memory has K slots, where K is the
number of generators. Each slot contains two parts: a sample part where the samples generated
by the generator k are stored, and a validation part where the value of the discriminator and the
adjustment component are stored. Thus the total size of the shared memory is k(batchsize+ 2).

During training, generator k will store its generated sample in the kth slot, and wait for the response
from D and C. If the value in the validation part is updated, generator k will update its parameter
based on the value obtained from D and C.

The discriminator and coprocessor, have two phases in one cycle: training phase and validation
phase. During the validation phase, D or C will get the data points from the sample part of each
slot, and execute the feed forward step. Note that the kth batch error of C and D in the validation
phase is exactly the validation Ck and Dk for generator k. During the training phase, D or C will
get the corresponding data, and execute the backward step. The training and validation phases can
be swapped in one batch, or in one epoch.

Note that the response time of the discriminator cannot be guaranteed when the number of generators
is large. Assume that the forward step takes time tF . In this case the back propagation time will be
a × tF practically (e.g., for NVIDIA Tesla a > 3 depends on the network size.). If K > a, there
will be waiting time for the generator. To further reduce or eliminate the waiting time, duplicated
discriminators are needed, specifically, one copy of the discriminator for every a generators. The
parameter for the discriminator can be either synchronized (periodically copy) or asynchronized
(Hogwild training Recht et al. (2011)). Note that Hogwild training requires a sparse model and input.
However, in our experiment, Hogwild training performs well even when no sparse regularization is
applied.

3

Under review as a conference paper at ICLR 2018

3.2 LOSS FUNCTIONS

The loss function proposed by Goodfellow et al. (2014) with a heuristic generator loss is:

JD = Ex∼Pdata
[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

JG = Ez∼pz(z)[log(D(G(z)))]
(1)

For each generator, the optimal discriminator is D∗ = Pdata

Pdata+Pg
. When convergence is reached, we

obtain Pg = Pdata.

In PGAN, we design a multi-player game by dividing one generator into K generators, and adding
an adjustment component to the original loss function. The loss function for each generator is:

JD(G,D) = Ex∼Pdata
[logD(x)] + Ex∼PG

[log(1−D(x))]

J C(G,C) = Ex∼Pg−k
[logC(x)] + Ex∼Pgk

[log(1− C(x))]

JGk(Gk, C,D) = Ex∼Pgk
[1− log(

1

D
− 1)]− β Ex∼Pgk

[log(1− C(x))]

(2)

Note that the last loss function JGk(Gk, C,D) is not bounded below. We have to truncate JGk if
D > t to avoid the gradient explosion problem, where t is a threshold value.

The goal is to solve the minimax game in a multiple-player game:

max
D
JD,max

C
J C ,min

Gk

JGk (3)

If we take a closer look at the loss functions, we notice that: (1) The discriminator lossJD is nothing
but the loss from the original GAN paper, which minimizes the Jensen-Shannon Divergence (JSD)
between the mixture of generators and Preal. (2) the adjustment component loss J C is actually
another discriminator that treats G−k as real, Gk as fake, and separates each generator Gk from all
the other generators G−k maximizing JSD(Gk||G−k). (3) each generator is trained according to
the gradient provided by both the discriminator D and a weighted adjustment component C.

3.3 SHRINKAGE ADJUSTMENT COMPONENT

For a three players game, if we think of all the generators as one player, the result may not converge
unless one player is out, since the convergence of two players is proved. In PGAN, we employ a
weight factor β in the adjustment component, and gradually decrease the weight β. When β → 0,
the three players game can be reduced back to a two players game, as in the original GAN, where
the Nash Equilibrium could be reached.

At the beginning of the training procedure,C is high enough to dominate the game, which means that
no overlapping is allowed for the support of each generated distribution. With the training process
going, the distanceD(

∑
k αkGk||Preal) will get saturated and will not decrease since the generators

are strictly non-overlapping. We then gradually reduce the adjustment component to allow overlaps.
As a consequence, the generated distributions that are close to each other will gradually merge,
while those generators that are not close to each other will keep the distance due to the property of
the reverse KL divergence.

