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Abstract

With a growing number of available services, each hav-
ing slightly different parameters, preconditions and effects,
automated planning on general semantic services becomes
highly relevant. However, most exiting planners only con-
sider PDDL, or if they claim to use OWL-S, they usually
translate it to PDDL, losing much of the semantics on the
way. In this paper, we propose a new domain independent
heuristic based on semantic distance that can be used by
generic planning algorithms such as A* for automated plan-
ning of semantic services described with OWL-S. For the
heuristic to include more relevant information we calculate
the heuristic at runtime. Using this heuristic, we are able to
produce better results (fewer expanded states) in less time
than with established domain independent techniques.

1 Introduction
We motivate our work by the need of a heuristic for AI plan-
ning. Since the search space of domain-independent plan-
ners for large problems becomes computationally intractable
(Kambhampati and Hendler 1992) we need heuristics to
guide our search through the state space.

For domain-specific planners that have a special purpose
(e.g., finding a route from one place to another for a GPS
traffic guidance systems), a heuristic can easily be provided
e.g. the Manhattan-Distance or the Euclidean distance. But
for an agent which has the capability of creating general
plans, these heuristics are not sufficient. This means it is im-
possible for our general purpose planner to create a problem
specific heuristic at design time.

Even reusing old ones like it is done for meta-heuristics
or learning parameters of hyper-heuristics have only been
successfully applied to simple problems (Osman and La-
porte 1996). Meta-heuristics or hyper-heuristics have an ad-
ditional drawback: they need a learning phase to gather in-
formation about the problem to be solved.

The calculation of the heuristic during runtime is mo-
tivated by the additional information available like the
grounding information which could consist of concrete in-
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dividuals to abstract classes describing e.g. the parameters
of a service.

The creation of heuristics during runtime can lead to the
encounter of new concepts used in an interface definition
like a service description, which then lead us back to a fun-
damental question in AI research: How can AI make sense
of new concepts? For heuristics this means interpreting the
new concepts and adding information to classical heuristic
approaches. A function H : state → R+ is called heuristic
(Russel and Norvig 2002, p. 92) and estimates the distance
from a state to a given goal. We extend this definition of
heuristic to H : service× state× goal → R+ making the
heuristic more dynamic since now it is able to adapt with
changing goals and services. With that, the heuristic deter-
mines the usefulness of the given service in the current state
regarding a current goal. This is done because if an alone
state would be the information source for the heuristic, in-
formation like the service description would be lost.

The interested reader is referred to (Pearl 1985) for a for-
mal description of heuristics and their properties. During our
analysis of this topic, we have found that understanding the
described functionality of a service is an AI-hard task (Yam-
polskiy 2012). This is because interpretation of what a de-
scription creator might have understood the service to be,
might not be entirely reflected in the description. Further-
more, the service can have multiple interpretations in differ-
ent contexts. Here the context we defined is the additional
information relevant to our problem. As an example strat-
egy for problem-solving using a heuristic, we have selected
planning. This means our context consists of the start and
goal state which include a domain description.

Starting from this setup, we need to evaluate if a capabil-
ity is useful in the endeavour of finding a plan solving our
problem.

The approach presented in in Figure 1 is a goal-oriented
heuristic at runtime utilizing the semantics of the goal and
capability description. The heuristic is thought for a one-
shop-planning problem, where it is expensive for the agent
to try out services since we are looking at possible world-
altering capabilities, which means a learning phase should
be kept as short as possible. This is done at runtime so that
we know the goal we want to fulfill and can create a heuris-
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Figure 1: Abstract approach to a greedy heuristic

tic reflecting the given problem. We do so by looking at the
goal and the capability description we encounter to calculate
the usefulness of a capability. Here the idea of the heuris-
tic is to find useful capabilities to try in our search to the
goal state, and reprobate others. The heuristic additionally
estimates how much of the precondition is fulfilled to see
which capabilities are more likely to be executed. These two
evaluations of the service are then combined to create our
heuristic.

In this section we will first look at the state of the art of
heuristics in Section 2. Then we create our goal oriented
heuristic in Section 3, select a data set to test this heuris-
tic on in Section 4 and discuss the results in Section 5. We
conclude this experiment in Section 6.

