
Under review as a conference paper at ICLR 2018

AN INFERENCE-BASED POLICY GRADIENT METHOD
FOR LEARNING OPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the pursuit of increasingly intelligent learning systems, abstraction plays a vi-
tal role in enabling sophisticated decisions to be made in complex environments.
The options framework provides formalism for such abstraction over sequences
of decisions. However most models require that options be given a priori, pre-
sumably specified by hand, which is neither efficient, nor scalable. Indeed, it is
preferable to learn options directly from interaction with the environment. Despite
several efforts, this remains a difficult problem: many approaches require access
to a model of the environmental dynamics, and inferred options are often not in-
terpretable, which limits our ability to explain the system behavior for verification
or debugging purposes. In this work we develop a novel policy gradient method
for the automatic learning of policies with options. This algorithm uses inference
methods to simultaneously improve all of the options available to an agent, and
thus can be employed in an off-policy manner, without observing option labels.
Experimental results show that the options learned are interpretable. Further, we
find that the method presented here is more sample efficient than existing methods,
leading to faster and more stable learning of policies with options.

1 INTRODUCTION

Recent developments in reinforcement learning (RL) methods have enabled agents to solve problems
in increasingly complicated domains (Mnih et al., 2016; Mousavi et al., 2018). However, in order
for agents to solve more difficult and realistic environments–potentially involving long sequences of
decisions–more sample efficient techniques are needed. One way to improve on existing agents is to
leverage abstraction. By reasoning at various levels of abstraction, it is possible to infer, learn and
plan much more efficiently. Recent developments have lead to breakthroughs in terms of learning
rich representations for perceptual information (Bengio et al., 2013). In RL domains, however, while
efficient methods exist to plan and learn when abstraction over sequences of actions is provided a
priori, it has proven more difficult to learn this type of temporal abstraction from interaction data.

Many frameworks for formalizing temporal abstraction have been proposed; most recent develop-
ments build on the Options framework (Sutton et al., 1999; Precup, 2000), which offers a flexible
parameterization, potentially amenable to learning. The majority of prior work on learning options
has centered around the idea of discovering subgoals in state space, and constructing a set of options
such that each option represents a policy leading to that subgoal (McGovern & Barto, 2001; Men-
ache et al., 2002; Şimşek & Barto, 2009). These methods can lead to useful abstraction, however,
they often require access to a model of the environment dynamics, which is not always available,
and can be infeasible to learn. Our contributions instead build on the work of Bacon et al. (2017),
and exploits a careful parameterization of the policy of the agent, in order to simultaneously learn
a set of options, while directly optimizing returns. We relax a few key assumptions of this previous
work, including the expectation that only options that were actually executed during training can
be learned, and the focus on executing options in an on-policy manner, with option labels avail-
able. By relaxing these, we can improve sample efficiency and practical applicability, including the
possibility to seed control policies from expert demonstrations.

Contributions: We present an algorithm that solves the problem of learning control abstractions by
viewing the set of options as latent variables that concisely represent the agent’s behaviour. More
precisely, we do not only improve those options that were actually executed in a trajectory. Instead,

1

Under review as a conference paper at ICLR 2018

we allow intra-option learning by simultaneously improving all individual options that could have
been executed, and the policy over options, in an end-to-end manner. We evaluate this algorithm on
continuous MDP benchmark domains and compare it to earlier reinforcement learning methods that
use flat and hierarchical policies.

2 RELATED WORK

Recent attention in the field of option discovery generally falls into one of two categories. One
branch of work focuses on learning options that are able to reach specific subgoals within the en-
vironment. Much work in this category has focused on problems with discrete state and action
spaces, indentifying salient or bottleneck states as subgoals (McGovern & Barto, 2001; Menache
et al., 2002; Şimşek & Barto, 2009; Silver & Ciosek, 2012). Recent work has focused on finding
subgoal states in continuous state spaces using clustering (Niekum & Barto, 2011) or spectral meth-
ods (Machado et al., 2017). Konidaris & Barto (2009) describes an approach where subgoals of
new policies are defined by the initiation conditions of existing options. Specifying options using
subgoals generally requires a given or a-priori learned system model, or specific assumptions about
the environment. Furthermore, the policies to reach each subgoal have to be trained independently,
which can be expensive in terms of data and training time (Bacon et al., 2017).