There are several ways to choose β:

1. Set a constant value during training.
2. Decrease β based on the number of iterations, i.e., β = exp−λt, where λ is a hyper param-

eter related to the total number of iterations.
3. Decrease β based on the difference of the generator loss JG, i.e., β = σ(∆JG)

4. Combine 2 and 3.

The first method is a ’diversity factor’ similar to Hoang et al. (2017), where β is predefined to
control the diversity of the generated distribution. However, constant β may not converge when the
the modes of the real distribution highly overlap, or the number of modes is less than the number of

4

Under review as a conference paper at ICLR 2018

generators. The second method is relatively stable but will cause a slow converge situation when the
learning is faster than expected. The third method uses the strategy that when JG becomes unstable,
β is decreased. The instability of the generator in this case is due to the one-beat-all problem. If the
loss of the one generator is much higher than those of the others, this specific generator is forced
out, leading to an oscillation of the generated distribution. So we prefer the last method, where both
the number of iterations and the difference of the generator loss are considered.

3.4 DESCRIPTION OF PGAN

Algorithm 1 provides details on PGAN. The generator stores the generated sample in the shared
memory. The discriminator and the adjustment component fetch the sample and return the cor-
responding error back to the shared memory. The generator fetches the error and does the back-
propagation. As is discussed in 3.1, more discriminator and adjustment components are required to
reduce the waiting time. In the worst case, if we assign each generator a copy of the discriminator,
and a copy of the adjustment component, the total resources used will be O(K), while the expected
running time when using Hogwild training is O(1/K). For a synchronize update, the running time
will be O(NbatchK) if updated in each iteration. The worst case time can be reduced if a powerful
discriminator is trained since before the synchronized update, the discriminator is strong enough to
guide the generator and the generator can still learn something even if the parameters of the discrim-
inator are not updated. Note that the running time for the adjustment component is negligible since
the model complexity and data size of C are small compared to the discriminator and the dataset.

Algorithm 1 Algorithm for Training PGAN

1: K: number of processors
2: Niter: number of iterations
3:
4: Generator:
5: for k = 0 to K do
6: for n = 0 to Niter do
7: Sample m samples from prior Pg(z);
8: Generate m samples;
9: Save sample in shared memory slot k;

10: Wait for validation;
11: if Dk and Ck are updated then
12: Backprop according to JG;
13: update β based on JD and Rβ ;
14: end if
15: end for
16: end for
17:
18: Discriminator:
19: for n = 0 to Niter do
20: for k = 0 to K do

21: Sample m samples from Pd;
22: Feedforward, obtain real error;
23: Get m samples from slot k;
24: Feedforward, obtain fake error;
25: Save fake error to shared memory;
26: Backprop according to JD
27: end for
28: end for
29:
30: Adjustment Component:
31: for n = 0 to Niter do
32: for k = 0 to K do
33: Get (k − 1)m samples from slot −k
34: Backprop according to J C
35: Get m samples from slot k;
36: Feedforward, obtain error Ck;
37: Save Ck to shared memory;
38: end for
39: end for

3.5 THEORETICAL ANALYSIS

In this section, we will show that the distance we are minimizing is DKL(Pgk ||Pdata) and
−DJSD(Pgk ||Pg−k

). From Goodfellow et al. (2014), the optimal discriminator given current gen-
erator G has a close form D∗G = Pdata(x)

Pdata(x)+Pg(x)
. Since the loss function of C is fairly close to D,

we can obtain the optimal C given that the current G is C∗G =
PG−k

(x)

PG−k
+Pg(x)

. Next, we will analyze
the loss of the generator when we fix D = D∗ and C = C∗.

