
Learning to Correct Mistakes: Backjumping in
Long-Horizon Task and Motion Planning

Yoonchang Sung1*, Zizhao Wang1*, Peter Stone1,2

1The University of Texas at Austin 2Sony AI

Abstract: As robots become increasingly capable of manipulation and long-term
autonomy, long-horizon task and motion planning problems are becoming increas-
ingly important. A key challenge in such problems is that early actions in the plan
may make future actions infeasible. When reaching a dead-end in the search,
most existing planners use backtracking, which exhaustively reevaluates motion-
level actions, often resulting in inefficient planning, especially when the search
depth is large. In this paper, we propose to learn backjumping heuristics which
identify the culprit action directly using supervised learning models to guide the
task-level search. Based on evaluations on two different tasks, we find that our
method significantly improves planning efficiency compared to backtracking and
also generalizes to problems with novel numbers of objects.

Keywords: Task and motion planning, heuristic learning, supervised leanring

1 Introduction

Integrated task and motion planning (TAMP [1]) is a framework for making sequential decisions in
robotic tasks. Solving TAMP problems involves a hybrid search over a sequence of discrete actions
(e.g., which object to manipulate) and their continuous motion parameters (e.g., with which pose
to grasp the object). One important practical challenge is that for long-horizon tasks with a large
number of objects, the search space becomes intractable due to a large depth and branching factor.

Figure 1: (Left) An illustration of the packing task, whose goal is to move all red objects into the cabinet.
Putting first several objects near the entrance prevents the robot from putting the remaining objects inside.
(Right) An illustration of the navigation among movable obstacles (NAMO) task whose goal is to move the red
target object to the goal region.

In this work, we address the challenges of long-horizon TAMP where early actions in the plan may
make future actions infeasible. For example, as shown in Fig. 1, if the robot places the first few ob-
jects near the cabinet entrance in a packing task, or on the target retrieval path in a navigation among
movable obstacles (NAMO [2]) task, the problems become infeasible, unless the culprit actions that

*Equal contribution.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



placed objects in obstructive positions are corrected. When planning fails, identifying culprit actions
is desirable as the search can focus on correcting the culprit actions, ignoring irrelevant actions.

Generating explanations for failure has been explored to guide search [3, 4, 5]. In TAMP, geometric
failures guide the task-level planner, often done via backtracking to try a different alternative for
the immediately prior action in the plan [6]. As backtracking exhaustively explores the search tree
(Fig. 2(b)), correcting the culprit action can involve an exponential number of evaluations of all the
intermediate actions. The complexity becomes especially daunting in TAMP because the continuous
motion parameters induce an infinite branching factor for each action.

In the constraint satisfaction literature [7], backjumping has been introduced to alleviate the com-
plexity of backtracking by taking a short cut to an ancestor action. In discrete settings, it may be
possible to jump back to the culprit action directly without precluding any possible solutions. How-
ever, because of the infinite branching factor in TAMP, conclusively identifying the culprit action
is generally not possible. Even estimating the culprit requires solving the original backtracking
problem, which can be very time-consuming (see details in Sec. 4).

We thus propose a learning approach by shifting the computational burden to the training phase
where training data is collected by solving backtracking problems. Our observation is that because
the true culprit action always exists in any failure cases, learning models designed to exploit this
may predict the culprit accurately. Specifically, we explore two frameworks to learn backjumping
heuristics: (1) imitation learning which directly predicts the culprit from all previous actions, and
(2) plan feasibility which indirectly predicts the culprit by checking if the solution can be found
after each action. Our proposed learning process is a domain-independent way of learning domain-
specific heuristics. We summarize our contributions as follows:

• We propose two backjumping heuristic learning methods to improve the efficiency of solving
long-horizon TAMP problems. We also present two algorithms containing learning methods as
a subcomponent, which treats the continuous parameters differently.

• Our empirical results show that our methods improve planning efficiency by 40% for packing
and 99% for NAMO, both against backtracking. Furthermore, by incorporating a graph neural
network (GNN [8]) into the learning model, our methods can generalize to problems with novel
numbers of objects while outperforming backtracking consistently.

2 Preliminaries

We introduce the TAMP notation that will be used to define our problem and the sequence-before-
specify strategy that we improve on.