2 State of the Art
The state of the art in general heuristics for the planning
problem is limited. The main conference on AI Planning
and heuristic search is the International Conference on Au-
tomated Planning and Scheduling (ICAPS) / Conference on
Artificial Intelligence Planning Systems (AIPS) (ICA 2016).
Here, starting from 1990, the last 28 years the community of
AI planning has discussed the different approaches on prob-
lem solving.1 During that research effort, multiple special-
izations of the general planning domain have been identi-
fied. Most of them use some kind of translation of the se-
mantic domain to classical STRIPS planning in e.g. PDDL,
like OWLS-Xplain (Klusch, Gerber, and Schmidt 2005;
Klusch and Gerber 2006) or Simplanner (Kuzu and Cicekli
2012), or agent-based approaches as proposed in (Alves and
Marchi 2017). A comprehensive overview can be found in
the work of Markou and Refanidis (Markou and Refanidis
2016). Service composition approaches focus on Quality of
Service, as in (Laleh et al. 2018), or use e.g. model checking

1See www.icaps-conference.org for the proceedings.

as in (Du, Yang, and Hu 2018).
The different nature of a STRIPS-like planning problem

without semantic and service planning address the problem
of a search for a plan in different ways. Classical planners
are highly optimized to solve problems like the 15-puzzle
(Rat 1986) or the four-peg towers of Hanoi problem (Korf
and Felner 2007). For semantic general-purpose planning,
more general heuristics are needed.

There are heuristics like the minimal step count to the
goal, called a uniform action cost (Pearl 1985). These
heuristics is equal to the step count if an action cost is equal
to 1 (Keyder and Geffner 2007). If the uniform cost function
of 1, the heuristic is admissible since it predicts that the ac-
tion to be executed is always only one step form the goal.
This is sometimes also called an “optimistic” heuristic.

Greedy heuristics are those which count the overlap to
the goal, thus measuring the usefulness of a service in how
much of the goal it archives. This is a quite simple heuristic
which performs well regarding its simplicity.

Haslum and Geffner (Haslum and Geffner 2000) describe
a greedy heuristic which is derived from the STRIPS plan-
ning problems, executing the services with the highest over-
lap of their add-list and the goal first. This heuristic is ad-
missible, it can be used for all planning problems, and is the
basis of the most successful planners according to the Inter-
national Planning Competition (Helmert, Röger, and Karpas
2011). However, it only works for the relaxed problem when
the service effect does not have a delete-list, and only the
add-list is added to the current state to create a new state.

The approach of (Haslum and Geffner 2000) has been
extended by an optimization with an abstraction of the ef-
fects called Patterns (Haslum et al. 2007). Those patterns
are then subtracted from each effect and the start and goal
states, creating abstract states, which are then mapped to
the state space through these patterns. The patterns repre-
sent subproblem of the original planning problem, which is



already solved, to get the patterns. A pattern is a set of vari-
able assignments which reoccurs in different states, e.g. start
and the goal state, creating homomorphism abstractions. The
drawback of those Pattern Database Heuristics (PDB) is
the that they do not scale up to real-world problems (Katz
and Domshlak 2008).

The approach of Katz et al. (Katz and Domshlak 2008)
again optimizes the result of (Haslum et al. 2007) by adding
a Causal Graph structure and the Domain transition
graph to the PDB heuristics, resulting in “causal graph
structural patterns”, which approximate the original prob-
lem but are more abstract. This abstraction in done with the
SAS+ formalization of the planning problems (Bäckström
and Nebel 1995), which has an additional restriction for the
domain descriptions. The simplification SAS+ has the ef-
fect that abstractions like those done by Katz et al. are possi-
ble. Here e.g. “Post-uniqueness” means that an effect is only
given by at most one action. Additionally, the “Binariness”
restriction demands that all state variables have exactly two
possible values. With an open world assumption and a dis-
tributed service development we cannot fulfill those restric-
tions, thus these results cannot be applied to our problem.

Learning the domain structure by observing plans is still
subject to research. Gregory and Lindsay (Gregory and
Lindsay 2016) propose a model of action cost, which is
learned through the observation of plan traces. Even though
the resulting cost function can be used as a heuristic, its cre-
ation, the observation of executed plans, puts this heuristic
into the runtime. This interleaving of the plan- and runtime
is out of scope for this work because we want to study the
understanding of services and measure the degree of under-
standing by their use in a plan, not the other way around.
Despite this being a valid approach, the idea is a trial and
error mechanisms of learning the usefulness of services. For
certain services, this might be appropriate, but we restrict
our domain to intellectual problems where deterministic ac-
tions are analyzed.

