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ABSTRACT

We consider the problem of training an unbiased and accurate model using a bi-
ased dataset with multiple biases. This problem is challenging since the multi-
ple biases cause multiple undesirable shortcuts during training, and even worse,
mitigating one of them may exacerbate another. To address this challenge, we
introduce a novel method connecting the problem to multi-task learning (MTL).
Our method divides training data into several groups according to their effects on
the model bias and defines each task of MTL as solving the target problem for
each group. It in turn trains a single model for all the tasks with a weighted sum
of task-wise losses as the training objective, while optimizing the weights as well
as the model parameters. At the heart of our method lies the weight adjustment
algorithm, which is rooted in a theory of multi-objective optimization and guar-
antees a Pareto-stationary solution. In addition, we also present a new real-image
benchmark with multiple biases, dubbed MultiCelebA, for evaluating debiased
training methods under realistic and challenging scenarios. Our method achieved
the state of the art on three datasets with multiple biases including MultiCelebA,
and demonstrated superior performance on conventional single-bias datasets.

1 INTRODUCTION

Empirical risk minimization (ERM) (Vapnik, 1999) is currently the gold standard in supervised
learning of deep neural networks. However, recent studies (Sagawa et al., 2019; Geirhos et al., 2020)
revealed that ERM is prone to taking undesirable shortcuts stemming from spurious correlations
between the target labels and irrelevant attributes. For example, Sagawa et al. (2019) observed how
a deep neural network trained to classify bird species relies on the background rather than the bird
itself. Such a spurious correlation is often hard to mitigate since the data collection procedure itself
is biased towards the correlation.

To resolve this issue, researchers have investigated debiased training algorithms, i.e., algorithms
training a model while mitigating spurious correlations (Arjovsky et al., 2019; Bahng et al., 2020;
Sagawa et al., 2019; Teney et al., 2021; Tartaglione et al., 2021; Lee et al., 2021; Nam et al., 2020;
Liu et al., 2021; Kim et al., 2022). They focus on improving performance on bias-conflicting samples
(i.e., samples that disagree with the spurious correlations) to achieve a balance of bias-conflicting
and bias-guiding samples (i.e., those agreeing with the spurious correlations) in terms of perfor-
mance. While these algorithms have shown promising results, they have been evaluated in a limited
setting where only a single type of spurious correlation exists in a training dataset.

We advocate that debiased training algorithms should be evaluated under more realistic scenarios
with multiple biases. In such scenarios, some samples may align with one bias but may conflict
with another, which makes mitigating spurious correlations more challenging. If one only considers
the intersection of bias-conflicting samples, i.e., clean samples that disagree with all the spurious
correlations, the resulting group will be extremely small as illustrated in Figure 1 and result in
overfitting consequently. Furthermore, mitigation of one bias often promote another as empirically
observed by Li et al. (2023).

In this work, we address the aforementioned challenges through multi-task learning (MTL). First,
we divide the entire training set into multiple groups where data of the same group have the same
impact on training in terms of the model bias, i.e., guiding to or conflicting with each bias type in
the same way, as illustrated in Figure 1. Then, we formulate each task of MTL as solving the target
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problem for each group. Unlike the conventional MTL setting, this results in tasks that share the
same prediction targets but differ in the distribution of the biased attributes.
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Figure 1: A qualitative example of training data
with two bias types. Each axis represents each
bias type, for which bias-guiding samples make
up the majority and bias-conflicting ones hold
the minority. The intersection of bias-conflicting
samples (i.e., the smallest group) thus becomes
extremely small as the number of bias types in-
creases. To apply MTL, we divide training data
into multiple groups so that data of the same group
are guiding or conflicting with each bias type in
the same way. In this example, the name of each
group indicates if samples of the group has a guid-
ing attribute (G) or a conflicting attribute (C) for
gender and age, in respective order.

For training a single model that deals with all
the tasks, our optimization method mitigates
biases and alleviates between-task conflicts at
the same time via aiming for Pareto optimal-
ity, i.e., a state where no task can be fur-
ther improved without sacrificing others. Our
method, derived from a multi-objective opti-
mization (MOO) algorithm (Désidéri, 2012),
trains a model to reach Pareto-optimal perfor-
mance for the aforementioned tasks. To this
end, it is designed to dynamically adjust task-
wise importance weights so that model parame-
ters converge to a Pareto-stationary point. From
another point of view, our method can be in-
terpreted as an optimization process to find a
flat minimum of the loss landscape (Li & Gong,
2021), which has shown to improve the model’s
generalization capability (Keskar et al., 2017;
Dziugaite & Roy, 2017; Jiang et al., 2020; Li &
Gong, 2021; Cha et al., 2021).

We also introduce a new multi-bias benchmark
along with the new debiased training algorithm.
Our benchmark, dubbed MultiCelebA, is a col-
lection of real facial images from CelebA (Liu
et al., 2015), and incorporates multiple bias
types that are spuriously correlated with a
target class. Compared with existing multi-
bias datasets composed of synthetic images (Li
et al., 2022; 2023), it allows to evaluate debi-
ased training algorithm on more realistic and
challenging scenarios.

We extensively evaluated our method on three
multi-bias benchmarks including MultiCelebA and three single-bias benchmarks, where it outper-
formed all the existing debiased training methods. The main contribution of this paper is four-fold:

• This work is the first to interpret debiased training as a MTL problem. Based on this notion, we
present a novel and effective debiased training algorithm.

• We present a new real-image multi-bias benchmark for evaluating debiased training methods un-
der realistic and challenging scenarios.

• We benchmarked existing methods for debiased training and demonstrated that they struggle when
training data exhibit multiple biases.

• Our method achieved the state of the art on three datasets with multiple biases. In addition, it also
showed superior performance on conventional single-bias datasets.

2 RELATED WORK

Debiased training. A body of research has addressed the bias issue that arises from spurious cor-
relations between target and latent attributes. A group of previous work exploits manual labels for
bias attributes (Arjovsky et al., 2019; Bahng et al., 2020; Dhar et al., 2021; Gong et al., 2020; Li
& Vasconcelos, 2019; Sagawa et al., 2019; Teney et al., 2021; Tartaglione et al., 2021; Zhu et al.,
2021; Zhang et al., 2022; Wang et al., 2018). For instance, Sagawa et al. (2019) presented a robust
optimization method that weights groups of different bias attributes differently, Dhar et al. (2021)
and Gong et al. (2020) employed adversarial training, and Zhang et al. (2022) proposed using con-
trastive learning. Later on, debiased training algorithms that do not require any bias supervision
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have been studied to reduce the annotation cost (Darlow et al., 2020; Kim et al., 2021; Lee et al.,
2021; Nam et al., 2020; Liu et al., 2021; Kim et al., 2022; Hwang et al., 2022). However, whether
directly using the bias labels or not, these methods assume that the bias inherent in data is of a sin-
gle type. This assumption often does not hold in real-world scenarios, where data exhibit multiple
biases, and in practice classifiers can be easily biased to multiple independent biases, as shown in
StylEx (Lang et al., 2021). Only a few recent studies (Li et al., 2022; 2023) addressed multiple
biases with new training algorithms and benchmarks. Li et al. (2022) discovered multiple biases
through iterative assignment of pseudo bias labels, while Li et al. (2023) presented an augmentation
method that emulates the generation process of bias types. However, their methods are dedicated
to handle synthetic images. In contrast, we propose a new algorithm that trains unbiased models
regardless of the number and types of biases, along with a new natural image dataset for evaluating
debiased training methods in the presence of multiple biases.