2.1 G-TAMP notation

Although our method can potentially be applied to a broader class of TAMP problems [1], we focus
on a particular subclass of TAMP called geometric TAMP (G-TAMP [9]) for clarity of presenta-
tion. In G-TAMP, a mobile manipulator is tasked with moving multiple objects to target regions
among movable obstacles. We assume quasi-static dynamics of the world1, deterministic effects of
actions, and fully-observable environments. Even with these assumptions, the proposed problem is
already hard (NP-hard explained in Sec. 7), but relaxing these assumptions may still be possible by
introducing belief-space planning [10, 11], which we leave as future work.

Formally, a G-TAMP problem is defined by a tuple < M,R,O, F, T,G, s0 > where M is a set
of movable objects, R is a set of target regions, O is a set of operators, F is a feasibility checking
function, T is a transition function, G is a goal set, and s0 is an initial state. The goal is to find a
sequence of grounded and refined operators2 starting from s0 to reach a state s ∈ G.

• M, R and s: In G-TAMP, the environment consists of any number of fixed objects such as tables,
NM movable objectsM = {mi}NM

i=1 such as cups, andNR target regionsR = {rj}NR
j=1. We denote

the world state by s which consists of the robot configuration and the pose of each movable object.

1The objects remain in stable states after being manipulated by the robot.
2We say that an operator is grounded if its discrete parameters are specified and refined if its continuous

parameters are specified.

2



• O: Operators in G-TAMP move one object to a region, such as PICKANDPLACE and PUSH. Each
refined operator o (d = (mi, rj), c = (q, g)) ∈ O consists of (1) the discrete parameter d ∈M×R
specifying which object to move and which region to move it to, and (2) the continuous parameters
c composed of a grasp g ∈ SE (3)3 on mi and a placement pose q ∈ SE (3) in rj .

• F and T : The feasibility of an operator can be determined by evaluating constraints (e.g., reachabil-
ity and collision avoidance) using an external motion planner. We denote this feasibility evaluation
as a Boolean-valued function F (s, o)→ {0, 1}. If the operator is feasible, a deterministic transition
function T (s, o) determines the new state s′.

• G: A goal set G is defined as a conjunction of predicates, such as INCABINET (mi, rj = CABINET)
which becomes TRUE if mi is stably located in the cabinet.

Figure 2: (a) Constraint network consisting of variables represented by circles (continuous variables: s and
c, and discrete variables: d) connected by constraints F represented by squares. (b) Example of a search tree
when a dead-end is met at level 4 (i.e., kd). Orange squares represent sampled values (N values at each level).
Orange shaded area denotes a particular assignment to (c0, ..., c3) (i.e., a partial plan). All values of c4 are
inconsistent with this partial plan causing the dead-end. Maximum jump k? in this example is 1 (a culprit
variable is c1 denoted by a blue circle), and thus, K = {1, 2, 3}.

G-TAMP problems can alternatively be seen as hybrid constraint satisfaction problems, as shown in
Fig. 2(a). Circles represent variables whose domains are either continuous (sk and ck) or discrete
(dk), and squares represent constraints (Fk). When the plan length is K, we find values for sets of
variables {dk}K−1k=0 and {ck}K−1k=0 such that all constraints {Fk}K−1k=0 are satisfied and sK ∈ G.

2.2 Sequence-before-specify strategy

Sequence-before-satisfy [4, 12, 13, 14, 15, 16, 17, 1] is one strategy to solve TAMP problems which
this work is based on. The strategy consists of two stages: (1) In the sequencing stage, the strategy
finds plan skeletons [18] reaching the goal set G symbolically only, i.e., (dk)K−1k=0 are computed but
their continuous counterparts (ck)K−1k=0 are left unspecified. (2) In the specifying stage, the strategy
chooses a plan skeleton often based on AI planning heuristics and refines (ck)K−1k=0 satisfying the
constraints and a goal condition. For notational simplicity, in the rest of the paper, we use mk to
represent the object moved by operator ok. We treat objects that are not included in a grounded plan
as fixed objects.

Note that the two stages repeat until either finding a solution or reporting no solution, generating
multiple plan skeletons. Our method (Sec. 4 and Sec. 5) accommodates these multiple plan skeletons
by learning a specific model for each plan skeleton. In this section we focus on the case of a single
plan skeleton for ease of presentation.