A second body of work has learned options by directly optimizing over the parameters of function
approximations that are structured in a way to yield hierarchical policies. One possibility is to aug-
ment states or trajectories with the indexes of the chosen options. Option termination, selection,
and inter-option behavior than all depend on both the regular system state and the current option
index. This approach was suggested by Levy & Shimkin (2011) for learning the parameters of a hi-
erarchical model consisting of pre-structured policies. In the option-critic architecture (Bacon et al.,
2017), a similar model is employed, with option-specific value functions to learn more efficiently.
Furthermore, neural networks are used instead of a task-specific given structure. Mankowitz et al.
(2016) use an explicit partitioning of the state space to ensure policy specialization.

An alternative to state augmentation was proposed by Daniel et al. (2016). In that paper, options
were considered latent variables rather than observable variables. That paper employed a policy
structure that allowed maximizing the objective in the presence of these latent variables using an
expectation-maximization approach. However, the optimization of this structure requires option
policies to be linear in state features, which imposes the need to specify good state features a priori.
Further, this approach necessitates the use of information from the entire trajectory before policy
improvement can be done, eliminating the possibility of an on-line approach. Fox et al. (2017) uses
a similar approach in the imitation learning setting with neural network policies instead of a task
specific structure.

There are several other related works in hierarchical reinforcement learning outside of the options
framework. One possibility is to have a higher-level policy learn to set goals for a learning lower-
level policy (Vezhnevets et al., 2017), or to set a sequence of lower-level actions to be followed
(Vezhnevets et al., 2016). Another possibility is to have a higher-level policy specify a prior over
lower-level policies for different tasks, such that the system can acquire useful learning biases for
new tasks (Wingate et al., 2011).

3 TECHNICAL BACKGROUND

We consider an agent interacting with its environment, at several discrete time steps. Generally, the
state of the environment at step t, is provided in the form of a vector, st, with s0 determined by
an initial state distribution. At every step, the agent observes st, and selects a vector-valued action
at, according to a stochastic policy π(at|st), which gives the probability that an agent executes a
particular action from a particular state. The agent then receives a reward rt and the next state st+1

from the environment.

We consider episodic setups where, eventually, the agent reaches a terminal state, sT upon which
the environment is reset, to a state drawn from an initial state distribution. A sequence of states,
actions and rewards generated in this manner is referred to as a trajectory τ .

2

Under review as a conference paper at ICLR 2018

We define the discounted return from step t within a trajectory to be R(τ)
t =

∑T
i=t γ

(i−t)ri. The
objective of the learning agent is to maximize the expected per-trajectory return, given by ρ =

Eτ [R
(τ)
0].

3.1 POLICY GRADIENT METHODS

While several methods exist for learning a policy from interaction with the environment, here, we
focus on policy gradient methods, which have benefited from a recent resurgence in popularity. Pol-
icy gradient methods directly optimize ρ by performing stochastic gradient ascent on the parameters
θ of a family of policies πθ. Policy gradients can be estimated from sample trajectories, or in an
online manner. The full return likelihood ratio gradient estimator (Williams, 1992) takes the form:

∇θρ(θ) = Eτ

[
(Rτ0 − b)

T∑
t=0

∇θ log π(at|st)

]
, (1)

where b is a baseline, used to reduce variance. This is one of the simplest, most general policy
gradient estimators, and can be importance sampled if observed trajectories are not generated from
the agent’s policy. The policy gradient theorem (Sutton et al., 2000) expands on this result in the
on-policy case, giving a gradient estimate of the form:

∇θρ(θ) = Eτ

[
T∑
t=0

(Rτt − b)∇θ log π(at|st)

]
, (2)

which can be shown to yield lower variance gradient estimates.