Multi-task learning. MTL is a research area that aims at developing a single model capable of per-
forming multiple tasks simultaneously. MTL models in general demonstrate superior results to task-
specific models by leveraging representation and inductive bias shared across multiple tasks (Ruder,
2017; Sener & Koltun, 2018; Meyerson & Miikkulainen, 2020; Vandenhende et al., 2021). Some of
previous work tackle MTL via MOO (Miettinen, 1999; Ehrgott, 2005; Désidéri, 2012), which aims
at resolving conflicts between competing objectives in optimization perspectives (Sener & Koltun,
2018; Lin et al., 2019; Wang et al., 2020; Yu et al., 2020; Li & Gong, 2021). Specifically, Li & Gong
(2021) proposed a MOO method for training multilingual models to balance the losses between high
and low-resource languages. Inspired by these methods, we propose the first algorithm that connects
debiasing to MOO. Our work is however different from the conventional MTL approach in terms of
task definition, and we present a novel loss tailored to the debiasing problem.

Fairness with MTL. Fairness is a research topic related to debiased training, as both share the goal
of developing an unbiased model regarding hidden attributes. However, its focus lies in addressing
the model bias issues that arise not from spurious correlations but rather from the limited availability
of samples in specific domains (i.e., protected attributes). Previous work has addressed fairness
concerns through MTL (Oneto et al., 2019) or considered fairness within MTL (Wang et al., 2021).
These studies assume a particular model architecture composed of shared and task-specific modules.
On the other hand, Maheshwari & Perrot (2022) proposed weighting for fairness, which is broadly
considered as MOO. However, these algorithms are not explicitly designed from the view of MOO.
In contrast, our method incorporates a single model of an arbitrary architecture, and addresses a
single debiasing task from an MTL perspective, with a focus on mitigating spurious correlations.

3 PROPOSED METHOD

We propose a novel debiased training algorithm that effectively addresses one or multiple spurious
correlations based on a theory of MOO (Désidéri, 2012), assuming that bias attributes are annotated
for training data. Our algorithm divides training data into several groups according to their effects
on the model bias, defines each task of MTL as solving the target problem for each group, and trains
a single model for all the tasks while optimizing importance weights of the tasks as well as the
model parameter. The rest of this section first introduces the MOO theory that motivates our work
(Section 3.1) and then describes the proposed algorithm in detail (Section 3.2).

3.1 PRELIMINARY: MTL AS MOO

We consider MTL as a problem to optimize a parameter θ with respect to a collection of task-wise
training loss functions L(θ) = [L1(θ), . . . ,LN (θ)]⊤. To solve such a problem, MOO frameworks
aim at finding a solution that achieves Pareto optimality, i.e., a state where no objective can be
improved without sacrificing others.

Definition 1 (Pareto optimality) A parameter θ∗ is Pareto-optimal if there exists no other param-
eter θ such that Ln(θ) ≤ Ln(θ

∗) for n = 1, . . . , N and L(θ) ̸= L(θ∗).

However, finding the Pareto-optimal parameter is intractable for non-convex loss functions like the
training objective of deep neural networks. Instead, one may consider using gradient-based op-
timization to find a parameter satisfying Pareto stationarity (Désidéri, 2012), i.e., a state where a
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convex combination of task-wise gradients equals a zero-vector. Pareto stationarity is a necessary
condition for Pareto optimality if the loss functions in L(θ) are smooth (Désidéri, 2012).

Definition 2 (Pareto stationarity) A parameter θ∗ is Pareto-stationary if there exists a task-scaling
vector α = [α1, . . . , αN ]⊤ satisfying the following condition:

α⊤∇θL(θ
∗) = 0, α ≥ 0, α⊤1 = 1, (1)

where 0 = [0, . . . , 0]⊤ ∈ RN and 1 = [1, . . . , 1]⊤ ∈ RN .

Désidéri (2012) proposed the multi-gradient descent algorithm (MGDA) to search for a Pareto-
stationary parameter. MGDA finds a task-scaling parameter α which combines the task-wise gradi-
ents∇θL to be approximately a zero vector by solving the following optimization problem:

min
α

∥∥α⊤∇θL
∥∥2
2
, α ≥ 0, α⊤1 = 1. (2)

Given α, MGDA performs a gradient-based update on the parameter θ with respect to α⊤L(θ).

3.2 DEBIASED TRAINING BY MOO

Our debiased training algorithm based on MOO aims to balance performance on samples with bias-
guiding and bias-conflicting attributes. The key idea is to formulate each objective of MOO as
optimizing over a group of training samples that have the same impact on training in terms of the
model bias. To this end, we partition the entire training set into multiple groups according to the
existence of bias-guiding or bias-conflicting attributes. The remainder of this section elaborates on
the grouping strategy and the MOO formulation for debiased training.

3.2.1 GROUPING STRATEGY

As illustrated in Figure 1, we divide training data into multiple groups so that all data in the same
group have the same impact on training in terms of the model bias. To be specific, we consider
training a classifier on a dataset D = {(x(m), t(m))}Mm=1, where each sample x(m) is associated
with a target class t(m) and a list of attributes b(m) = [b

(m)
1 , . . . , b

(m)
D ]⊤. We group the samples

using a list of binary group labels g(m) = [g
(m)
1 , . . . , g

(m)
D ] based on whether each attribute b

(m)
d is

the majority attribute in target class t(m), i.e., g(m)
d = 1 if

b
(m)
d = argmax

bd

∣∣∣{m′|t(m
′) = t(m), b

(m′)
d = bd

}∣∣∣,
and g

(m)
d = 0 otherwise. This results in 2D groups where samples in the same group share the same

group labels. This grouping policy differs from prior work (Sagawa et al., 2019; Kirichenko et al.,
2022; Nam et al., 2022; Sagawa et al., 2020; Zhang et al., 2022) that uses the target classes and the
attributes as the group labels: each group in our method contains samples from all the target classes,
while existing ones only keep a group of samples with the same target class and the same attributes.
Hence, our grouping policy enables to conduct the target classification task on each group, and the
discrepancy between the groups in spurious correlations prevents a single model trained on all the
groups from taking undesirable shortcuts.

We remark that our grouping strategy can be interpreted as a MTL problem, where the tasks share
the same target classes but are defined on different groups of samples. Our goal is to train a model
capable of accurately classifying samples from all the groups, i.e., its performance should not be
biased towards a certain group. Similar to MTL, minimizing a linear combination of group-wise
loss functions in a naı̈ve way leads to conflicts between bias-guiding and bias-conflicting groups.

3.2.2 TRAINING ALGORITHM

Based on the grouping strategy, we propose an algorithm to optimize over N = 2D groups while
minimizing the conflict between group-wise loss functions. Let L(θ) = [L1(θ), . . . ,LN (θ)]⊤ de-
note the list of empirical risk functions on N groups and consider minimizing their convex com-
bination α⊤L(θ) where α ≥ 0 and α⊤1 = 1. To address between-group conflicts, we propose
adjusting the group-scaling parameter α such that the training converges to a Pareto-stationary point
with a flat loss landscape.
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Algorithm 1: Debiased training by MOO
while not converged do

Let α = SoftMax(ᾱ).
for u← 1 to U − 1 do

Update θ ← θ − η1α
⊤∇θL(θ).

end for
Let L̂(θ) = α⊤L(θ) + λ

∥∥α⊤∇θL(θ)
∥∥2
2
.