Backtracking search is generally used to find values of (ck)K−1k=0 in the specifying stage by construct-
ing a search tree rooted from c0 (Fig. 2(b)). Since the domain of ck is continuous, the strategy uses
sampling (e.g., uniform sampling from the domain of ck [19]) to obtain N refined values to select
from. Index k corresponds to both the level of the tree and the step in the plan skeleton. When the
assigned values of (c0, ..., ck−1) are inconsistent with all sampled values of ck (i.e., violating the

3The special Euclidean group SE(3) is used to express a 3D rigid-body transformation consisting of trans-
lation and rotation.

3



constraint Fk), we say the search hits a dead-end and denote the dead-end level by kd. The search
then backtracks to a parent node ck−1 to assign another value and retries the consistency check with
ck. If successful, a child node ck+1 is evaluated at the next level, otherwise another value of ck−1
is attempted. Backtracking repeats this process exhaustively until it finds values of (ck)K−1k=0 that are
consistent, i.e., the solution of a problem.

3 Problem Description

When the planning horizon is long, the above backtracking-based strategy becomes intractable as the
search space increases exponentially. Our goal in this work is to adopt the idea of backjumping [7]
to effectively reduce the search space and achieve efficient planning in TAMP.

In contrast to backtracking which only backtracks level by level when dead-ends persist, we can
speed up the search by backjumping multiple levels (Fig. 2(b)). A backjump is said to be safe if it
does not preclude any solutions. Specifically, at level kd, safe jump corresponds to an ancestor level
k < kd such that attempting all possible values of its descendants at all levels between k and kd
does not resolve the dead-end. We denote all safe-jump levels by a set K.

The larger the jump, the better, because larger jumps avoid more computation. We denote the largest
safe jump by maximum jump, i.e., k? = minK. Correspondingly, we call ck? a culprit variable
responsible for making all values of ck being inconsistent with a partial plan.

The objective is to find k? to backjump safely and maximally whenever a dead-end is met at level
kd, thus improving the overall efficiency of the sequence-before-specify strategy.

4 Backjump Learning Methods

The constraint network in Fig. 2(a) contains a chain structure with respect to constraints Fk by con-
sidering dk, ck, and sk as one large variable node for each k. Because of this topological structure,
no constraints connect variables that are more than one level apart. Moreover, we can only estimate
k? as we use sampling to handle continuous domains. For these reasons, k? identification using
backjumping is inherently challenging in TAMP.

It is however possible to find an approximation of k? with backtracking since it evaluates all possible
combinations of assignments using all sampled values from the root to level kd. Also, since k?
always exists for any dead-end situations and is unique, we can hope to gather less noisy labeled
data with a sufficient amount of samples. Leveraging these observations, we propose two alternative
supervised learning methods to identify k?, where training labels are gathered by solving tasks from
the same distribution using backtracking.

The robot configuration is used in an external motion planner to check the feasibility of a corre-
sponding refined operator, but it is not used in our learning models. We thus define a new state
notation s̄ consisting of poses of movable objects only.

Figure 3: Architectures of the learning models. In each graph, state s̄k implies that objects (m0, ...,mk−1)
are relocated by the robot while other objects (mk, ...,mK) remain in their original locations.

4



4.1 Imitation learning

When the search hits a dead-end at level kd, we first propose a predictor to directly predict the
maximum jump k? in the domain of {0, . . . , kd − 1}, from the sequence of states (s̄1, . . . , s̄kd)
and the geometric attributes of a movable object mkd−1 (e.g., size). In our model, each state s̄ is
represented by a fully-connected graph whose nodes are the poses of movable objects and each edge
is the relative pose between each pair of objects.

As shown in Figure 3(a), to predict k?, our model (1) extracts the state features from each state in
the sequence using the same GNN, (2) computes the temporal features across the sequence of state
features using a bidirectional recurrent neural network (bRNN [20]) or multi-head attentions [21],
(3) extracts the movable object features from mkd with MLP1 (multilayer perceptron), and (4) with
pairs of temporal features and object features as inputs, applies the same prediction network MLP2
to predict the likelihood of each step being k?. The model is trained to minimize the cross-entropy
loss between the predicted likelihood of being k? and the ground-truth k? label.

The k? labels are collected from the backtracking tree search. At any kd, we record its current state
trajectory as (s̄1, . . . , s̄kd). When the backtracking successfully reaches the level kd for the first
time after the dead-end, we record its state trajectory up to level kd as (s̄′1, . . . , s̄

′
kd). Let s̄i and s̄′i

be the i-th element from the corresponding trajectory sequences. The k? is the first level where two
trajectories diverge, i.e., k? = arg mini

{
i ∈ {0, ..., kd − 1}

∣∣s̄i+1 6= s̄′i+1

}
.