The same argument can be applied with approaches lean-
ing for other planning properties to plan optimality(Ne-
dunuri, Cook, and Smith 2011). Other research on heuristic
creation in uncertainty like (Marinescu and Coles 2016) is
concentrated on numerical effects, which we neglect here.

Another approach of guiding the search through the state
space is called Landmarking (Karpas and Domshlak 2009).
Landmarks are facts which must hold true on the way to-
wards reaching a goal. The two sub-problems of landmarks
are: How to find landmarks (Porteous, Sebastia, and Hoff-
mann 2014), and how to use the information given by a
landmark to create a heuristic (Zhang, Wang, and Xie 2015).
These landmarks then can be used to decompose the search
problem and use a local search to iteratively search from
landmark to landmark (Karpas and Domshlak 2009).

Using landmarks for creating a heuristic is done in
the LAMA planner from Richter and Westphal (Richter,
Helmert, and Westphal 2008), which performed well in the
IPC 2008 (Karpas and Domshlak 2009), counting fulfilled
landmarks in contrast to unfulfilled ones.

In (Richter, Westphal, and Helmert 2011) they combine
this greedy heuristic search with landmarks with preferred

operators that take into account the usefulness of services
by keeping them in a “preferred-operator queue”. Those pre-
ferred operators are in consequence always tried first. Decid-
ing which service is preferred is part of the heuristic. Again,
the problem is formalized as a SAS+ problem, which lets
Richter et al. decide which service is a landmark (because
its effect is unique). This is not given in our planning prob-
lem, thus this kind of heuristic needs adaption to be able to
function with, e.g., the open world assumption.

As a conclusion, the state of the art in generating heuris-
tics is mainly based on the relaxation of an original problem
by abstraction. Some of them use the domain description to
structure the search space, others analyze services to iden-
tify landmarks which help to break down the search prob-
lem. But no heuristic found so far has used the semantics of
the planning problem. Thus, those heuristics are often not
applicable to general planning in real-world problems.

3 Semantic Heuristics
In this work, we propose a new heuristic for service planning
using the Semantic Distance between states. Since we are
not considering services with different costs, the here looked
at planning problem is a constraint satisfaction problem. As
a planning algorithm, we used a variation of an A∗ algo-
rithm, due to its theoretical properties (see (Pearl 1985)).
The variation from the basic A∗ is that the function g from
the cost function to be minimized f = g+ h, where h is the
used heuristic and g is supposed to be the cost of the path
so far, is selected as g =

∑n−1
i=0 h(si), where s0 is the start

state, sn is the current state, and all states si are on the path
to the current state.

In order to determine the semantic distance between two
states, we first have to perform a Semantic Decomposition
of those states. We then use a Marker Passing algorithm to
determine the semantic distance.

Semantic Decomposition Algorithm
At first, we will have a look a the semantic decomposition
algorithm. The decomposition takes a word and looks up
definitions and relations of this work in data sources like
Wikipedia, WordNet or other dictionaries. The words related
to the original word are then decomposed recursively until
a predefined decomposition depth is reached. With that the
connectionist interpretation of meaning is represented as a
resulting graph.

The functionsAddRelation andAddConcept are conve-
nience methods for adding the relation and concepts into the
semantic graph. The functions AddConcept(concept, decom-
position) and AddRelation(relation, GetTargets(relation),
decomposition) add the concepts or relations to the graph
which represents our decomposition. AddConcept adds the
given concept to the graph nodes and AddRelation adds the
relation between the concept its targets to the relations of the
graph.

We now have a look at how such decomposition can be
created and how automatisms might help. We identified the
steps for a decomposition as described in the recursive Al-
gorithm 1. The algorithm takes as input the concept that is



Algorithm 1 A decompositioning algorithm.
Name: Decompose Input: Concept word, Integer depth
Output: SemanticGraph

1: decomposition← ∅
2: function DECOMPOSE(c, depth, decomp)
3: if depth ≥ 0 ∧ c 6∈ decomp then
4: c← Normalization(c)
5: relations← GetRelations(c)
6: definitions← LookUpDefinitions(c)
7: AddConcept(c, decomp)
8: if IsSynonymOfPrime(c) then
9: return

10: end if
11: for all r ∈ relations do
12: AddConcept(r, decomp)
13: AddRelation(r, GetTargets(r), decomp)
14: DECOMPOSE(r, depth-1, decomp)
15: for all target ∈ GetTargets(r) do
16: DECOMPOSE(target, depth-1, decomp)
17: end for
18: end for
19: for all definition ∈ definitions do
20: for all def ∈ definition do
21: AddConcept(def, decomp)
22: AddRelation(“definition”, {c, def}, de-

comp)
23: DECOMPOSE(def, depth-1, decomp)
24: end for
25: end for
26: else
27: end if
28: end function
29: DECOMPOSE(word, depth, decomposition)
30: return decomposition

subject to the decomposition. As a successful decomposi-
tion will always build a graph, the semantic primes are the
termination criterion for the recursion.