Update θ ← θ − η1α
⊤∇θL(θ).

Update ᾱ← ᾱ− η2∇ᾱL̂(θ).
Update λ← λ+ η2∇λL̂(θ).

end while

To be specific, our goal is to minimize the train-
ing objective α⊤L(θ) while simultaneously ad-
justing the group-scaling parameter α to mini-
mize the objective in Eq. (2). To this end, we
optimize the following loss function with re-
spect to both θ and α simultaneously:

L̂(θ) = α⊤L(θ) + λ
∥∥α⊤(∇L(θ))†

∥∥2
2
, (3)

where α ≥ 0, α⊤1 = 1, (·)† denotes the stop-
gradient operator, and λ is a Lagrangian mul-
tiplier for the Pareto stationarity objective in
Eq. (2). In practice, we re-parameterize group-
scaling parameter using a softmax function, i.e.,
α = SoftMax(ᾱ). This allows optimizing over ᾱ with gradient-based updates without violating
the constraints α ≥ 0 and α⊤1 = 1 in Eq. (2). We update the group-scaling parameter α with gra-
dient descent and the Lagrangian multiplier λ with gradient ascent every U iterations. The learning
process of our method is described in Algorithm 1.

We found that optimizing α to minimize not only the weighted sum of group-wise gradients (i.e.,
MOO) but also the weighted sum of group-wise losses helps improve overall performance. This is
probably because minimizing the weighted sum of group losses enables to balance the group-wise
losses of different scales caused by the large discrepancy in size between the groups. Empirical
analysis on our training algorithm is provided in the Appendix A.2.

We also note that our method can be interpreted as curvature aware training (Li & Gong, 2021),
where the task-scaling parameter α is adjusted to exhibit better generalization for each task. Specif-
ically, Li & Gong (2021) consider adjusting the training objective

∥∥α⊤(∇L(θ))
∥∥2
2

so that gradient-
based optimization of the parameter θ converges to a flat minimum with a small curvature, i.e., a
parameter with a small trace of the Hessian matrix with respect to the training objective. It has been
reported in the literature (Keskar et al., 2017; Dziugaite & Roy, 2017; Jiang et al., 2020) that a model
converging to such a flat minimum in training has better generalization capability.

3.3 DISCUSSION: ON THE USE OF BIAS LABELS

Bias attribute labels would be expensive particularly in the multi-bias setting. However, regarding
that debiasing in this setting has been rarely studied so far and is extremely challenging, we believe
it is premature to tackle the task in an unsupervised fashion at this time. As in the single bias setting
where the society has first developed supervised debiasing methods and then unsupervised coun-
terparts, our algorithm will be a cornerstone of follow-up unsupervised methods in the multi-bias
setting. Moreover, the annotation cost for bias labels can be substantially reduced by incorporating
existing techniques for pseudo labeling of bias attributes (Jung et al., 2021; Nam et al., 2022).

4 MULTICELEBA BENCHMARK
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Figure 2: Training set configuration of Multi-
CelebA in the two biases setting.

We present a new benchmark, dubbed Multi-
CelebA, for evaluating debiased training algo-
rithms under the presence of multiple biases. Un-
like Multi-Color MNIST (Li et al., 2022) and
UrbanCars (Li et al., 2023) built for the same
purpose using synthetic images, MultiCelebA is
composed of natural facial images, making it
more suitable for simulating real-world scenarios.

MultiCelebA is built upon CelebA (Liu et al.,
2015), a large-scale collection of facial images
each with 40 attribute annotations. Among these
attributes, high-cheekbones is chosen as the
target class, while gender, age, and mouth
slightly open are used as bias attributes that

5



Under review as a conference paper at ICLR 2024

Table 1: Performance in GG, GC, CG, CC, UNBIASED, WORST, and INDIST (%) on MultiCelebA
in two biases setting. The first element of each of the four combinations {GG, GC, CG, CC} is
about the bias type gender, while the second is about the bias type age. We mark the best and the
second-best performance in bold and underline, respectively.

Method Bias label GG GC CG CC UNBIASED WORST INDIST
ERM ✗ 98.2±0.7 89.2±2.6 58.2±3.0 19.0±1.8 63.8±1.2 14.7±4.8 97.0±0.2

LfF ✗ 79.8±2.6 71.7±2.2 80.2±1.7 71.5±3.3 75.8±0.5 66.8±1.2 81.9±3.1

JTT ✗ 76.1±5.2 60.8±5.2 65.1±10.7 51.9±1.6 64.7±3.2 50.1±2.0 78.7±6.5

DebiAN ✗ 64.4±30.4 63.6±22.2 49.8±7.6 45.5±13.2 55.8±11.7 25.7±6.0 66.8±34.1

Upsampling ✓ 79.8±1.5 81.0±1.30 76.7±1.1 75.6±1.2 78.3±0.8 71.5±2.0 82.6±0.8

Upweighting ✓ 79.0±4.1 79.2±6.02 80.8±0.0 78.7±3.6 79.4±3.4 73.5±4.2 83.4±5.9

GroupDRO ✓ 81.2±1.0 81.2±1.2 76.7±1.5 74.6±0.4 78.4±0.7 71.6±1.1 83.5±0.7

SUBG ✓ 77.1±1.0 78.4±0.7 77.5±1.7 78.0±1.2 77.7±0.6 69.6±0.7 80.3±1.1

LISA ✓ 82.8±1.3 83.2±0.5 79.8±0.8 77.6±2.6 80.9±0.2 72.8±1.5 84.5±1.7

DFRtr
tr ✓ 91.3±3.5 83.6±4.0 46.7±3.8 28.5±4.6 62.5±0.6 12.3±8.5 85.5±6.2

Ours ✓ 82.4±0.9 85.1±0.4 81.7±0.4 82.6±1.0 82.9±0.2 77.9±0.2 84.3±0.9

are spuriously correlated with high-cheekbones and thus cause undesirable shortcuts during
training. Note that these bias attributes are not randomly chosen but identified by following the em-
pirical analysis of Scimeca et al. (2022), which revealed that these attributes are strongly correlated
with the target class; details of the analysis are presented in Appendix A.3.

Based on MultiCelebA, we present two different benchmark settings: one with two bias attributes
gender and age, and the other with all the three bias attributes. In both of the two settings, to
simulate challenging scenarios where training data are extremely biased, we set the bias-guiding
samples for each bias type to 95.3% so that only 0.22% of training samples are free from spurious
correlations in the two biases setting and 0.07% for the three biases settings. Example images and
the frequency of each attribute in the two biases setting are presented in Figure 2.

5 EXPERIMENTS

5.1 SETUP

Datasets. We adopt three multi-bias benchmarks, MultiCelebA, UrbanCars (Li et al., 2023), and
Multi-Color MNIST (Li et al., 2022), and three single-bias datasets, Waterbirds (Sagawa et al.,
2019), CelebA (Liu et al., 2015), and BFFHQ (Lee et al., 2021), for evaluation.

