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ABSTRACT

We analyze the expressiveness and loss surface of practical deep convolutional
neural networks (CNNs) with shared weights. We show that such CNNs produce
linearly independent features (and thus linearly separable) at every “wide” layer
which has more neurons than the number of training samples. This condition
holds e.g. for the VGG network. Furthermore, we provide for such wide CNNs
necessary and sufficient conditions for global minima with zero training error. For
the case where the wide layer is followed by a fully connected layer we show
that almost every critical point of the empirical loss is a global minimum with
zero training error. Our analysis suggests that both depth and width are equally
important in deep learning. While depth brings more representational power and
allows the network to learn high level features, width smoothes the optimization
landscape of the loss function in the sense that a sufficiently wide CNN has a
well-behaved loss surface with almost no bad local minima.

1 SETTING

Let N be the number of training samples, and X = [x1, . . . , xN ]T ∈ RN×d, Y = [y1, . . . , yN ]T ∈
RN×m the input resp. output matrix for the training data, where d is the input dimension and m
the number of classes. Let L be the number of layers of the network, where each layer is either a
convolutional or fully connected layer. The layers are indexed from k = 0, 1, . . . , L which corre-
sponds to input layer, 1st hidden layer, . . ., and output layer. Let nk be the width of layer k and
fk : Rd → Rnk the function that computes for every input its feature vector at layer k. The convolu-
tional layer consists of a set of patches of equal length where every patch is a subset of neurons from
the same layer. Let Pk and lk be the number and size of patches at layer k. For every input x ∈ Rd,
let {f1

k (x), . . . , fPk

k (x)} ∈ Rlk be the set of patches at layer k. For consistency, let fk(x) = x for
k = 0, which denotes the input. Each of the Tk convolutional filters of layer k will be applied to the
same set of patches at layer k − 1. We denote by Wk = [w1

k, . . . , w
Tk

k ] ∈ Rlk−1×Tk the correspond-
ing parameter matrix of the convolutional layer k. Each column of Wk corresponds to one filter.
Furthermore, bk ∈ Rnk is the bias vector and σk : R→ R the activation function for the k-th layer.
All functions are applied componentwise, and [a] denotes the set of integers {1, 2, . . . , a}. In this
paper, CNN architectures consist of standard convolutional layers and fully connected layers. As a
common practice, we assume that the output layer is always fully connected.

Definition 1.1 A layer k in a deep CNN architecture is called

• convolutional layer if its output fk(x) ∈ Rnk is defined for every x ∈ Rd as

fk(x)h = σk

( 〈
wtk, f

p
k−1(x)

〉
+ (bk)h

)
(1)

for every p ∈ [Pk−1], t ∈ [Tk], h := (p− 1)Tk + t.

• fully connected layer if its output fk(x) ∈ Rnk is defined for every x ∈ Rd as

fk(x) = σk

(
WT
k fk−1(x) + bk

)
. (2)
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Specifically, the value of each neuron indexed by h at a convolutional layer k is computed by first
taking the inner product between a filter of layer k and a patch at layer k−1, adding the bias and then
applying the activation function. The width of layer k is thus nk = TkPk−1. For each convolutional
layer, we denote byMk : Rlk−1×Tk → Rnk−1×nk the linear map that returns for every parameter
matrix Wk ∈ Rlk−1×Tk the corresponding full weight matrix Uk = Mk(Wk) ∈ Rnk−1×nk . We
define Uk = Mk(Wk) = Wk if layer k is fully connected. For example, suppose that layer k has

two filters of length 3, that is, Wk = [w1
k, w

2
k] =

[
a d
b e
c f

]
, and nk−1 = 5 and patches given by a 1D-

convolution with stride 1 and no padding then: UTk = Mk(Wk)T =


a b c 0 0
d e f 0 0
0 a b c 0
0 d e f 0
0 0 a b c
0 0 d e f

. Suppose

that there is no non-linearity at the output layer, the feature maps fk : Rd → Rnk can be written as

fk(x) = σk

(
UTk fk−1(x) + bk

)
∀1 ≤ k ≤ L− 1, fL(x) = UTL fL−1(x) + bL.

By stacking the feature vectors of layer k for all the training samples into a matrix, we define
Fk = [fk(x1), . . . , fk(xN )]T ∈ RN×nk and refer to Fk as the output matrix at layer k. We generally
assume in the following that for every convolutional layer k there exists one parameter matrix Wk ∈
Rlk−1×Tk for which Uk = Mk(Wk) ∈ Rnk−1×nk has full rank. One can see that this is satisfied
in practice if every neuron of a convolutional layer belongs to at least one patch and there are no
identical patches. Out of space reasons, we present in the following the list of all assumptions needed
to derive our main results in this paper even though not all of them are necessary in each theorem.

Assumption 1.2 1. The patches of different training samples are non-identical, that is, xpi 6=
xqj for all i 6= j and p, q ∈ [P0].

2. All the activation functions (σ1, . . . , σL−1) are one of the following functions:

• Sigmoid: σ(t) =
(
1 + e−t

)−1

• Softplus: σα(t) = 1
α ln(1 + eαt) for α > 0

3. There exists a hidden layer 1 ≤ k ≤ L − 1 such that the width of layer k is larger than
number of training samples, that is, nk = TkPk−1 ≥ N and the network has pyramidal
structure from layer k + 1 till the output layer, that is, nk+1 ≥ . . . ≥ nL.

The first condition of Assumption 1.2 is very weak and even if it does not hold then there exists an ar-
bitrarily small perturbation of the data such that it holds for the perturbed training set. Moreover, note
that ReLU can be approximated arbitrarily well using softplus: lim

α→∞
1
α ln(1 + eαt) = max(0, t).