3.2 OPTIONS

The options framework provides the necessary formalism for abstraction over sequences of decisions
in RL (Sutton et al., 1999; Precup, 2000). The agent is given access to a set of options, indexed by
ω. Each option has its own policy: πω(at|st), an initiation set, representing the states in which
the option is available, and a termination function βω(st), which represents the state-dependent
probability of terminating the option. Additionally, the policy over options, πΩ(ωt|st) is employed
to select from available options once termination of the previous option occurs.

During execution, option are used as follows: in the initial state, an option is sampled from the
policy over options. An action is then taken according to the policy belonging to the currently
active option. After selecting this action and observing the next state, the policy then terminates,
or does not, according to the termination function. If the option does not terminate, the current
option remains active. Otherwise the policy over options can be sampled in the new state in order to
determine the next active option.

The policy over options can be combined with the termination function in order to yield the option-
to-option policy function:

π̃Ω(ωt|ωt−1, st) = [1− βωt−1
(st)]δωtωt−1

+ βωt−1
(st)πΩ(ωt|st),

where δ is the Kronecker delta.

4 INFERRED OPTION POLICY GRADIENT

To learn options using a policy gradient method we parametrize all aspects of the policy: πΩ,θ

denotes the policy over options, parametrized by θ. πω,ϑ then denotes the intra-option policy of
option ω, parametrized by ϑ. Finally βω,ξ is the termination function for ω, parametrized by ξ.

We aim to optimize the performance of the agent with respect to a set of policy parameters. The
loss function is identical to that employed by traditional policy gradient methods: we optimize the
expected return of trajectories in the MDP sampled using the current policy,

ρ(θ,ϑ, ξ) = Eτ [Rτ] =

∫
τ

P (τ)Rτdτ,

3

Under review as a conference paper at ICLR 2018

where Eτ denotes expectation over sampled trajectories.

The expected performance can be maximized by increased the probability of visiting highly re-
warded state-action pairs. To increase this probability, it does not matter which option originally
generated that state-action pair, rather, we will derive an algorithm that updates all options that
could have generated that state-action pair. Determining these options is done in a differentiable
inference step. As a result the policy can be optimized end-to-end, yielding our Inferred Option
Policy Gradient algorithm.

In order to compute the gradient of the loss objective, we decompose P (τ) into the relevant condi-
tional probabilities, and employ the “likelihood ratio” method, so that it is possible to estimate the
gradient from samples:

∇ρ =

∫
τ

P (τ)Rτ

[
T∑
i=0

∇ logP (ai|s[0:i],a[0:i−1])

]
dτ.

Note that this is similar to the REINFORCE policy gradient, though here actions are not independent,
even when conditioned on states, since information can still pass through the unobserved options.

In order to compute the inner gradient, we marginalize over the hidden options at each time step,
leading to:

∇ρ =

∫
τ

P (τ)Rτ

[
T∑
i=0

∇ log

(∑
ωi

P (ωi|s[0:i],a[0:i−1])πωi,ϑ(ai|si)

)]
dτ.

s0

ω0

a0

s1

ω1

a1

. . .

. . .

. . .