Evaluation metrics. The quality of debiased training algorithms is measured mainly by UNBIASED,
the average of group average accuracy scores. For the benchmarks with two bias types, we also adopt
average accuracy for each of the four groups categorized by the guiding or conflicting nature of the
biases: {GG, GC, CG, CC}, where G and C indicate whether a group includes bias-guiding or bias-
conflicting samples for each bias type, respectively. We also report WORST, the minimum group
average accuracy, and INDIST, the weighted average of group accuracy scores where the weights
are proportional to group sizes (Sagawa et al., 2019).

Baselines. We compare our algorithm with a large body of existing debiased training algorithms.
Among them, GroupDRO (Sagawa et al., 2019), SUBG (Sagawa et al., 2020), LISA (Yao et al.,
2022), and DFR Kirichenko et al. (2022) as well as simple upsampling and upweighting strategies
demand true bias labels of training data like ours, while LfF (Nam et al., 2020), JTT (Liu et al.,
2021), EIIL (Creager et al., 2021), PGI (Ahmed et al., 2021), and DebiAN (Li et al., 2022) do not.

Implementation details. Following previous work, we conduct experiments using different neural
network architectures for different datasets: a three-layered MLP for Multi-Color MNIST, ResNet18
for MultiCelebA and BFFHQ, and ResNet50 for UrbanCars, Waterbirds, and CelebA. The group-
scaling parameter α is initialized to 1

N 1 where N is the number of groups, and the Lagrangian
multiplier λ is initialized to 0. For mini-batch construction during training, group-balanced sampling
is used to compute each loss for multiple tasks. We report the average and standard deviation of
each metric calculated from three runs with different random seeds. More implementation details
are provided in Appendix A.4.
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Table 2: Performance in UNBIASED, WORST,
and INDIST (%) on MultiCelebA in three biases
setting. We mark the best and the second-best
performance in bold and underline, respectively.

Method UNBIASED WORST INDIST
ERM 64.1±0.6 12.0±1.2 96.7±0.2
LfF 71.7±0.6 47.7±5.5 81.2±2.9
Upsampling 72.2±0.7 60.2±3.2 81.6±0.1
Upweighting 78.2±1.3 65.8±3.0 82.7±1.6
GroupDRO 74.8±1.8 60.4±2.8 86.1±2.0
LISA 75.6±0.4 61.6±2.2 85.0±0.4
Ours 78.9±0.3 65.2±2.2 84.2±0.8

Table 3: Performance in INDIST and CC (%) on
UrbanCars. We mark the best and the second-
best in bold and underline, respectively.

Method Bias label INDIST CC GAP
ERM ✗ 97.6 28.4 -69.2
Upsampling ✓ 92.8 76.0 -16.8
Upweighting ✓ 93.4 80.0 -13.4
GroupDRO ✓ 91.6 75.2 -16.4
SUBG ✓ 71.1 64.8 -6.3
LISA ✓ 94.6 80.8 -13.8
DFRtr

tr ✓ 89.7 44.5 -45.2
Ours ✓ 91.8 87.6 -4.2

Table 4: Performance in GG, GC, CG, CC, and UNBIASED (%) on Multi-Color MNIST. The first
element of each of the four combinations {GG, GC, CG, CC} is about the bias type left-color,
while the second is about the bias type right-color. We mark the best and the second-best
performance in bold and underline, respectively.

Method Bias label GG GC CG CC UNBIASED
ERM ✗ 100.0±0.0 96.5±1.2 79.5±2.5 20.8±1.1 74.2±1.1

LfF ✗ 99.6±0.5 4.7±0.5 98.6±0.4 5.1±0.4 52.0±0.1

EIIL ✗ 100.0±0.0 97.2±1.5 70.8±4.9 10.9±0.8 69.7±1.0

PGI ✗ 98.6±2.3 82.6±19.6 26.6±5.5 9.5±3.2 54.3±4.0

DebiAN ✗ 100.0±0.0 95.6±0.8 76.5±0.7 16.0±1.8 72.0±0.8

Upsampling ✓ 99.4±0.6 89.8±1.4 81.3±2.6 42.0±1.7 78.1±1.4

Upweighting ✓ 100.0±0.0 90.0±2.5 83.4±2.1 37.1±2.8 77.6±1.0

GroupDRO ✓ 98.0±0.0 87.2±4.3 77.3±7.5 52.3±2.6 78.7±2.7

Ours ✓ 99.7±0.6 90.4±3.4 81.8±4.0 48.1±0.3 80.0±2.0

5.2 QUANTITATIVE RESULTS

MultiCelebA in two biases setting. In Table 1, we present the results of our experiments evaluating
the performance of various baselines and existing debiased training methods on MultiCelebA. One
can observe how our method outperforms the baselines by a significant margin in UNBIASED, CG,
CC, and WORST metrics. Our method even achieves a second-best accuracy in the GC metric and
a moderate accuracy in the GG metric. This highlights how our method successfully prevents per-
formance degradation by simultaneously removing multiple spurious correlations. Intriguingly, we
observe that algorithms like JTT, DebiAN, and DFR exhibit UNBIASED metric similar or even lower
than the vanilla ERM algorithm. Our hypothesis is that this performance degradation stems from
conflicts between removal of different spurious correlations. To be specific, JTT (Liu et al., 2021) ex-
hibits varying accuracy across the GG, GC, CG, and CC groups, indicating that the model is biased
towards both gender and age biases. DebiAN (Li et al., 2022) shows high accuracy in the GG
and GC groups, but low accuracy in the CG and CC groups, indicating that the algorithm partially
mitigates age bias but still suffers from gender bias. We also observe that DFR (Kirichenko et al.,
2022) achieves lower CC and CG metrics than ERM, suggesting that an ERM-based feature rep-
resentation alone is insufficient in multi-bias setting. The remaining algorithms, e.g., Upsampling,
GroupDRO (Sagawa et al., 2019), and LISA (Yao et al., 2022) show overall decent performance,
but the GG and GC metrics are slightly higher than that in CG and CC groups, indicating that the
model is still biased towards the gender attribute. Surprisingly, the upweighting baseline achieved
the second-best performance in CG, CC, and WORST on MultiCelebA, surpassing all the existing
debiased training methods.

MultiCelebA in three biases setting. Results of the experiment with three bias types are reported
in Table 2, where our method substantially outperformed existing methods and baselines in UNBI-
ASED. This demonstrates the scalability of our method to more than two bias types. ERM exhibits
significantly lower worst accuracy in the three biases setting compared to the two biases setting.
This arises as the number of bias types increases, resulting in a substantially reduced size of small-
est group, demonstrating a more challenging setting. Upweighting achieved the highest WORST
accuracy, but it exhibited a substantial decline in INDIST performance. In constrast, we achieved
best UNBIASED accuracy with compatible WROST and high InDist performance, indicating per-
forms well and unbiased for all groups.
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Table 5: Comparisons among different strategies for adjusting the group-scaling parameter α on
MultiCelebA in two biases setting. (a) Fixing α by 1

N 1. (b) Minimizing α⊤L(θ). (c) MGDA. (d)
GradNorm. (e) MoCo, the latest MOO method. (f) Ours minimizing L̂(θ).