5

Under review as a conference paper at ICLR 2018

Proposition 1 Given optimal D∗ and C∗, minimizing the loss for generator in equation 2 is equiv-
alent to minimizing:

D(Pgk , Pdata, Pg−k
) = DKL(Pgk ||Pdata)− βDJSD(Pgk ||Pg−k

)

Proof 1 We first show that minimizing the first term is equivalent to minimizing DKL(Pgk ||Pdata).
If we take the partial derivative of the reverse KL divergence:

∂

∂θ
DKL(Pgk(θ)||Pdata) =

∂

∂θ

∫
Pgk(θ) log

Pgk(θ)

Pdata
dx.

We can use Leibniz integral rule to switch integral and derivative, if assume that the function inside
the integral satisfies: 1. continuity, 2. continuous derivative, and 3. limx∼∞ f(x) = 0. We obtain:

∂

∂θ
DKL(Pgk(θ)||Pdata) =

∫
∂Pgk(θ)

∂θ
log

Pgk
Pdata

+ Pgk
∂Pgk(θ)

∂θ
dx.

Substitute D with optimal D∗, JGk(Gk, C,D) can also be rewritten as:

JGk(Gk, C,D
∗) = Ex∼PG

[1 + log(
1−D∗

D∗
)] = Ex∼PG

[1 + log
Pgk(θ)

Pdata
]

=
∂

∂θ

∫
log

Pgk
Pdata

Pgk(θ) + Pgk(θ) dx =

∫
log

Pgk
Pdata

∂Pgk(θ)

∂θ
+ Pgk

∂ logPgk(θ)

∂θ
dx,

which is equivalent to the gradient of the reverse KL divergence. Note that we assume that Pgk

Pdata
is

a constant when optimal D∗ is obtained.

The second term in the generator loss is the same as the zero-sum loss in Goodfellow et al. (2014),
which is equivalent to minimizing the Jensen Shannon Divergence DJSD(Pgk ||Pg−k

). �

We can also show that by reducing β, the generator will only capture the mode that has been cap-
tured.

Proposition 2 When the adjustment component shrinks to zero, i.e. β → 0, the gradient of the
generator will vanish and the algorithm will converge.

Proof 2 According to Proposition1, if β → 0, DJSD(Pgk ||Pg−k
)→ 0 and no gradient is provided.

For the reverse KL divergence, if Pgk → 0, DKL(Pgk ||Pdata) → 0, thus the gradient vanishes
independent of if Pdata is nonzero or not. If Pgk is non-zero while Pdata is zero, the large gradient
will push Pgk to zero. �

From proposition2, we understand that the shrinkage adjustment component method is important
to guarantee the convergence of the algorithm, even if not all the modes of Pdata were captured.
The property of reverse KL divergence is also important to stabilize the model. By contrast, if we
use JSD or KL Divergence, the non-zero Pdata will push up Pgk from zero, which breaks up the
boundary between generators, and the goal of separating Pgk will fail.

4 EXPERIMENTS

In this section, we demonstrate the practical effectiveness of our algorithm through experiments
on three datasets: synthetic datasets, MNIST, and CIFAR-10. In the case of synthetic datasets,
we have employed two different datasets. In the first synthetic dataset, a standard 8 mixture of
Gaussians is used as the target distribution to test the ability of our model to capture the separate
modes. In the second datatset, we increase the number of generators to force a competition situation.
Under competition, some generators will be forced out if the boundary is strict. We have noted
that by introducing a shrinkage component, several generators can merge to one and achieve final
convergence. The set up for all the experiments is: (1) Learning rate 0.0002, (2) Minibatch size 128
for generator, discriminator and adjustment components, (3) Adam optimizer (Kingma & Ba (2014))
with first-order momentum 0.5, (4) SGD optimizer for Hogwild trained discriminator, (4) β is set to
1 at the begininng, with decay β = exp−λt, and (5) Layers as LeakyReLU, weight initialization are
from DCGAN (Radford et al. (2015)). All the codes are implemented by Pytorch.