The Algorithm 1 reads as follows:

Line 1 initializes the semantic graph which we will build
up during this algorithm and which represents the result
at the end.

Line 2 to 28 represents the recursive function which is
called on all decomposed concepts. This function adds
the decomposition to the semantic graph initialized in
Line 1. Which is called until the decomposition depth
is reached or all concepts have been decomposed into
semantic primes. We will build a hierarchical structure
made up of concepts also referred to as lexical units.
Those concepts include a lexical representation, the tex-
tual representation of a lexeme and a decomposition.

Line 3 checks if the concepts have been already decom-
posed or if the decomposition depth is reached. The de-
composition depth is a parameter of the decomposition,
which restricts the decomposition to an amount of rela-
tions to which the decomposition extends. The second

part stops the decomposition of decomposing the same
concepts over and over again. Additionally, the decompo-
sition stops here, if a synonym of the concept has been
decomposed previously. This is because if a synonym has
been decomposed previously, its synonyms are added to
the decomposition as well. Thus this synonym, which is
supposed to get decomposed now, is already part of the
decomposition and is not decomposed again.

Line 4 takes the concepts to decompose and normalizes
them. Here the inflection is removed, revealing the stem
of a concept. Furthermore a concept includes all its in-
flections (all concepts which can be created by apply-
ing grammatical forms to a concept like ‘eating’, ‘ate’,
‘eaten’), all lexical paradigms for this concept (all con-
cepts rooting from the same word stem like to ‘dine’, ‘din-
ner’) and all sub-categorization frames (like the valence
which is the amount of parameters like ‘ask’, ‘ask X’, ‘ask
X for Y’). We remove this kind of inflection because we
are interested in the concepts described by a word, not
its relation to other words. We can integrate syntactic in-
formation into the graph by adding syntax relations and
nodes. For this reduction, we use the linguistic process
of Lemmatization.2 The function Normalization in Al-
gorithm 1 Line 4 hides this normalization of a concept.

Line 5 gets all the relations of the concept from the used
dictionaries. This means we are looking through all our
dictionaries and look up all the semantic relations we can
find and remember them for later processing.

Line 6 likewise looks up the definitions of the concept in all
available dictionaries.

Lines 8 to 10 check whether the concept itself is a seman-
tic prime. If this is the case, the prime is added to the
decomposition, the decomposition is finished for this con-
cept and returned. This hides technical optimizations like
that we check for synonyms of primes as well to make
the search a bit broader. At the same time, we simpli-
fied the stop word removal here. Stop words represent
words which can be ignored, taken from natural language
processing theory (Wilbur and Sirotkin 1991). These are
mostly words with little semantic meaning like, e.g., ‘a’,
‘an’ or ‘the’. Those nodes are removed and are not further
decomposed.

Lines 11 to 18 handle the relation of the concept we are de-
composing. Here all relations are added to the decompo-
sition as a relation between concepts. Then all concepts
which are connected by those relations are recursively de-
composed.

Lines 19 to 25 decompose the definitions. Each definition
is a list of concepts which get decomposed again. The def-
inition is connected to the definiendum via a “definition”
relations.

Marker Passing Algorithm
This Marker Passing algorithm is a generalization of the al-
gorithm described by F. Crestani (Crestani 1997, Figure 5,

2Sometimes Lemmatization is referred to a Stemming, where,
e.g., suffixes of words are removed, like a plural s.



p. 461). Crestani describes the Marker Passing in four steps:
Pre-adjustment, spreading, post-adjustment and termination
condition evaluation. This is quite general and can result
in inaccurate interpretations of the algorithm. Consequently,
we introduce a more precise description of the algorithm by
breaking the activation down into multiple steps without los-
ing generality.