4.2 Plan feasibility

Besides directly estimating k?, we investigate an alternative counterfactual approach that learns a
binary classifier to predict whether a refined partial plan at each level contributes to a dead-end. We
use the predicted labels (i.e., either feasible or infeasible) to identify which level corresponds to k?.

Specifically, with a sequence of states (s1, . . . , skd) that faces a dead-end at level kd, we start with s1
where only c0 is refined (i.e., a value is assigned) but the rest of the variables (ck)k

d

k=1 are not refined
yet.4 Then, the classifier predicts whether finding a consistent assignment of values for (ck)k

d

k=1
is feasible. If infeasible, it implies that the placement of m0 is a culprit action making the rest of
variables (ck)k

d

k=1 inconsistent with c0. By definition, level 0 becomes the maximum jump k?. If
feasible, we continue with s2 where c0 and c1 are refined only and the classifier predicts feasibility
for (ck)k

d

k=2. Likewise, we iteratively apply the classifier to predict feasibility in an ascending order
of k; we stop if infeasibility is predicted and output the corresponding step as k?, or continue to the
next step otherwise.

Let k′ ∈ {1, ..., kd} be the step where (ck)k
′−1

k=0 are refined and feasibility for (ck)k
d

k=k′ is to be
evaluated. As shown in Figure 3(b), to predict whether a level k′ < kd is a safe jump, our model
(1) extracts the state features from s̄k′ using GNN, (2) extracts the object features from (mk)k

d

k=k′

each with MLP1, (3) computes the temporal feature from the state features and object features using
a unidirectional RNN or multi-head attention (the inputs to the attention are also masked in a way
to make the computation unidirectional) and (4) applies the classification network MLP2 to the
temporal feature to predict whether finding consistent values for ckd is feasible.

For model training, note that plan feasibility can be trained on any pair of state sk′ and future
variables (ck′ , . . . , ck) where ck does not have to be a dead-end, thus making it relatively easy to
generate a large amount of training data. For any state sk′ (i.e., assigned values of (ck)k

′−1
k=0 in the

search tree), if its subtree reaches a level k ≥ k′, the plan feasibility for (ck′ , . . . , ck) is 1, or 0
otherwise. The model is trained to minimize the binary cross-entropy loss between the predicted
and ground-truth feasibility for (ck′ , . . . , ck).

5 Backjumping Algorithms

In this section, we present our algorithm that leverages the proposed learning methods as backjump-
ing heuristics to guide the search. The overall algorithm is similar to backtracking except that, at
dead-ends, backtracking is replaced by backjumping with k? predicted by the trained model.

4Note that refining ck determines the pose of a movable object mk.

5



Since we sample a finite number of values for (ck)K−1k=0 from their continuous domains, we need a
mechanism to sample more values if a solution is not found with those currently available values.
We propose two versions of the algorithm: (1) the batch sampling method, and (2) the forgetting
method, differing by how the sampling process is treated. The pseudocodes of both algorithms are
presented in the appendix.

In batch sampling, we first draw a batch of N samples for each variable of (ck)K−1k=0 , and then find
a consistent sequence of values using the backjumping algorithm. If a solution is not found before
the search tree is exhausted, we draw another batch of samples to construct a new search tree. Since
the search tree maintains the same set of values, memoization techniques such as no-goods5 can be
applied to further accelerate the search, which we leave as future work.

The forgetting method on the other hand does not keep previously sampled values, but discards them
and redraws new samples each time the search visits a different level in the search tree. Thus, mem-
oization is unavailable in the forgetting method, although it may potentially explore the continuous
search space effectively.

Both algorithms are run until the time limit is reached. It is an open question which of the two
methods is more theoretically beneficial (e.g., in terms of convergence rate); we instead show the
performance of both methods empirically.

6 Evaluation

This section reports on experiments designed to evaluate the following hypotheses: (1) How effi-
ciently can our backjumping methods find a solution in comparison with backtracking? (2) How
well does our model generalize to different numbers of objects? (3) Which of the backjumping
algorithms between batch sampling and forgetting performs more efficiently? We evaluate these
hypotheses on the packing and NAMO tasks, as described next.