6

Under review as a conference paper at ICLR 2018

Figure 2: The case of 8 generators: green points refer to the real data distribution and the blue points
form the generated distribution

Figure 3: The case of 10 generators: green points form the real data distribution and the blue points
form the generated distribution

4.1 SYNTHETIC DATASETS

We have generated two synthetic datasets to study the function of the adjustment component and
the shrinkage method. We have constructed the generator, the discriminator and the adjustment
component as three layer fully connected neural networks. The capacity is large enough for the
demonstration.

The first dataset is a mixture of 8 Gaussians without any overlaps, as is shown in Nguyen et al.
(2017) and Metz et al. (2016). First, we train exactly 8 generators with random initialization. In
Figure 2, we show the results for every 5k steps (discriminator steps).

From these results we see that all the generators are spread out at the beginning. The penalty from the
adjustment component is high and the generators proceeding in the same direction will be divided
after certain number of steps. Since the number of modes is exactly the same as the number of
generators, the property of the reverse KL divergence will keep each generator stay stationary even
when β becomes small. Finally all the 8 modes are captured by different generators.

We have then increased the number of generators to 10. This experiment is relevant since the number
of modes may not be known in advance. The result is shown in Figure 3. At the beginning the
situation is the same as in the previous setting, but the strong penalty will hamper the mode captured
by two generators. The two generators are competing for the same mode. This illustrates that
the function of the shrinkage component method is to mediate the competition between generators.
However, β cannot be small at the beginning, since it will hamper the separation function of the
adjustment component.

4.2 REAL WORLD DATA

In this section, we use two popular datasets, MNIST(LeCun & Cortes (2010)) with 60,000 28 by 28
pixels hand written digits, and CIFAR-10(Krizhevsky et al.) with 50,000 32 by 32 pixels real images,
to test the effectiveness of our model. Note that we scale up the MNIST dataset to 32. The network
structure is similar to DCGAN. To evaluate the quality of generated samples, we use the Inception
Score proposed in Salimans et al. (2016), where the score is calculated by the expectation of KL
divergence E[DKLp(y|x)||p(y)], where we calculate the distance between conditional label and real
label. The score is a good indicator on the quality of generated images. More importantly, we the

7

Under review as a conference paper at ICLR 2018

use inception score to check the diversity of the image generated by single, and mixed generators.
For inception score, we use the library from Tensorflow.

When training MNIST and CIFAR-10 datasets, we designed a relatively strong discriminator with
a high learning rate, since the gradient vanish problem is not observed in reverse KL GAN. The
update of the discriminator is synchronized, and Hogwild training is also tested, but the score is a
little bit lower than for the synchronized case.

4.2.1 MNIST DATASET

The MNIST dataset contains 10 classes. We ran our model with different number of generators
ranging from 5 to 15. The result is shown in fig 4. Note that by increasing the number of generators,
the diversity score for each generator decreases, however, the diversity score for mixed generators is
high. This dataset is simple since there are only 10 classes and hence we cannot actually observe an
increasing diversity using the mix generator. The losses for all the generators are low enough and no
generator is forced out. The inception score of the mixed generator is pretty high since the dataset
is simple to capture. However, by increasing the number of generators, the score for each generator
decreased, since the boundary limits the search space for a single generator. The decrease also gets
saturated since we shrink the weight of the adjustment component, and overlaps are accepted.

Figure 4: Left: Random pick from the mix generator for MNIST dataset. Mid: Random pick
from the mix generator for CIFAR-10 dataset. Right:Inception score for mix generators and single
generator for both datasets.

4.2.2 CIFAR-10 DATASET

CIFAR-10 dataset contains 10 labels, but the number of modes is much more than 10. We trained 10
to 20 generators for this dataset. From the results we can conclude that the diversity score increases
with the number of generators, while it gradually gets saturated. From our observation, the threshold
depends on the complexity of the dataset, model capacity, and the adjustment component. The
inception score increases by increasing the number of generators, while it got saturated eventually.
The highest score we get is 7.15, with more than 12 generators. For a single generator in the
mixture, the score is relatively low due to the limitation of diversity. Note that the decrease of a
single generator is smaller than what is in the MNIST dataset, since the search space for CIFAR-10
is much larger and the mix will not get saturated with a small number of generators.