Crestani’s algorithm is based on the following principle:
Starting from a start activation, a concept has a threshold
(seen as an upper limit of activation in a node to decide if the
node is activated), with each incoming activation the activa-
tion level of the node builds up. If the threshold is reached,
the node is selected as activated and is spreading in the next
spreading step. This means that the node passes all its mark-
ers on to its neighbors. This step is repeated until a termina-
tion condition is reached (Crestani 1997).

Algorithm 2 Marker Passing Algorithm
Name: MarkerPassing
Input: NodeData M Output:NodeData

1: pulseout ←Map〈Concept, (Edge,Markers)∗〉
2: for all srcC ∈ getPassingConcepts(M ) do
3: pulseout[srcC]

∪← outFunction(M , srcC)
4: end for
5: pulsein←Map〈Concept, (Edge,Markers)∗〉
6: for all e ∈ pulseout do
7: pulsein[e]

∪← edgeFunction(M , e, pulseout[e])
8: end for
9: for all tgtC ∈ pulsein do

10: M ← inFunction(M , tgtC, pulsein[tgtC])
11: end for
12: for all srcC ∈ getPassingConcepts(M ) do
13: M ← afterSend(M , srcC)
14: end for
15: return M

Algorithm 2 describes our extension of the spreading ac-
tivation algorithm of Crestani (Crestani 1997).

The algorithm defines two maps pulseout and pulsein,
which hold the markers passed during a pulse. The function
“ ∪←” describes the insertion of the remaining tuple into the
appropriate set of, e.g., all markers of the current pulse (in
contrast to replacing them). In line 3 of Algorithm 2 we add
the result of the outFunction in the form of (Relation ×
Edge × Markers)∗ to the map pulseout, where for each
edge the markers are sorted.

We separate the Algorithm 2 into four blocks each con-
sisting of one loop:

Lines 2 – 4: All passing concepts activate their out-
function and the result to the current pulse stored in the
variable pulseout. This is the input for the edge functions
of the appropriate relations of the next step.

Lines 5 – 9: Each marker passed by the current pulse is
given to the appropriate relation it is passed to, and this
relation activates its edge-function. The result of the edge-
function is added to the pulse which is used as input for
the in-functions of the targets of this relations.

Lines 10 – 12: Concepts that are targets of the relations
passing markers are given the markers passed to them and
activate their in-function.

Lines 13 – 15: The after-send-function is activated to fix
the markers on the source concepts if needed.

Semantic Distance Heuristic
With this marker passing, we then can set start markers e.g.
onto the start state and the goal state and analyze how the
pass to services. As depicted in Figure 1 our goal-oriented
heuristic is composed of two parts: The closeness to the start
state and the closeness to the goal state.

H(S, S0, G) = 1− w1 · UF (S,G) + w2 · E(S, S0)

2

Here the set S denotes all services, S0 denotes the start
state and G describes the goal state. UF is the usefulness
of the given state w.r.t. the goal, and E its executability, and
w1,2 are their weights. The marker information and the de-
tailed parameters, like termination condition or weight con-
figurations of the marker passing algorithms, can be found
in (Fähndrich, Weber, and Ahrndt 2016).

We selected these two measurements for our heuristic, be-
cause if we leave out one of the aspects two effects happen:

Goal overcommitment If we only look at the usefulness
the services fulfilling subgoals will be tried first. Even
though the probability of them being at the end of the
plan is higher. This means if we are not talking about a
planning problem which is trivial because all service in
the plan is independent, that one or more service needs to
be executed to enable this useful service. By only looking
at the usefulness the search will always try those service
first.

Low hanging fruits If we only look the executability, ser-
vices which are executable are always tried first. This is
good at the beginning of the planning process because
reaching the goal is less probable at this point. But the
more service is executed, the more service preconditions
become enabled and all of them are tried first. To reach
the goal then becomes like a breadth-first-search, where
all service possible are tried before we get closer to the
goal.

This argumentation leads us to introduce two weights
w1,2 which can be adapted depending on how far the search
has progressed towards the goal. In the beginning, the ex-
ecutability should, in consequence, be highly weighted and
become less important the closer to the goal the search pro-
gresses. This is inverse for the usefulness.