GG GC CG CC UNBIASED WORST INDIST
(a) No optimization 79.6±2.9 80.0±2.2 79.0±1.9 78.4±1.3 79.2±1.4 70.8±2.7 78.5±5.7
(b) Minimizing group losses 76.4±2.2 77.8±0.4 77.1±2.2 78.0±1.7 77.3±0.6 67.6±0.3 81.3±3.6
(c) MGDA 81.6±3.5 85.1±2.1 80.1±1.3 82.3±3.2 82.3±0.4 73.9±0.2 82.7±3.7
(d) GradNorm 85.9±5.8 86.9±2.4 78.1±3.5 76.6±6.5 81.9±0.6 70.9±4.9 86.5±5.4
(e) MoCo 81.7±1.3 81.8±2.6 77.2±0.9 74.9±1.2 78.9±1.5 72.1±2.7 83.8±1.6
(f) Ours 82.4±0.9 85.1±0.4 81.7±0.4 82.6±1.0 82.9±0.2 77.9±0.2 84.3±0.9

Training iteration Training iteration

Figure 3: Change of the group-scaling pa-
rameter α over time on MultiCelebA in two
biases setting. In the case of GroupDRO,
(H) and (L) denote High-cheekbones and
Low-cheekbones, respectively.

(a) Group by ! (b) Group by !, # (c) Group by $

Figure 4: Group-wise test accuracy of three dif-
ferent grouping strategies. Lines indicate UNBI-
ASED performance, and shaded regions show the
lowest (i.e., WORST) and the highest accuracy
among the group-wise scores.

UrbanCars. In Table 3, we present the results of debiased training algorithms that exploit bias
labels and share the identical network structure. Our method achieved significantly superior CC
accuracy when compared to method using bias labels, demonstrating a substantial difference.

Multi-Color MNIST. In Table 4, we report the evaluation results for the Multi-Color MNIST
dataset. Note that we re-use the performance of LfF (Nam et al., 2020), EIIL (Creager et al., 2021),
PGI (Ahmed et al., 2021), and DebiAN (Li et al., 2022) reported by Li et al. (2022). Overall,
our method demonstrates the best performance along with GroupDRO. In particular, our algorithm
exhibits the highest UNBIASED accuracy and the second-best CC accuracy.

Single-bias datasets. Surprisingly, our method achieves the best WORST accuracy on Waterbirds
and CelebA, and the best UNBIASED on BFFHQ, indicating that our method is effective not only
for multi-bias settings but also for single-bias settings. We provide the results in Appendix A.6.

5.3 IN-DEPTH ANALYSIS

Comparisons among different strategies for adjusting α. We first verify the impact of our strat-
egy for adjusting the group-scaling parameter α. In Table 5, we compare our training strategy with
five alternatives: (a) Using a fixed uniform group-scaling parameter α = 1

N 1 (i.e., no optimization),
(b) minimizing group losses α⊤L(θ), (c) MGDA that minimizes

∥∥α⊤(∇L(θ))†
∥∥2
2
, (d) GradNorm

(Chen et al., 2018), (e) MoCo, the latest technique for MOO method (Fernando et al., 2023), and (f)
our method that minimizes L̂ in Eq. (3). Intriguingly, (b) leads to worse performance compared to
(a) that uses a fixed value for α. We found that utilizing a learnable group-scaling parameter based
solely on the weighted sum of group-wise losses resulted in worse performance in all metrics except
INDIST when compared with training without it. The results in (c), (d), and (e) demonstrate that
blindly applying an existing MOO method as-is with our grouping strategy falls short of the desired
level of unbiased performance during training on a biased dataset. This highlights the superiority of
our method in scenarios involving multiple spurious correlations.

Change of the group-scaling parameter α over time. We compare the trend of group-scaling
parameter α in our method with that of GroupDRO (Sagawa et al., 2019) on MultiCelebA in two
biases setting, as illustrated in Figure 3. Our method shows an increasing trend for the weight of the
CC group, while those of the other groups decrease during training. This indicates that the model
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Table 6: Ablation study on the grouping strategy on MultiCelebA in two biases setting: Grouping
by bias attribute b, grouping by both bias attribute and target class (b, t), and our strategy using the
list of binary group labels g. SUBG and GroupDRO with our grouping strategy are indicated by †.

Method group by GG GC CG CC UNBIASED WORST INDIST
ERM - 98.2±0.7 89.2±2.6 58.2±3.0 19.0±1.8 63.8±1.2 14.7±4.8 97.0±0.2

SUBG b, t 77.1±1.0 78.4±0.7 77.5±1.7 78.0±1.2 77.7±0.6 69.6±0.7 80.3±1.1

SUBG† g 78.5±4.3 75.9±3.3 71.9±2.2 67.0±2.3 73.3±1.7 63.1±6.0 80.4±2.7

GroupDRO b, t 81.2±1.0 81.2±1.2 76.7±1.5 74.6±0.4 78.4±0.7 71.6±1.1 83.5±0.7

GroupDRO† g 83.1±1.9 79.5±2.4 80.7±1.2 71.8±1.1 78.8±1.4 70.3±2.0 85.8±1.5

Ours b 79.5±4.6 79.8±3.5 78.1±2.1 77.0±1.6 78.6±2.0 69.8±3.2 79.2±0.7
Ours b, t 79.4±2.9 80.0±2.2 79.0±1.9 78.5±1.3 79.2±1.4 71.0±2.7 78.5±5.5
Ours g 82.4±0.9 85.1±0.4 81.7±0.4 82.6±1.0 82.9±0.2 77.9±0.2 84.3±0.9

initially learns a shared representation that incorporates information from all the groups, but later
focuses more on the minority group. On the other hand, GroupDRO exhibits a decreasing weight
trend for the minority groups (CC (L) and CC (H) in Figure 3). This trend occurs because the
minority groups have lower training losses in the early stages of training, leading to lower weights
in GroupDRO. As a consequence, it tends to ignore minority groups and exacerbate the bias issue,
resulting in inferior performance compared to the upweigthing baseline as shown in Table 1.

Ablation study on the grouping strategy. To verify the contribution of our grouping strategy,
we compare ours with two alternatives: grouping samples assigned the same bias attribute b, and
grouping those with the same pair of bias attribute b and target class t. Figure 4 demonstrates
performance variations by different grouping policies. Figure 4(a) shows that the test accuracy
gap between groups enlarges as training progresses when using the bias attribute grouping. We
conjecture that this problem arises from class imbalance within the groups categorized solely by
bias attributes. Specifically, the number of samples belonging to a target class that is spuriously
correlated with the bias attribute becomes dominant, leading to an imbalanced representation of
target classes within the group. In Figure 4(b), we applied the commonly used strategy: grouping
by both target classes and bias attributes. Compared with the conventional grouping, our method
demonstrates a smaller performance gap between groups and higher worst group accuracy, as shown
in Figure 4(c). Finally, we also report the performance metrics in Table 6, which demonstrates that
our grouping strategy outperforms the others in four metrics.

Applying our grouping strategy to GroupDRO and SUBG. We compare our method with Group-
DRO and SUBG using the same grouping strategy in Table 6. Results in the table suggest that apply-
ing our grouping strategy alone to existing debiased training methods failed to achieve performance
comparable to ours. This highlights the contribution of both our debiased training algorithm and
grouping strategy to performance improvement.