6.1 Evaluation tasks

Our evaluation tasks are implemented in the PyBullet [22] simulator where a PR2 robot is used as
a mobile manipulator (see Fig. 1). We use PDDL [23, 24] to find plan skeletons in the sequencing
stage and bidirectional RRT [25] as an external motion planner [26] in the specifying stage.

In the packing task, the objective is to move all objects located randomly on the right tables into the
cabinet on the left. For a PICKANDPLACE operator where the target region rj is the cabinet, we
define the sampling domain as the 2D base plane of the cabinet to draw placement pose samples p.
As the interior space of the cabinet can be accessed from one side only and is not spacious enough,
objects placed near the entrance may make placing future objects infeasible.

In the NAMO task, there are 10 movable boxes (in blue) located randomly in the vicinity of the
robot’s path and 27 fixed boxes (in brown) in the room and the goal is to move the target box (in
red) to the goal region (in gray). As blue boxes block the path to reach the target box, the robot
must clear them by relocating them in their vicinity. We also define the domain for sampling box
placement poses p from a circular arc on the floor computed with respect to the robot base frame.
When moving back to the goal region, with the target box in hand, the robot is unlikely to find a
feasible motion plan if blue boxes were relocated to blocking positions. Unlike the packing task
where objects move from one fixed object to another fixed object, objects are moved to and from the
same fixed object (i.e., the floor) in NAMO.

6.2 Implementation details

For both backtracking and backjumping, we use N = 30 for the packing task and N = 4 for the
NAMO task. We denote our method and architecture combinations as:
• IL-RNN and IL-Attn: Imitation learning with RNN and with multi-head attention, respectively.
• PF-RNN and PF-Attn: Plan feasibility with RNN and with multi-head attention, respectively.
The architecture and training details can be found in the appendix. For PF, as the trained model
outputs a probability of being either feasible or infeasible, we additionally introduce a threshold ε

5No-good is an assignment to a subset of {ck}K−1
k=0 that cannot be extended to any solutions.

6



to make a classification decision robust. We apply the model to each step and record a predicted
probability of being feasible at step k as pk. We select k? as the first step whose pk < ε. ε is
computed by averaging between the maximum and minimum values of pk, where k is an element
from (0, . . . , kd − 1). Empirically, we find that introducing this adaptive threshold ε predicts k?
more accurately than a fixed threshold, e.g., setting ε = 0.5.

All our reported results are obtained by training with 3 different seeds. We observe in our supervised
learning setting that changing the seed to train the model does not affect the performance much.

In Sec. 6.5, we show that the forgetting algorithm empirically outperforms batch sampling. Thus, we
use the forgetting algorithm to obtain results for planning efficiency and generalization. We include
complete results for batch sampling in the appendix.

6.3 Planning efficiency

We collect data from 500 problems with 10 objects for packing and from 250 problems for NAMO.
New 100 problems and 50 problems are used to test packing and NAMO, respectively.

To measure planning efficiency, we consider the number of nodes visited in the search tree, where
fewer nodes imply fewer feasibility checks, leading to faster planning. As shown in the top rows of
Table 1, in both tasks, our backjumping methods are significantly more efficient than backtracking.
We also show how closely our backjumping k̂? approximates the ground-truth k? in the appendix.

In NAMO, imitation learning outperforms plan feasibility. We conjecture that movable objects in
NAMO do not affect each other (i.e., relocating one box does not affect the feasibility of relocating
another box), making it easier for imitation learning to find k̂? close to k?.

We also show in the appendix that some methods still greatly outperform backtracking with fewer
training data, and that the performances in Table 1 can further be improved with more training data.

Table 1: The number of nodes visited in the search tree. Numbers represent the mean ± 95% confidence
interval computed by solving 100 problems. In the middle rows, numbers in (·) represent the number of objects
tested. In the bottom row, BS represents batch sampling. The number with ∗ represents the best-performing
method. The bolded numbers are those whose performance is not statistically significantly different from the
one with ∗ (i.e., their confidence intervals are overlapping).