Both parts use the same kind of mechanism to check
whether a fact is fulfilled (in the precondition or effect of
a service) which is given by the goal or start state. To
check this fulfillment we extract the predicates from the
service precondition (effects) and the start (goal) axioms
and their arguments and compare them. The comparison is
done in two ways: first, for the predicates, we separate the
word included in the predicate e.g. “IsBookedFor(Flight x,



Customer c)” become the predicate “is booked for”. Since
this resembles a sentence, the sentence similarity measure
dsen is used to compare predicates with a sentence similar-
ity measure based on the semantic similarity presented in
(Fähndrich, Weber, and Ahrndt 2016). Second we compare
the arguments with the same semantic similarity measure
dsem. The result of those both similarity is then aggregated.
The aggregation is done in the following way:

The main difference of the sentence similarity measure
dsen to the semantic distance measure dsem is that the
marker carries the information from which sentence they
started out from. This information is used in the interpre-
tation of the markers in the way described in Equation 3.

dsen = Ξ +

(
AVGACTIVATION(result)

|s1 ∩ s2| · StartMarkers

)
Where s1 and s2 are two lists of concepts (the sentences)

and Ξ represents the activation of the set of concepts in both
sentences. StartMarkers is the set of initially placed mark-
ers. The result is the marked graph after the marker passing
has finished passing markers.

Ξ = 2
|s1|+ |s2| − |s1 ∪ s2|

|s1|+ |s2|
The AvgActivation gets the average of the activation of

all markers of all concepts that are activated by both sen-
tences. In Equation 3 we calculate the concepts present in
both sentences plus the average activation of the concepts
activated by markers of both sentences normalized by the
total activation present after the initial marking. The result-
ing similarity is then again normalized to the interval from 0
to 1.

With Equation 3 we calculate the similarity of two sen-
tences by calculating the ratio of equivalent words in both
sentences in Ξ. This means that if the two sentences are
equivalent, then Ξ becomes 1. To this ratio, we add the nor-
malized average activation of all concepts activated by mark-
ers of both sentences. This captures that if concepts are se-
mantically closer together, then more markers of both sen-
tences, carrying more activation exist. In extreme cases, this
value can become larger than one, which makes a normal-
ization to the interval of zero to one of the result necessary.

These measures, dsen and dsem, are used to calculate the
Distance between two states, which in turn is used to calcu-
late the usefulness UF and executability E.

Distance : [Predicate]× [Predicate]→ R

Distance(A,B) =

∑
a∈A

max
b∈B

wprd · dsen(a, b) +X(a, b)

|A|

with

X(a, b) =

∑
a′∈args(a)

max
b′∈args(b)

warg · dsem(a′, b′)

|args(a)|

UF (S,Goal) = Distance(Goal, S.eff)

Here we sum up the maximal weighted name and argu-
ments match over the set of subgoals. Thus our service gets
a usefulness of 1 if it fulfills all subgoals. The argument
matching follows the same structure: The arguments of the
goal predicate are matched to the arguments of the effect
predicate. The maximal match is then summed up over all
predicates of the goal. This means we are collecting all pred-
icates of the goal which are semantically close to the effect
of the services. The semantic closeness is calculated in parts:
with the predicate name and its arguments. These two parts
are weighted to define their influence on the overall heuristic
result.

This is done because we want to maximize the argument
matches and maximize the number of effects the service can
fulfill for the given goal. The dsen and the argument matches
are then weighted with weightswprd, warg determining how
much influence the different similarities have in the overall
result.

For the comparison of predicates two kinds of similarity
measures are used:

Predicate comparison is done with the sentence similarity
measure dsen based on the semantic similarity measure
proposed in (Fähndrich, Weber, and Ahrndt 2016). This is
because a predicate mostly describes verbs and their form,
direction and if they are passive or active. Our example
“is booked for” is a typical use case for a predicate in
ontologies.

Argument comparison is done with the semantic similar-
ity measure dsem proposed in see (Fähndrich, Weber, and
Ahrndt 2016). Here the arguments are compared and the
maximum is summed up. This makes the argument com-
parison independent of argument order.

The result is then normalized w.r.t. the number of pred-
icates in the goal. Here we can see that H(S,Z) becomes
1.0 for a service fulfilling all predicates of the goal, and 0.0
when none of the effects fulfill anything from the goal.

The executability (E) then is calculated with a similar
measure then the usefulness:

E(S, Start) = Distance(s.pre, Start)

The same measure as for the usefulness can be applied
for the evaluation of services to the extent of their fulfilled
preconditions, meaning that service with unsatisfied precon-
dition will be avoided. The effect of this heuristic is that the
search algorithm of our planner now will try all services ful-
filling parts of the goal first if the weight on the usefulness
is high, and try executable service first if the weight of exe-
cutability is higher.