Figure 1: Graphical Model for Option Trajectory

Recognizing the hidden Markov model-like structure of the trajectories shown in Fig. 1 reveals that
the P (ωi|s[0:i],a[0:i−1]) term can be expressed in a recursive form, simply as an application of the
forward algorithm:

P (ωi|s[0:i],a[0:i−1]) =
∑
ωi−1

c−1
i P (ωi−1|s[0:i−1],a[0:i−2])πωi−1,ϑ(ai−1|si−1)π̃Ω,θ,ξ(ωi|ωi−1, si)

where ci is a normalization factor, given by:

ci =
∑
ωi−1

P (ωi−1|s[0:i−1],a[0:i−2])πωi−1,ϑ(ai−1|si−1).

and our initial value is P (ω0|s0) = πΩ,θ(ω0|s0). If our policies are differentiable, then this recursive
term is differentiable as well, allowing us to perform gradient descent to maximize our objective,
using the sampled data to compute the full return Monte Carlo gradient estimate:

∇ρ ≈ R0

[
T∑
i=0

∇ log

(∑
ωi

P (ωi|s[0:i],a[0:i−1])πωi,ϑ(ai|si)

)]
,

where τ = (s0,a0, . . . ,aT−1, sT) is a trajectory sampled from the system using the current policy
πθ. The variance of this estimator can be reduced through inclusion of a constant baseline, through
an argument identical to that used for REINFORCE (Williams, 1992).

4

Under review as a conference paper at ICLR 2018

Here, we notice that actions at any given time step are conditionally independent of rewards received
in the past, given the trajectory up that action. As in other policy gradient methods, we can reduce
variance further by removing these terms from our gradient estimator. This is formally expressed
as:

∀j < k Es[0:k],a[0:k]

[
rj∇ logP (ak|s[0:k],a[0:k−1])

]
= 0.

With this realization, we can simplify our estimator to:

∇ρ ≈

 T∑
i=0

 T∑
j=i

(rj)− b(sj)

∇ log

(∑
ωi

P (ωi|s[0:i],a[0:i−1])πωi,ϑ(ai|si)

) , (3)

where b(sj) is a state-dependent baseline. Note that the estimate is unbiased regardless of the base-
line, although good baselines can reduce the variance. In this work, we use a learned parametric
approximation of the value function Vν as baseline. The value function is learned using gradient
descent on the mean squared prediction error of Monte-Carlo returns:

∇ν
T∑
t=0

(Vν(st)−Rt)2
. (4)

Estimating the value function can also be done using other standard methods such as LSTD or
TD(λ).

Below, we describe the algorithm for learning options to optimize returns through a series of inter-
actions with the environment. While Algorithm 1 can only be applied in the episodic RL setup, it is
also possible to employ the technical insight shown here in an online manner. One potential method
for doing so is described in Appendix A.

Algorithm 1: Inferred Option Policy Gradient
Initialize parameters randomly
foreach episode do

ω0 ∼ πΩ(ω|s0) // sample an option from the policy over options at the initial state
for t← 0, . . . , T do

at ∼ πωt
(st) // sample an action according to the current intra-option policy

Get next state st+1 and reward rt from the system
ωt+1 ∼ π̃Ω(ωt+1|ωt, st+1) // sample the next option according to the policy over option

end
Update ν according to (4), using sampled episode
θ, ϑ, and ξ according to (3), using sampled episode

end

5 EXPERIMENTS

In order to evaluate the effectiveness of our algorithm, as well as the qualitative attributes of the op-
tions learned, we examine its performance across several standardized continuous control environ-
ments as implemented in the OpenAI Gym (Brockman et al., 2016) in the MuJoCo physics simulator
(Todorov et al., 2012). In particular, we examine the Hopper-v1 (observation dimension: 11, action
dimension: 3), Walker2d-v1 (observation dimension: 17, action dimension: 6), HalfCheetah-v1 (ob-
servation dimension: 17, action dimension: 6), and Swimmer-v1 (observation dimension: 8, action
dimension: 2) environments. Generally, they all require the agent to learn to operate joint motors in
order to move the agent in a particular direction, with penalties for unnecessary actions. Together,
they are considered to be reasonable benchmarks for state-of-the art continuous RL algorithms.

5.1 COMPARISON OF PERFORMANCE

We compared the performance of our algorithm (IOPG) with results from option-critic (OC) and
asynchronous actor-critic (A3C) methods, as described in Mnih et al. (2016).