Table 7: Impact of the update frequency U
of the group-scaling parameter α on Multi-
CelebA in two biases setting.
U GG GC CG CC UNBIASED
1 84.2±0.5 86.0±0.5 80.8±0.5 80.8±0.5 82.9±0.3
5 83.3±0.4 85.8±0.7 81.2±0.4 81.7±0.1 83.0±0.1
10 82.9±0.2 82.4±0.6 85.1±0.4 81.7±0.3 82.6±0.9
20 82.9±0.3 81.9±0.5 84.9±0.5 81.8±0.5 83.0±0.9
30 79.3±1.3 84.0±0.2 82.6±0.3 85.0±0.8 82.7±0.2

Impact of the update frequency U . We conducted
experiments to examine how hyperparameter U af-
fects the performance of our method. Table 7 re-
ports the performance in GG, GC, CG, CC and UN-
BIASED metrics on MultiCelebA using five differ-
ent values of U . To disregard the influence of the
learning rate η2, we adjusted the learning rate η2 in-
versely proportional to the increase in the value of
U . We found that the UNBIASED remained consis-
tent across all U values we examine, which suggests that our algorithm is not sensitive to U .

6 CONCLUSION

We have presented a novel debiased training algorithm that addresses the challenges posed by multi-
ple biases in training data, inspired by multi-task learning (MTL). In addition, we have introduced a
new real-image multi-bias dataset, dubbed MultCelebA. Our method surpassed existing algorithms
for debaised training in both multi-bias and single-bias settings on six benchmarks in total. We
believe that our work opens a new research direction that connects debiasing and MTL, and will
facilitate future research on debiasing under more realistic and challenging scenarios.
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Figure A1: Overview of our method. 1. Our grouping strategy: For each sample, its shape means
its class while its color and pattern indicate its attributes for two different bias types, respectively.
For each class and each bias type, we examine which bias attribute is spuriously correlated with
the class and induces the model bias in consequence. Samples that guide to or conflict with each
bias type in the same way are grouped together. 2. Debiased training through the lens of MTL:
The target classification on each group is considered as each task of MTL. We aim to train a model
towards a consensus on decision boundary for all the tasks and rely solely on the target-relevant
features.
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A.1 OVERVIEW OF OUR METHOD

We introduce our method step by step, which is illustrated in Figure A1. Our method consists of
two parts, grouping and debiased training.

Grouping. We divide training data into multiple groups so that all data in the same group have the
same impact on training in terms of the model bias. First, we define bias-guiding and bias-conflicting
attribute of each target class in each bias types. Next, we define groups for each combination of bias-
guiding and bias-conflicting labels. For example, bias-guiding for bias type 1 and bias-guiding for
bias type 2 is group 1 (GG group), bias-guiding for bias type 1 and bias-conflicting for bias type
2 is group 2 (GC group), bias-conflicting for bias type 1 and bias-guiding for bias type 2 is group
3 (CG group), and bias-conflicting for bias type 1 and bias-conflicting for bias type 2 is group 3
(CC group). Finally, we divide train data into these defined groups. Our grouping strategy enables
the target classification task on each group, and the discrepancy between the groups in spurious
correlations prevents a single model trained on all the groups from taking undesirable shortcuts.

Debiased training. Train set grouping enables us to conduct debiased training using a MTL ap-
proach. Unlike conventional MTL, our network does not require task-specific parameters; all pa-
rameters are shared. Each sample is forwarded to the model, and we calculate our objective based
on its group label. Throughout training, the model strikes balance between bias-guiding and bias-
conflicting groups, ultimately achieving an unbiased decision boundary. For instance, in Figure A1,
the purple region illustrates decision boundary candidates for each group, with each decision bound-
ary drawn independently of the other groups. With the exception of the group containing all bias-
conflicting labels, these decision boundary candidates include biased decisions that work for specific
groups but not for others. Our method’s objective is to train a model with a mutually agreed-upon
decision boundary among all tasks, ensuring it remains unbiased in the presence of all biases. This
unbaised decision boundary is depicted as the solid purple line in Figure A1.
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Figure A2: Group losses of (a) model with ERM (b) model with the averaged group losses.

A.2 EMPIRICAL ANALYSIS OF THE OBJECTIVE FOR OPTIMIZING α

When training a model by ERM, the train loss for the small group is larger than that for the large
group, and a similar trend is observed in the test loss, as shown in Figure A2(a). Thus, increasing
the weight of groups with a larger train loss can be beneficial in giving more weight to the minority
group.

However, when we compute the objective by averaging group-wise losses, the gap between train
loss and test loss of each group varies depending on group size, as shown in Figure A2(b). This
phenomenon arises because smaller groups are more susceptible to memorization effects.

To mitigate the gap between train loss and test loss resulting from memorization effect, Sagawa
et al. (2019) has proposed the use of strong regularization on model parameters and an increase
in the weight of group with large train loss. This approach of increasing the weight of groups or
samples with large train loss has evolved into a standard practice within debiased training methods.

However, in scenarios involving multiple biases, the size of minority group is significantly smaller
compared to single bias settings. As a result, much stronger regularization may be required to
combat memorization problems. Nevertheless, such strong regularization imposes constraints on
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computational capacity and may not fully prevent memorization problems. Increasing the weight
according to train loss can ultimately result in a decline in overall performance and the potential
exacerbation of model biases. That is the underlying cause of inferior performance of GroupDRO
in multiple biases settings compared to Upweighting.

In contrast, our method adjusts weights based on group-wise gradients. Additionally, during the
early training stage, the proposed method increases the weight of the group with a small train loss,
effectively giving more weight to the minority group.
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A.3 BIAS ATTRIBUTES FOR MULTICELEBA

Scimeca et al. (2022) examined how deep neural networks exhibit a preference for attributes based
on their easy of learning. Following Scimeca et al. (2022), we assessed the preference of ResNet18
for the target class (high-cheekbones) and biases (gender and age) by evaluating a model
trained on diagonal set (GG group in the main paper), where all samples are spuriously corre-
lated with all biases, as shown in Figure A3. Each line on Figure A3 represents unbiased accu-
racy of a testing attribute, which we used to evaluate the model’s ability to predict each testing
attribute. ResNet18 exhibited higher unbiased accuracy for gender and age compared to that of
high-cheekbones, indicating that the model tends to exploit gender and age as shortcuts
when learning high-cheekbones classification task on MultiCelebA. After curating CelebA to
MultiCelebA in two biases setting, we additionally introduce Mouth slightly open attributes
as third bias types. The configurations of MultiCelebA in two biases setting and MultiCelebA in
three biases setting are shown in Table A1&A2.