Now we need an example problem to test our heuristic
upon. This will be discussed in the Section 4 next.

4 Data Set
There is one dataset which uses semantic service descrip-
tions we could find, called the Secure Agent-Based Perva-



sive Computing (Scallop) domain3. It has a collection of
21 services in the domain of health, air travel, and medical
transport, and includes a set of 24 ontologies building up the
domain model. Here, the scenario in focus is the medical
transport of victims to a medical facility mostly by airplane
and some ground transport. For technical compatibility we
have translated the services and the domain to OWL-S 1.2.

The problem to be solved is to transport a patient from
one place to a hospital. This includes finding the nearest air-
port from which one can fly to an airport that is close to a
hospital. In addition, transport from and to the airports has to
be organized. To book a flight, a flight account has to be cre-
ated, a fitting flight has to be found, and the flight needs to
be booked. After the flight a ground transport to the nearest
hospital needs to be organized. Having done this, the goal of
our example problem is reached.

We created a start and end state of this domain in which
a victim has to be transported to a medical destination. The
goal state consist of 64 axiomatic facts which need to be
fulfilled to reach the goal state. Since the start and goal states
have a large overlap, Figure 2 shows both states combined.
Here the red states are states from the start state, and blue
nodes are from the goal state; the gray nodes are found in
both states.4 For readability, the top-most “owl:Thing“ class
is omitted, and subclass relations are shown as dashed lines
and individuals with dotted lines.

The overall domain is modeled in an ontology, describing
the individuals and their relations. This ontology is too big
to be displayed as a whole here, but the interested reader can
download it from the Scallop project website.

The initial state has declares multiple facts about the do-
main, e.g. the transports available in our domain, where we
see that Vehicle Transports and Flights are the two possible
transports.

We want to be at a certain location at a certain time. All
the modeling around those facts is necessary because we
have to make sure all individual are available so that we can
evaluate a potential execution of a service and with that rea-
son upon the effect of this service.

The goal state consist of the information we want to see
fulfilled. We start out by declaring the individuals we need in
Figure 2 with the blue nodes. This models our ‘patient zero‘
who needs the “RequiredTreatmenat” that can be provided
at a certain hospital. As part of the goal we state that we wish
the flight to be booked for “Patient 0”, who owns the credit
card the flight can be booked with and that the flight arrives
at our target destination at the desired time. Since we need
a valid account to book a flight, we want that “Patient 0”
has a personal account to transport our patient and to book
the relevant flights and transports from and to the airports.
Next we model the individuals that are needed to reach our
destination, as well as the departure and arrival airport.

When starting to plan, the start and goal state already
overlap with 57 out of 64 axioms in the goal state, thus the
plan to be made has to fulfill seven more axioms to reach

3http://www.dfki.de/scallops/
4A node not appearing in the goal does not have to mean that

that node is to be deleted, but just that it is not relevant for the goal.

the goal state. The optimal plan for this problem includes
4 steps: two requests for flight information for departure
and arrival time, creating a flight account, and booking the
flights.

The planning problem, with its 21 services, which have
continuous inputs, like dates, has an infinite search space.
Since the goal state is specified as a set of OWL axioms,
there is a multitude of states which subsume our goal state.
All of them are considered a success. The next section will
elaborate on the results of our planner with the different
heuristics.

5 Evaluation Results
The evaluation is run using the data set described in Sec-
tion 4. To measure the performance, we count the extended
nodes during the search for the goal state.

The ‘gold standard’ (described in Section 2) for general
purpose heuristics is still a Greedy heuristic (Pearl 1985),
which checks the overlap of the effects of a service with the
facts wanted in the goal state, always selecting the service
with the highest overlap. Additionally we compare our re-
sults with the Uniform Cost distribution, where each execu-
tion of a service is calculated to cost 1 abstract cost measure.
With that admissible heuristic, A∗ finds an optimal solution.
The Random heuristic has been added to the comparison as
a baseline.