In order to ensure an appropriate comparison, IOPG and OC were also implemented using multiple
agents operating in parallel, as is done in A3C. The option-critic algorithm as described in Bacon

5

Under review as a conference paper at ICLR 2018

Figure 2: Training curves for 2 million time steps averaged across 10 random seeds for several
continuous RL domains. The shaded area represents the 95% confidence interval.

et al. (2017) employs greedy option selection according to the learned Q. To ensure a fair compari-
son, we employed the same parametrized actor as the inter-option policy in our option-critic baseline
as was used in IOPG. Since option-critic already learns option-value functions, no SMDP-level value
function approximation is needed.

Our model architecture for all three algorithms closely follows that of Schulman et al. (2017). The
policies and value functions were represented using separate feed-forward neural networks, with no
parameters shared. For each agent, both the value function and the policies used two hidden layers of
64 units with tanh activation functions. The IOPG and OC methods shared these parameters across
all policy and termination networks. The option sub-policies and A3C policies were implemented
as linear layers on top of this, representing the mean of a Gaussian distribution. The variance of the
policy was parametrized by a linear softplus layer. Option termination was given by a linear sigmoid
layer for each option. The policy over options, for OC and IOPG methods, was represented using a
final linear softmax layer, of size equal to the number of options available. The value function for
IOPG and AC methods was represented using a final linear layer of size 1, and for OC, size |Ω|. All
weight matrices were initialized to have normalized rows.

RMSProp (Tieleman & Hinton, 2012) was used to optimize parameters for all agents. We employ
a single shared set of RMSProp parameters across all asynchronous threads. Additionally, entropy
regularization was used during optimization for the AC policies, the option policies and the policies
over options. This was done in order to encourage exploration, and to prevent the policies from
converging to single repeated actions, as policy gradient methods parametrized by neural networks
often suffer from this problem.

The results of these experiments are shown in Fig. 2. We see that IOPG, despite having significantly
more parameters to optimize, and recovering additional structure, is able to learn as quickly as A3C
across all of the domains, and learns significantly faster in the Walker2d environment. This is likely
enabled by the fact that all of the options in IOPG can make use of all of the data gathered. OC, on
the other hand seems to suffer a reduction in learning speed due to the fact that options are not all
learned simultaneously, preventing experience from being shared between them.

6

Under review as a conference paper at ICLR 2018

Figure 3: Typical option activity as a function of state. The axes represent T-SNE embeddings of
higher dimensional states. Each state is coloured according to the option that was active at that
point in the trajectory. We can see that the options learned by Option-Critic (Right) are not visibly
correlated in state-space, while options learned by IOPG (Left) are.

5.2 OPTION STRUCTURE

In order to further understand the nature of the options learned, we performed a visualization of them
over a random subsample of states in the last 8000 frames. We perform T-SNE (Maaten & Hinton,
2008) on these states in order to represent the high-dimensional state space in two dimensions, while
preserving some structure.

Fig. 3 shows the results of this procedure. We can see that different options are active in different
regions of state space. This indicates that the options learned can be interpreted as having some local
structure. Options appear to be spatially coherent, as well as having structure in the policy. The rela-
tion between state and action abstraction has been observed previously in the RL literature (Andre &
Russell, 2002; Provost et al., 2007). It is also likely that options employed are temporally coherent,
since in smooth, continuous domains, it is likely the case that spatially close states are also close
in time, matching the intuitive notion that options represent abstract behaviours, which can extend
over several actions.

Fig. 4 displays additional analyses of the options learned in the Walker2d environment. We found
that in this particular environment, agents with either four or eight options available perform roughly
equally, while having only two options led to sub-optimal performance (Fig. 4a). This effect can
be explained by the fact that three options seem to be sufficient, and if more options are given only
three of them tend to get frequently selected (Fig. 4b). This finding suggests that only three of the
options that IOPG learns are useful here, perhaps due to the relative simplicity of the environment.
In Fig. 4c, we observe further evidence that the options learned by IOPG are temporally extended.
A moving average of the continuation probability (1 − βω(st)) during training indicates that early
on, when the options are not well optimized, termination occurs quite frequently. As the options
improve, termination decreases, until the policy over options is only queried approximately every
ten steps on average.