Group {Target class, Bias type 1, Bias types 2} # of train samples

GG {High Cheekbones, Female, Young} 44582
{Low Cheekbones, Male, Old} 16220

GC {High Cheekbones, Female, Old} 2200
{Low Cheekbones, Male, Young} 800

CG {High Cheekbones, Male, Young} 2200
{Low Cheekbones, Female, Old} 800

CC {High Cheekbones, Male, Old} 110
{Low Cheekbones,Female, Young} 40

Table A1: Configuration of MultiCelebA in two biases setting

A.4 IMPLEMENTATION DETAILS

A.4.1 DATASETS

To evaluate our framework, we consider three multi-bias datasets, i.e., MultiCelebA, Multi-Color
MNIST, and UrbanCars and three single-bias datasets, i.e., Waterbirds, CelebA, and BFFHQ. In
what follows, we provide details of each dataset.
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Group {Target class, Bias type 1, Bias types 2, Bias types 3} # of train samples

GGG {High Cheekbones, Female, Young, Mouth open} 31491
{Low Cheekbones, Male, Old, Mouth close} 11336

GGC {High Cheekbones, Female, Young, Mouth close} 13091
{Low Cheekbones, Male, Old, Mouth open} 4884

GCG {High Cheekbones, Female, Old, Mouth open} 1594
{Low Cheekbones, Male, Young, Mouth close} 567

CGG {High Cheekbones, Male, Young, Mouth open} 1645
{Low Cheekbones, Female, Old, Mouth close} 485

GCC {High Cheekbones, Female, Old, Mouth close} 606
{Low Cheekbones, Male, Young, Mouth open} 233

CGC {High Cheekbones, Male, Young, Mouth close} 555
{Low Cheekbones, Female, Old, Mouth open} 315

CCG {High Cheekbones, Male, Old, Mouth open} 77
{Low Cheekbones,Female, Young, Mouth close} 26

CCC {High Cheekbones, Male, Old, Mouth close} 33
{Low Cheekbones,Female, Young, Mouth open} 14

Table A2: Configuration of MultiCelebA in three biases setting

MultiCelebA. First, we mainly consider MultiCelebA in two biases setting as the dataset to evalu-
ate debiased training algorithms. As introduced in Section 4, this dataset requires training a model
to predict whether if a given face image has high-cheekbones or not. Each image is addi-
tionally annotated with gender and age attributes which are spuriously correlated with the tar-
get high-cheekbones. For MultiCelebA in three biases setting, each image is annotated with
gender, age, and mouth slightly open attributes which are spuriously correlated with the
target high-cheekbones.

UrbanCars. UrbanCars (Li et al., 2023) is a dataset created by synthesizing background,
co-occurring object, and car to generate multi-biased images. Its task involves classifying
whether an image contains urbancars or not.

Multi-Color MNIST. We consider Multi-Color MNIST dataset proposed by Li et al. (2022). Its task
is to predict the digit number from an image. The digit numbers are spuriously correlated with left
and right background colors, coined left-color and right-color, respectively. As proposed
by Li et al., we set the proportion of bias-guiding attributes to be 99% and 95% for left-color
and right-color, respectively.

Waterbirds. Waterbirds (Sagawa et al., 2019) is a single-bias dataset consisting of bird images.
Given an image, the target is bird-type, i.e., whether if the bird is “landbird” or a “waterbird.”
The biased attribute is background-type, i.e., whether if the image contains “land” or “water.”
The proportion of biased attribute is set to 95%.

CelebA. CelebA (Liu et al., 2015) is a face recognition dataset where each sample is labeled with
40 attributes. Following the previous settings (Sagawa et al., 2019; Yao et al., 2022), we use
HairColor as the target and gender as the bias attribute.

BFFHQ. BFFHQ (Lee et al., 2021) is a real-world face image dataset curated from FFHQ. Its task
is to predict the age from an image. the age is spuriously correlated with gender attributes. The
proportion of bias-guiding attributes is 99.5%.

A.4.2 BASELINES

We extensively compare our algorithm against the existing debiased training algorithms. In par-
ticular, one can categorize a baseline by whether it explicitly uses the supervision on biased at-
tributes, i.e., bias labels, or not. To this end, compare our method with nine training algorithms,
consisting of five that do not use the bias label and six that do. Algorithms that do not require
using the bias label are as follows: (1) training with vanilla ERM, (2) LfF (Nam et al., 2020)
employs a reweighting scheme where samples that are more likely to be misclassified by a bi-
ased model are assigned higher weights, (3) JTT (Liu et al., 2021) retrains a model using different
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weights for each group, where the groups are categorized as either bias-guiding or bias-conflicting
based on an ERM model, (4) EIIL (Creager et al., 2021) conducts domain-invariant learning, (5)
PGI (Ahmed et al., 2021) matches the class-conditional distribution of groups by introducing pre-
dictive group invariance, and (6) DebiAN (Li et al., 2022) utilizes a pair of alternate networks to
discover and mitigate unknown biases sequentially. We consider debiased training methods using
bias attribute labels as follows: (1) Upsampling assigns higher sampling probability to minority
groups, (2) Upweighting assigns scales the sample-wise loss to be higher for minority groups;
group weight = (# of training samples)/(# of group samples), (3) GroupDRO (Sagawa et al.,
2019) computes group-scaling weights using group-wise training loss to upweight the worst-case
group samples. (4) SUBG (Sagawa et al., 2020) proposes a group-balanced sampling scheme by
undersampling the majority groups. (5) LISA (Yao et al., 2022) performs group mixing (mixup)
augmentation to learn from both intra- and inter-group information. (6) DFR (Kirichenko et al.,
2022) retrains the last layer of an ERM model using a balanced set obtained through undersampling.

Table A3: The search spaces of hyperparameters.

Hyperparameter Search space

Learning rate η1, η2
{5e−4, 2e−4, 1e−4,
5e−3, 2e−3, 1e−3,
5e−2, 2e−2, 1e−2}

Weight decay {0, 1e−4, 1e−2, 1e−1, 1}
Update frequency U {1, 5, 10, 50}

Table A4: Hyperparameters of our method. MultiCelebA (2) represents MultiCelebA in two biases
setting, and MultiCelebA (3) represents MultiCelebA in three biases setting.

MultiCelebA (2) MultiCelebA (3) Multi-Color MNIST UrbanCars Waterbirds CelebA BFFHQ
Batch size 512 512 512 128 128 128 64
Learning rate η1 2e−4 2e−4 2e−2 1e−2 1e−3 2e−3 2e−3
Learning rate η2 2e−2 1e−2 2e−3 1e−3 1e−3 1e−4 5e−4
Update frequency U 10 5 50 10 5 1 1
Optimizer SGD SGD Adam SGD SGD Adam Adam

A.4.3 HYPERPARAMETERS

We tune all hyperparameters, as well as early stopping, based on highest WORST for MultiCelebA,
UrbanCars, Waterbirds and CelebA on validation set, except for ERM. For Multi-Color MNIST and
BFFHQ, we tune hyperparemters based on highest UNBIASED on test set, following the previous
work (Li et al., 2022; Lee et al., 2021). We use a single GPU (RTX 3090) for training. Following
the previous work (Lee et al., 2021; Hwang et al., 2022), we conduct experiments on BFFHQ using
ResNet18 with random initialization as the neural network architecture. For remaining datasets, we
initialized the model with parameters pretrained on ImageNet. The hyperparameter search spaces
used in all experiments conducted in this paper are summarized in Table A3. The selected hyperpa-
rameters for our method are represented in Table A4. Furthermore, the search space for the upweight
value λup in JTT is 5, 10, 20, 30, 40, 50, 100. JTT (Liu et al., 2021) and DFR (Kirichenko et al.,
2022) utilize the ERM model as a pseudo labeler and frozen backbone network, respectively. We
used the ERM model as reported in the literature for our implementation of these methods.

Given that the proportion of samples from minority groups can impact the performance of debiased
training, we trained DFR exclusively on the training set to ensure a fair comparison, which is denoted
as DFRtr

tr.

A.4.4 TRAINING EXISTING METHODS ON MULTI-BIAS SETTING

When training a model using SUBG (Sagawa et al., 2020), GroupDRO (Sagawa et al., 2019) and
DFR (Kirichenko et al., 2022), we grouped the training set based on the same pair of bias attribute
b and target class t and followed the approach outlined in the original paper.