Task Backtracking IL RNN IL Attn PF RNN PF Attn

Packing 4414 ± 879 2464 ± 464 2638 ± 602 2205 ± 313 2062 ± 297∗

NAMO (21 ± 10) ×104 543 ± 187 425 ± 153∗ 529 ± 188 2614.7 ± 709.5

Packing (11) 12098 ± 2518 5350 ± 1094∗ 7044 ± 1481 6142 ± 767 7109 ± 809
Packing (12) 34719 ± 6514 15139 ± 3080∗ 16339 ± 3971 22377 ± 3244 31824 ± 3925

Packing (BS) 13541 ± 4205 4464 ± 1160 7073 ± 2040 4556 ± 749 4311 ± 690∗

6.4 Generalization

We examine whether our method can generalize to a novel number of objects. In particular, we
train our model using 10 objects and test with more objects (i.e., 11 and 12 objects). Note that
adding more objects to the packing task is more challenging than removing objects as it leads to
more dead-ends and harder estimation of k?, due to insufficient space in the cabinet.

As shown in the middle rows of Table 1, our methods still significantly outperform backtracking
and the performance ratios of our methods and backtracking remain similar to those in the top rows
where the number of objects is the same for both training and testing, with the only exception of PF
Attn in Packing (11) and (12). We conjecture that the use of GNNs allows our learning models to
handle novel numbers of objects.

6.5 Comparison of backjumping algorithms

As shown in the bottom row of Table 1, evaluated on the same set of 100 problems in packing with
10 objects, batch sampling is about 2 ∼ 3 times slower than forgetting, while still outperforming

7



backtracking. Although forgetting empirically exceeds batch sampling in our evaluation, we point
out in Sec. 5 that enhancing batch sampling is potentially achievable by leveraging ideas from the
constraint satisfaction literature [7].

7 Related Work

In TAMP [27, 10, 28, 4, 16], geometric failures are often used to provide feedback to task-level
planning to guide its search. However, this feedback in literature is mostly local [5] meaning that
the failure is involved with a particular sequence of actions. In this work, we propose a global
feedback that considers the entire plan skeleton by leveraging backjumping.

The minimum constraint removal (MCR) problem [3] is related to our problem as its objective is
to find a parsimonious set of objects to remove in order to reach a goal region. Our problem is a
generalization to MCR in that a goal placement of an object is not defined and that objects are not
removed but relocated. Since MCR is NP-hard, our problem also falls into the NP-hard category.

The most relevant papers to our work are the culprit detection problem [5] and the work [12]; both
papers address shortcomings of backtracking. A method proposed in the culprit detection problem
generates global feedback from failures in answer set programming [29] but it pre-discretizes the
state which may ignore certain motion constraints. The work [12] improves the efficiency of back-
tracking by jointly optimizing parameters such as trajectory, grasp, and placement pose; their work
uses trajectory optimization, which is a competing framework for sampling-based motion planning
our method is based on.

Learning other heuristics to improve planning efficiency has been proposed in the TAMP and motion
planning communities, such as predicting feasibility at the motion level [30, 31, 32] and guiding
sampling [33, 34]. Instead, our approach learns task-level heuristics by analyzing long-horizon
dependencies, which can potentially complement existing heuristics to improve efficiency further.

8 Limitations

Besides future work discussed in the paper, some limitations of the presented work are as follows:
(1) We consider incorporating backjumping with a given single plan skeleton only, not with a set of
possible plan skeletons, which may be critical when objects have substantially different sizes.
(2) We test on relatively simple geometric objects and assume known 3D CAD models. A more re-
alistic geometry of objects, e.g., constructed by point clouds, in our framework, is a future direction.
(3) We evaluate with the same geometry of obstacles (i.e., the same cabinet in packing and the same
arrangement of fixed objects in NAMO). Future work would be to achieve generalization to novel
geometry of obstacles drawn from some distribution.

9 Conclusion

In this paper, we present learning frameworks to learn backjumping heuristics from data to identify
the culprit action aimed at improving the efficiency of solving TAMP problems. Our experimental
results demonstrate our method exceeds backtracking by far in terms of planning efficiency and its
generalization to problems with novel numbers of objects.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (CPS-1739964, IIS-1724157, FAIN-2019844), ONR (N00014-
18-2243), ARO (W911NF-19-2-0333), DARPA, GM, Bosch, and UT Austin’s Good Systems grand
challenge. Peter Stone serves as the Executive Director of Sony AI America and receives financial
compensation for this work. The terms of this arrangement have been reviewed and approved by the
University of Texas at Austin in accordance with its policy on objectivity in research.

8



References
[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.

Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[2] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour. Manipulation planning among mov-
able obstacles. In Proceedings 2007 IEEE international conference on robotics and automa-
tion, pages 3327–3332. IEEE, 2007.

[3] K. Hauser. The minimum constraint removal problem with three robotics applications. The
International Journal of Robotics Research, 33(1):5–17, 2014.