6 DISCUSSION

In this paper, we have introduced a new algorithm for learning hierarchical policies within the op-
tions framework, called inferred option policy gradients. This algorithm treats options as latent
variables. Gradients are propagated through a differentiable inference step that allows end-to-end
learning of option policies, as well as option selection and termination probabilities.

In our algorithms policies take responsibility for state-actions pairs they could have generated. In
contrast, in learning algorithms for hierarchical policies that use an augmented state space, option
policies are updated using only those state-action pairs the actually generated. As a result, in our
algorithm options do not tend to become ‘responsible’ for unlikely states or actions they generated.
Thus, options are stimulated more strongly to specialize in a part of the state space. We conjecture
that this specialization caused the discussed increase in the interpretability of options.

7

Under review as a conference paper at ICLR 2018

(a) Performance in the Walker2d
environment as a function of avail-
able options. We see that in this en-
vironment, having several options
available to the agent leads to an
improved policy.

(b) In the Walker2d environment,
initially option selection is uniform.
After training only 3 options tend
to be selected, even when more are
available. Selection frequencies are
averaged over 100 sampled states.

(c) As the options improve during
training, the probability of remain-
ing in the active option increases,
plateauing at around 0.85. This
suggests that the options learned
here exhibit temporal extension.

Figure 4: Analysis of the learned options in the Walker2d environment.

Furthermore, in our experiments learning with inferred options was significantly faster than learning
with an option-augmented state space. In fact, learning with inferred options proved equally fast,
or sometimes even faster, than using a comparable non-hierarchical policy gradient method despite
IOPG having many more parameters. We conjecture that option inference encourages intra-option
learning, thus allowing multiple options to improve as the result of a single learning experience,
causing this speed-up.

In future work, we want to quantify the suitability of the learned options for transfer between tasks.
Our experiments so far were in the episodic setting. We want to investigate an on-line, actor-critic
version of learning with inferred options to learn continuously in infinite-horizon problems.

REFERENCES

David Andre and Stuart Russell. State abstraction for programmable reinforcement learning agents.
In AAAI, 2002.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, pp. 1726–
1734, 2017.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference for
determining options in reinforcement learning. Machine Learning, 104(2-3):337–357, 2016.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
Technical Report 1703.08294, ArXiv, 2017.

George Konidaris and Andrew G Barto. Skill discovery in continuous reinforcement learning do-
mains using skill chaining. In Advances in neural information processing systems, pp. 1015–1023,
2009.

Kfir Y Levy and Nahum Shimkin. Unified inter and intra options learning using policy gradient
methods. EWRL, 7188:153–164, 2011.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

Marlos C. Machado, Marc G. Bellemare, and Michael H. Bowling. A Laplacian Framework for
Option Discovery in Reinforcement Learning. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 2295–2304, 2017.

8

Under review as a conference paper at ICLR 2018

Daniel J Mankowitz, Timothy A Mann, and Shie Mannor. Adaptive skills adaptive partitions
(ASAP). In Advances in Neural Information Processing Systems, pp. 1588–1596, 2016.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In International Conference on Machine Learning, volume 8, pp. 361–368,
2001.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut-dynamic discovery of sub-goals in re-
inforcement learning. In European Conference on Machine Learning, volume 14, pp. 295–306.
Springer, 2002.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Deep Reinforcement Learning: An
Overview, pp. 426–440. Springer International Publishing, 2018.

Scott Niekum and Andrew G. Barto. Clustering via Dirichlet process mixture models for portable
skill discovery. In Advances in Neural Information Processing Systems 24, pp. 1818–1826, 2011.

Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis, University of Mas-
sachusetts, Amherst, 2000.

Jefferson Provost, Benjamin Kuipers, and Risto Miikkulainen. Self-organizing distinctive state
abstraction using options. In Proceedings of the 7th International Conference on Epigenetic
Robotics, 2007.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

D Silver and K Ciosek. Compositional planning using optimal option models. In Proceedings of
the 29th International Conference on Machine Learning, ICML 2012, volume 2, pp. 1063–1070,
2012.

Özgür Şimşek and Andrew G Barto. Skill characterization based on betweenness. In Advances in
neural information processing systems, pp. 1497–1504, 2009.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural informa-
tion processing systems, pp. 1057–1063, 2000.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 - rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Alexander Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol
Vinyals, and Koray Kavukcuoglu. Strategic attentive writer for learning macro-actions. In Ad-
vances in Neural Information Processing Systems, pp. 3486–3494, 2016.

Alexander Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver,
and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. Technical
Report 1703.01161, ArXiv, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

9

Under review as a conference paper at ICLR 2018

Ronald J Williams and David Zipser. Experimental analysis of the real-time recurrent learning
algorithm. Connection Science, 1(1):87–111, 1989.

David Wingate, Noah D Goodman, Daniel M Roy, Leslie P Kaelbling, and Joshua B Tenenbaum.
Bayesian policy search with policy priors. In IJCAI Proceedings-International Joint Conference
on Artificial Intelligence, volume 22, pp. 1565, 2011.

A APPENDIX: ONLINE GRADIENT ESTIMATES

In addition to the batch gradient estimator described in Section 4, it is also possible to develop
an online estimator. While we introduce some bias by updating the parameters in the middle of the
trajectory, this increases the number of environments in which our method can be applied. In order to
achieve this, we employ a method similar to real-time recurrent learning (Williams & Zipser, 1989),
leveraging the recursive structure of the gradient estimate in order to make computation tractable.

For convenience, let η(t) denote the vector of option probabilities at time step t. That is to say
η(t)ω = P (ωt|s[0:t],a[0:t−1]). Also, let ψ denote the concatenation of parameter vectors θ,ϑ, and
ξ. Through a simple application of the chain rule, we observe that:

∂P (ωt|s[0:t],a[0:t−1])

∂ψ
=
∂P (ωt|s[0:t],a[0:t−1])

∂η

∂η(t− 1)

∂ψ
+
∂η(t)ω
∂ψ

(5)

Thus, in order to efficiently compute this gradient in an online manner, in addition to our parameter
vectorψ, we maintain an additional set of gradient traces, gωψ , for each option, and update them ac-
cording to equation 5. These values are then substituted for ∂η(t−1)

∂ψ when computing the subsequent
gradient. This procedure adds an additional memory complexity of O(|ψ| × |Ω|), since a gradient
trace over all parameters must be maintained for each option.

An inferred option actor-critic (IOAC) algorithm using this gradient estimator is described below.
Note that this algorithm–in addition to learning online–could exhibit lower variance than the IOPG
method described above. By using a learned estimator for the returns instead of the Monte Carlo
results, updates are more consistent, ideally leading to increased stability, at the cost of some bias.

Algorithm 2: Inferred Option Actor Critic
initialize ψ randomly
for e in episodes do

gωψ ← 0
s← s0

ω ∼ πΩ(s)
for t in timesteps do

a ∼ πω(a|s)
s′, r ∼ step(a, s)
Update ν according to TD
Update gωψ according to (5)
Substitute gωψ into (3) to update θ and ϑ
Draw option termination b ∼ β(s′)ω
if b then

ω ∼ πΩ(s′)
end
s← s′

end
end

10

	Introduction
	Related Work
	Technical Background
	Policy Gradient Methods
	Options

	Inferred Option Policy Gradient
	Experiments
	Comparison of performance
	Option Structure

	Discussion
	Appendix: Online Gradient Estimates