2 MAIN RESULTS

Do CNNs Learn Linearly Independent Features? We first show that CNNs with a wide layer
can easily learn linearly independent features even when all the weights are randomly generated
under certain distribution. Note that linear independence implies linear separability.

Theorem 2.1 Let a deep CNN satisfy Assumption 1.2 for some hidden layer 1 ≤ k ≤ L − 1.
Then the set of parameters of the first k layers (Wl, bl)

k
l=1 for which the set of feature vectors

{fk(x1), . . . , fk(xN )} of layer k are not linearly independent has Lebesgue measure zero.

A crucial step of the proof of Theorem 2.1 shows the existence of network parameters such that
Fk has full rank, and then uses properties of analytic activation functions to derive that the set of
parameters where Fk has not full rank has Lebesgue measure zero. The above result can be used
to show that a wide CNN can fit exactly any training set if nk ≥ N . This condition is fulfilled for
the VGG or Inception-v3/4 networks. Theorem 2.1 explains previous empirical observations, e.g.
Czarnecki et al. (2017) have shown empirically that linear separability is often obtained in the first
few hidden layers of neural networks. Furthermore, Theorem 2.1 is in line with recent empirical
observations for CNNs that one has little loss in performance if the weights of the initial layers are
chosen randomly without training (Jarrett et al., 2009; Saxe et al., 2011; Yosinski et al., 2014).

2



Workshop track - ICLR 2018

Loss Surface of CNNs: We study least squares loss, but our results can be extended to all loss
functions where the global minimum is attained for FL = Y . Let P denote the space of all parame-
ters of the network. The final training objective Φ : P → R is

Φ
(

(Wl, bl)
L
l=1

)
=

1

2
‖FL − Y ‖2F , (3)

where FL is the output matrix of the network defined in previous section.

In the following, we examine conditions for the global optimality of critical points of Φ inside a
subset Sk ⊆ P , defined for every 1 ≤ k ≤ L− 1 as

Sk :=
{

(Wl, bl)
L
l=1

∣∣ rank(Fk) = N and Ul has full rank for every l ∈ [k + 2, L]
}
.

Essentially, Sk is the set of parameters where the feature vectors at layer k are linearly independent
and all the weight matrices from layer k + 2 till the output layer have full rank. It is thus important
to note that Sk can cover already almost the whole parameter space under Assumption 1.2.

Lemma 2.2 Let a deep CNN architecture satisfy Assumption 1.2 for some hidden layer 1 ≤ k ≤
L− 1. Then the set P \ Sk has Lebesgue measure zero.

Our next result is motivated by the fact that empirically when training over-parameterized neural net-
works with shared weights and sparsity structure like CNNs, there seem to be no problems with sub-
optimal local minima. In many cases, even when training labels are completely random, local search
algorithms like stochastic gradient descent can converge to a solution with almost zero training error
(Zhang et al., 2017). To achieve a better understanding on this phenomenon, we first characterize in
the following Theorem 2.3 the set of points in parameter space with zero training loss, and then ana-
lyze in Theorem 2.4 the loss surface for a special case of the network. We emphasize that our results
hold for standard deep CNNs with convolutional layers with shared weights and fully connected
layers. In the following, Φ can also be seen as a function of (Ul, bl)

L
l=1 since Uk is a function of the

true optimization variables Wk by definition. One has the relation ∂Φ
∂(Wk)rs

=
∑
i,j

∂Φ
∂(Uk)ij

∂(Uk)ij
∂(Wk)rs

.

Theorem 2.3 (Necessary and Sufficient Condition for Zero Training Error) Let a deep CNN
architecture satisfies Assumption 1.2 for some hidden layer 1 ≤ k ≤ L − 1. Let the training
objective Φ : P → R be defined as in (3). Given any point (Wl, bl)

L
l=1 ∈ Sk. Then it holds that

Φ
(

(Wl, bl)
L
l=1

)
= 0 if and only if

∂Φ
(

(Wl,bl)
L
l=1

)
∂Uk+1

= 0.

Note that Lemma 2.2 shows that the set of points which are not covered by Theorem 2.3 has just
measure zero. The necessary and sufficient condition of Theorem 2.3 is rather intuitive as it requires
the gradient of the training objective to vanish w.r.t. the full weight matrix of layer k + 1 regardless
of the architecture of this layer. It turns out that if layer k + 1 is fully connected, then this condition
is always satisfied at a critical point. Thus every critical point in Sk is a global minimum with
zero training error. This is shown next, where we consider a classification task with m classes. Let
Z ∈ Rm×m be a full rank class encoding matrix, e.g. the identity matrix, such that Yi: = Zj:
whenever the training sample xi belongs to class j for every i ∈ [N ], j ∈ [m].

Theorem 2.4 (Loss Surface of CNNs) Let (X,Y, Z) be a training dataset where Z has full rank.
Let a deep CNN architecture satisfy Assumption 1.2 for some hidden layer 1 ≤ k ≤ L−1, and layer
k + 1 is fully connected. Then the following hold

• Every critical point (Wl, bl)
L
l=1 ∈ Sk is a global minimum with Φ

(
(Wl, bl)

L
l=1

)
= 0

• There exist infinitely many global minima (Wl, bl)
L
l=1 ∈ Sk with Φ

(
(Wl, bl)

L
l=1

)
= 0

An interesting special case of Theorem 2.4 is when the network is fully connected, in which case all
the results of Theorem 2.4 hold without any modifications. This can be seen as a formal proof for
the implicit assumption used in the recent work (Nguyen & Hein, 2017) that there exists a global
minimum with zero training error for the class of fully connected, deep and wide networks.
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