[4] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and
motion planning through an extensible planner-independent interface layer. In 2014 IEEE
international conference on robotics and automation (ICRA), pages 639–646. IEEE, 2014.

[5] F. Lagriffoul and B. Andres. Combining task and motion planning: A culprit detection prob-
lem. The International Journal of Robotics Research, 35(8):890–927, 2016.

[6] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti. Geometric backtracking for combined
task and motion planning in robotic systems. Artificial Intelligence, 247:229–265, 2017.

[7] R. Dechter, D. Cohen, et al. Constraint processing. Morgan Kaufmann, 2003.

[8] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[9] B. Kim, L. Shimanuki, L. P. Kaelbling, and T. Lozano-Pérez. Representation, learning, and
planning algorithms for geometric task and motion planning. The International Journal of
Robotics Research, 41(2):210–231, 2022.

[10] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space. The
International Journal of Robotics Research, 32(9-10):1194–1227, 2013.

[11] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in
belief space for partially observable task and motion problems. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 5678–5684. IEEE, 2020.

[12] D. Hadfield-Menell, C. Lin, R. Chitnis, S. Russell, and P. Abbeel. Sequential quadratic pro-
gramming for task plan optimization. In 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 5040–5047. IEEE, 2016.

[13] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Sampling-based methods for factored task
and motion planning. The International Journal of Robotics Research, 37(13-14):1796–1825,
2018.

[14] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. An incremental constraint-
based framework for task and motion planning. The International Journal of Robotics Re-
search, 37(10):1134–1151, 2018.

[15] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. 2018.

[16] S.-Y. Lo, S. Zhang, and P. Stone. The petlon algorithm to plan efficiently for task-level-optimal
navigation. Journal of Artificial Intelligence Research, 69:471–500, 2020.

[17] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners
and blackbox samplers via optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.

[18] T. Lozano-Pérez and L. P. Kaelbling. A constraint-based method for solving sequential manip-
ulation planning problems. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3684–3691. IEEE, 2014.

9



[19] K. Hauser and J.-C. Latombe. Multi-modal motion planning in non-expansive spaces. The
International Journal of Robotics Research, 29(7):897–915, 2010.

[20] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[22] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. 2016.

[23] M. Fox and D. Long. Pddl2. 1: An extension to pddl for expressing temporal planning domains.
Journal of artificial intelligence research, 20:61–124, 2003.

[24] T. Silver and R. Chitnis. Pddlgym: Gym environments from pddl problems. arXiv preprint
arXiv:2002.06432, 2020.

[25] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages
995–1001. IEEE, 2000.

[26] C. R. Garrett. Pybullet planning. Available at https://pypi.org/project/
pybullet-planning/, 2018.

[27] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Semantic attachments
for domain-independent planning systems. In Nineteenth International Conference on Auto-
mated Planning and Scheduling, 2009.

[28] L. de Silva, A. K. Pandey, and R. Alami. An interface for interleaved symbolic-geometric
planning and backtracking. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 232–239. IEEE, 2013.

[29] V. Lifschitz. Answer set programming. Springer Heidelberg, 2019.

[30] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki. Learning feasibility for task
and motion planning in tabletop environments. IEEE robotics and automation letters, 4(2):
1255–1262, 2019.

[31] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint. Deep visual heuristics: Learning feasibility of
mixed-integer programs for manipulation planning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 9563–9569. IEEE, 2020.

[32] S. Li and N. T. Dantam. Learning proofs of motion planning infeasibility. In Robotics: Science
and Systems, 2021.

[33] R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev, C. Lin, and P. Abbeel.
Guided search for task and motion plans using learned heuristics. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 447–454. IEEE, 2016.

[34] C. Zhang, J. Huh, and D. D. Lee. Learning implicit sampling distributions for motion planning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3654–3661. IEEE, 2018.

10

https://pypi.org/project/pybullet-planning/
https://pypi.org/project/pybullet-planning/

	Introduction
	Preliminaries
	G-TAMP notation
	Sequence-before-specify strategy

	Problem Description
	Backjump Learning Methods
	Imitation learning
	Plan feasibility

	Backjumping Algorithms
	Evaluation
	Evaluation tasks
	Implementation details
	Planning efficiency
	Generalization
	Comparison of backjumping algorithms

	Related Work
	Limitations
	Conclusion