4.3 TRAINING TIME

The training time for the sequential mix generator model for CIFAR-10 dataset is 115.4 min in our
setting. To obtain the same score, the PGAN with 10 generators and Hogwild updated discriminators
takes 51.6 mins, which takes only 44.7 percent of the sequential running time. And for synchronized
updated discriminator, the running time is 61.7 min, which takes 53.5 percentage of the regular time.

8

Under review as a conference paper at ICLR 2018

The running time is still far from optimal (10 percent). For Hogwild training, the convergence rate
is not gauranteed if the sparsity condition is not satisfied. For synchronized updating, the condition
of optimal discriminator cannot be gauranteed, even though a more complex (both in capacity and
learning rate) discriminator is adopted.

5 CONCLUSIONS

In this paper, we propose a mixed generator method to solve the mode collapse problem of GAN,
and our algorithm is parallelizable, and can be scaled to large platforms. To conquer the competition
and one-beat all problems in the mix generator model, we have designed the reverse KL divergence
loss function, and an adjustment component decay to produce a stable, converging, and fast training
method. The results show we can handle the situation when the generators compete for the same
mode even when the number of generators is greater than the number of modes. The shrinkage
method which gradually reduced extra component to zero will eliminate the adjustment player and
reduce to multi-generator vs discriminator game.

More works need to be done in this multi-player game. First, the shrinkage method can also be
improved if we can have a better heuristic for β. Or we can train to learn β, to achieve balance
between competition and convergence. Second, the weight for each generator can also be dynamic.
The generator learns more should have higher weight. Finally, new parallelization algorithm with
less communication cost could be investigate to accelerate the multi-generator model since currently
the run time is far from optimal.

REFERENCES

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573, 2017.

David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative adversar-
ial networks. arXiv preprint arXiv:1703.10717, 2017.

Ishan Durugkar, Ian Gemp, and Sridhar Mahadevan. Generative multi-adversarial networks. arXiv
preprint arXiv:1611.01673, 2016.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In Icml,
volume 96, pp. 148–156, 1996.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Aditya Grover and Stefano Ermon. Boosted generative models. arXiv preprint arXiv:1702.08484,
2017.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Q. Phung. Multi-generator generative adversar-
ial nets. CoRR, abs/1708.02556, 2017. URL http://arxiv.org/abs/1708.02556.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

9

http://arxiv.org/abs/1708.02556

Under review as a conference paper at ICLR 2018

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar10. URL http://www.cs.toronto.
edu/˜kriz/cifar.html.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2016.

Tu Dinh Nguyen, Trung Le, Hung Vu, and Dinh Phung. Dual discriminator generative adversarial
nets. arXiv preprint arXiv:1709.03831, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural sam-
plers using variational divergence minimization. In Advances in Neural Information Processing
Systems, pp. 271–279, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Carl Edward Rasmussen. The infinite gaussian mixture model. In Advances in neural information
processing systems, pp. 554–560, 2000.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information processing systems,
pp. 693–701, 2011.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th international conference on Machine learning,
pp. 791–798. ACM, 2007.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pp. 2234–2242, 2016.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael Gutmann, and Charles Sutton. Vee-
gan: Reducing mode collapse in gans using implicit variational learning. arXiv preprint
arXiv:1705.07761, 2017.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. arXiv preprint arXiv:1701.02386, 2017.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126, 2016.

10

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Related work
	Our Method
	Structure of PGAN
	Loss Functions
	Shrinkage adjustment component
	Description of PGAN
	Theoretical analysis

	Experiments
	Synthetic datasets
	real world data
	MNIST dataset
	CIFAR-10 dataset

	Training Time

	Conclusions