LISA (Yao et al., 2022) adopts the two kinds of selective augmentation strategies, Intra-label LISA
and Intra-domain LISA. In the multi-bias setting, Intra-label LISA (LISA-L) interpolates samples
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with the same target label but different all bias labels (t(m) = t(m
′), b(m)

d ̸= b
(m′)
d ∀d). Intra-

domain LISA (LISA-D) interpolates samples with the same bias labels but different target label
(t(m) ̸= t(m

′), b(m) = b(m
′)).

When training a model using biased training methods that do not require bias labels, such as
LfF (Nam et al., 2020), JTT (Liu et al., 2021), and DebiAN (Li et al., 2022), we followed the
approach outlined in the original paper without modification, regardless of the number of bias types
presented in the dataset.

A.4.5 EVALUATION METRICS

We consider various metrics to evaluate whether if the trained model is biased towards a certain
group in the dataset. We remark that no metric is universally preferred over others, e.g., worst-
group and average-group accuracy reflects different aspects of a debiased training algorithm. For
the multi-bias datasets, we evaluate algorithms using the average accuracy for each of the four groups
categorized by the guiding or conflicting nature of the biases: {GG, GC, CG, CC}. Here, G and
C describes whether a group contains bias-guiding or bias-conflicting samples for each bias type,
respectively. For example, GC group for MultiCelebA is an intersection of bias-guiding samples
with respect to the first bias type, i.e., gender, and bias-conflicting samples with respect to the
second bias type, i.e., age. We also report the average of these four metrics, denoted as UNBIASED.
Next, for the single-bias datasets, the minimum group average accuracy is reported as WORST, and
the weighted average accuracy with weights corresponding to the relative proportion of each group
in the training set as INDIST (in-distribution) following Sagawa et al. (2019). We also report WORST
and INDIST metrics on MultiCelebA.

In calculating the GG, GC, CG, CC accuracies on the MultiCelebA dataset, we excluded the impact
of class imbalance within each group by first computing the mean accuracy for each class within the
group, and then taking the average of the class accuracies to obtain the group accuracy.

A.5 INTERPRETATION OF THE RESULTS ON MULTICELEBA

In Table 1, we analyzed whether a model is biased toward the two bias types, based on the differ-
ence between GG, GC, CG, CC, while also evaluating the UNBIASED accuracy. Let G* denote the
combination of GG and GC, and similarly for C* and others. A model is biased towards gender
attributes if there is a significant difference between the G* and C* combinations, whereas a signif-
icant difference between the *G and *C combinations indicates bias towards age attributes.

Table A5: WORST and INDIST metrics (%) evaluated on Waterbirds and CelebA. We mark the best
and the second-best performance of WORST and INDIST in bold and underline, respectively.

Bias Waterbirds CelebA
Method label WORST INDIST WORST INDIST
ERM ✗ 63.7±1.9 97.0±0.2 47.8±3.7 94.9±0.2
LfF (Nam et al., 2020) ✗ 78.0 91.2 70.6 86.0
EIIL Creager et al. (2021) ✗ 77.2±1.0 96.5±0.2 81.7±0.8 85.7±0.1
JTT (Liu et al., 2021) ✗ 83.8±1.2 89.3±0.7 81.5±1.7 88.1±0.3
LWBC (Kim et al., 2022) ✗ - - 85.5±1.4 88.9±1.6
CNC (Zhang et al., 2022) ✗ 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5
Upweighting ✓ 88.0±1.3 95.1±0.3 83.3±2.8 92.9±0.2
GroupDRO (Sagawa et al., 2019) ✓ 89.9±0.6 92.0±0.6 88.9±1.3 93.9±0.1
SUBG (Sagawa et al., 2020) ✓ 89.1±1.1 - 85.6±2.3 -
SSA (Nam et al., 2022) ✓ 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1
LISA (Yao et al., 2022) ✓ 89.2±0.6 91.8±0.3 89.3±1.1 92.4±0.4
DFRtr

tr (Kirichenko et al., 2022) ✓ 90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7
Ours ✓ 91.8±0.3 95.6±0.3 89.8±1.3 91.4±1.2
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Table A6: UNBIASED metric (%) evaluated on BFFHQ. We mark the best and the second-best
performance of UNBIASED in bold and underline, respectively.

Bias BFFHQ
Method label UNBIASED
ERM ✗ 56.2±0.4
HEX (Wang et al., 2018) ✗ 52.8±0.9
ReBias (Bahng et al., 2020) ✗ 56.8±1.6
LfF (Nam et al., 2020) ✗ 65.6±1.4
DisEnt (Lee et al., 2021) ✗ 61.6±2.0
SelecMix (Hwang et al., 2022) ✗ 71.6±1.9
SelecMix∗ (Hwang et al., 2022) ✓ 75.0±0.5
EnD (Tartaglione et al., 2021) ✓ 56.5±0.6
LISA (Yao et al., 2022) ✓ 65.2±0.5
GroupDRO (Sagawa et al., 2019) ✓ 85.1±0.9
Ours ✓ 85.7±0.3

A.6 QUANTITATIVE RESULTS ON SINGLE-BIAS SETTING

In Table A5&A6, we compare our method with existing methods on single-bias benchmarks, Wa-
terbirds, CelebA, and Biased FFHQ (BFFHQ). Our method achieves the best WORST accuracy on
Waterbirds and CelebA, and the best UNBIASED on BFFHQ, indicating that our method is effective
not only for multi-bias settings but also for single-bias settings.
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Figure A4: Local loss curvature of the loss landscape of model parameter.

A.7 IMPACT OF THE LOSS FUNCTION ON LOCAL CURVATURE

According to Li & Gong (2021), the second term in Eq. 3,
∥∥α⊤(∇L(θ))

∥∥2
2
, serves as an approxima-

tion for the local curvature of the loss landscape associated with the model parameter θ. Although
this term is minimized by updating α, the local curvature of loss landscape of model parameter is re-
duced. To verify this, we conducted an ablation study by adjusting the relative weight of the second
term in Eq. 3 using constant c. The objective formula for this experiment is presented as:

L̂(θ) = α⊤L(θ) + cλ
∥∥α⊤(∇L(θ))†

∥∥2
2
. (4)

Figure A.7 demonstrates how the loss curvature evolves over training iterations. We observed that
as the value of c decrease, there is a corresponding increase in loss curvature. Hence, minimizing
the second term in Eq. 3 contributes to improving model generalization.
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Table A7: Performance in UNBIASED, WORST, and INDIST (%) on MultiCelebA in three biases
for evaluation two biases for training setting. We mark the best and the second-best performance in
bold and underline, respectively.

Method UNBIASED WORST INDIST
ERM 64.1±0.6 12.0±1.2 96.7±0.2
LfF 71.7±0.6 47.7±5.5 81.2±2.9
Upsampling 74.1±1.7 48.9±2.0 84.1±3.0
Upweighting 69.7±15.4 42.2±24.0 79.5±9.5
GroupDRO 73.7±0.7 46.6±0.8 83.4±0.6
LISA 75.6±1.0 52.2±2.0 87.3±0.8
Ours 78.1±0.6 58.0±5.4 83.8±0.7
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