Table 1 shows the average results of ten runs. The four
columns of Table 1 describe the mean µ and standard deriva-
tion σ of the experiment results of the steps and time. A step
here is an extended state during the search for the goal state.
Thus less looked at states means a more directed search
and less effort. Column µsteps indicates how many states
the search had to extend on average to find the goal state,
and column µtime describes how much time one search has
taken on average in seconds. The average has been created
over 10 runs.5 All heuristics are tested on the same start and
goal state, thus there is no difference in the planning prob-
lem state space the search had to traverse. The variation of
the performance is rooted in the random selection of services
if two services are ranked with the same usefulness.

Table 1: Planning results, averaged over ten runs.

Heuristic µtime σtime µstep σstep

Marker Passing 120.0 31.0 20.3 5.2
Greedy 292.0 51.9 43.3 6.0
Uniform Cost 325.4 27.5 51.4 2.6
Random 358.9 9.7 53.9 0.32

Concerning the overall result, our Marker Passing heuris-
tic is at least twice as fast and looks at half the number of
nodes as the other heuristics. In the next section, we will
discuss the results and analyze what they mean.

5We have tried the Random experiment with 100 runs, but this
did not yield any different result, thus we settled for just 10 runs
for all algorithms.



Figure 2: The Scallop health domain description as graph. Red nodes are found only the the start state, and blue nodes only in
the goal state. Dashed lines are subclass and dotted lines individual relations.

6 Discussion of the results
We start by comparing the different heuristics:
The greedy heuristic is seen as the ‘gold standard’ for gen-

eral purpose planning. It is used in most best-first search
problems. As the name suggest, the services with the most
overlap with the goal (the “best” ones) are tried first. This
can lead to the result that in each state of the state space,
the same “best” services are tried over and over again. The
evaluation of the goal overlap does take about as much
time as the semantic heuristic, as can be seen by compar-
ing how many steps on average are looked at, and how
much time is spent. Here we have an average step calcu-
lation time of 6.0 seconds for greedy, which is close to the
5.2 seconds the marker passing heuristic spends on each
state. The standard derivation from the mean can be ex-
plained with the random selection of services with equal
usefulness.

The Uniform Cost function with the same usefulness for
all services creates a breadth-first search in an A∗ algo-
rithm. Here we can see that the standard derivation of the
steps reduces to 2.6. This is because we are looking at all
service in one state before progressing to the next; it does
not matter in which order we look at the services.

The Random cost heuristic is the baseline to beat: If we are
worse then this, our heuristic creates more confusion then
it guides the search. In addition, this is used to ground the
overall speed of our heuristics. This can be done, because
the creation of a random number does almost consume
as few resources as the Uniform Cost heuristic and does
not give any information to the search. Here the standard
derivation of steps is less then one, because the random
heuristic does not speed up the search. As expected, the
random heuristic has to look at the most state in the search
space (see Table 1) which is at a mean of 53.9.
Of course, the relation between looking at more state and

taking more time correlates. Thus, while the evaluation of
the precondition and the instantiation of the effect take time,
a uniform cost heuristic (which has no cost to calculate the
heuristic) is still inefficient because each explored service

takes some time. The use of semantics in the marker pass-
ing heuristic reduces the standard derivation from the mean,
which means that we gather more useful information then
by just comparing the overlap with the goal. The standard
derivation from the mean is due to the random selection of
services with the same heuristic value, which means that the
heuristic is still not precise enough. This might change if
grounded actions would be analyzed.

The problems used in academia are mostly formalized in
PDDL with few semantics, e.g. input and output parameter
type class hierarchies. Additionally, the problems are made
‘hard’ by scaling the problem up, e.g. by extending the 15-
puzzle to an n-puzzle. In those toy domains, the services
available are domain specific and are mostly necessary to
solve the problem. Thus, the planning task is not a task of
using the right services but rather to bring them in the right
order. In contrast, in the general planning problem, the right
services have to be selected to establish a domain. This do-
main includes the relevant services that help the agent to
reach its goal.

This concludes our experiments. We will now take a step
back and look at our results with some mental distance.
Since the heuristic always returns a value between zero
and one, it seems still admissible because until the goal is
reached, at least one facts remains unsatisfied and thus at
least one service need to be executed.

In addition the optimal selection of the weights w1 and
w2 has to be analyzed further in future work. The heuris-
tic seems to benefit of using semantic information, but it
remains to be shown that the effort describing the services
with additional semantic description is worth the effort. Fur-
ther, we plan to use the executability as cost and adopt the
goal by removing fulfilled subgoals for the calculation of
the heuristic. Also, we are currently implementing a fast-
forward planner by removing the reasoning for consistent
states during the search.
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