
Data Cleansing for Models Trained with SGD

Satoshi Hara⇤ Atsushi Nitanda† Takanori Maehara‡

Abstract

Data cleansing is a typical approach used to improve the accuracy of machine
learning models, which, however, requires extensive domain knowledge to identify
the influential instances that affect the models. In this paper, we propose an algo-
rithm that can identify influential instances without using any domain knowledge.
The proposed algorithm automatically cleans the data, which does not require any
of the users’ knowledge. Hence, even non-experts can improve the models. The
existing methods require the loss function to be convex and an optimal model to be
obtained, which is not always the case in modern machine learning. To overcome
these limitations, we propose a novel approach specifically designed for the models
trained with stochastic gradient descent (SGD). The proposed method infers the
influential instances by retracing the steps of the SGD while incorporating interme-
diate models computed in each step. Through experiments, we demonstrate that
the proposed method can accurately infer the influential instances. Moreover, we
used MNIST and CIFAR10 to show that the models can be effectively improved
by removing the influential instances suggested by the proposed method.

1 Introduction

Building accurate models is one of the fundamental goals in machine learning. If the obtained model
is not satisfactory, users try to improve the model in several ways such as by modifying input features,
cleansing data, or even by gathering additional data. Error analysis [Ng, 2017] is a typical approach
for this purpose. In this analysis, the users hypothesize the cause of model’s failure by investigating
important features or examining the misclassified instances. However, a good hypothesis requires
experience and domain knowledge. Therefore, it is difficult for non-domain experts or non-machine
learning specialists to build accurate models.

How can we help non-experts to build accurate machine learning models? In this study, we focus on
the following data cleansing problem that removes “harmful” instances from the training set.

Problem 1 (Data Cleansing). Find a subset of the training instances such that the trained model
obtained after removing the subset has a better accuracy.

Currently, the users hypothesize the training instances that can have certain influences on the resulting
models by inspecting instances based on the domain knowledge. Our aim is to develop an algorithm
that can identify influential instances without using any domain knowledge. With such an algorithm,
the users do not need to hypothesize influential instances. Instead, the algorithm automatically
cleans the data, which does not require any of the users’ knowledge. Hence, with this process, even
non-experts can improve the models.

For data cleansing, we need to determine the training instances that affect the model. In the literature
of statistics, an influential instance is defined as the instance that leads to a distinct model from the
current model if the corresponding instance is absent [Cook, 1977]. A naive approach to determine

⇤
satohara@ar.sanken.osaka-u.ac.jp, Osaka University, Japan

†
nitanda@mist.i.u-tokyo.ac.jp, The University of Tokyo, Japan

‡
takanori.maehara@riken.jp, RIKEN AIP, Japan

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

these influential instances is, therefore, to retrain the model by leaving every one instance out of the
training set, which can be computationally very demanding. To efficiently infer an influential instance
without retraining, the convexity of the loss function plays an important role. Pioneering studies by
Beckman and Trussell [1974], Cook [1977], and Pregibon [1981] have shown that, for some convex
loss functions, the influential instances can be inferred without model retraining by utilizing the
optimality condition on the training loss, given that an optimal model is obtained. A recent study
by Koh and Liang [2017] further generalized these approaches to any smooth and strongly convex
loss functions by incorporating the idea of influence function [Cook and Weisberg, 1980] in robust
statistics (see Section 6).

The focus of this study is to go beyond the convexity and optimality. We aim to develop an algorithm
that can infer influential instances even for non-convex objectives such as deep neural networks.
To this end, we propose a completely different approach to infer the influential instances. The
proposed approach is based on the stochastic gradient descent (SGD). Modern machine learning
models including deep neural networks are trained using SGD and its variants. Our idea is to redefine
the notion of influence for the models trained with SGD, which we named SGD-influence. Based on
SGD-influence, we propose a method that infers the influential instances without model retraining.
The proposed method is based solely on the analysis of SGD. Different from the existing methods,
the proposed method does not require the optimality conditions to hold true on the obtained models.
The proposed method is therefore suitable to the SGD context where we no longer look for the exact
optimum of the training loss. In SGD, we instead look for the minimum error on the validation set,
which leads to early stopping of the optimization that can violate the optimality condition.

In summary, the contribution of this study is threefold.

• We propose a new definition of the influence, which we name as SGD-influence, for the models
trained with SGD. SGD-influence is defined based on the counterfactual effect: what if an instance
is absent in SGD, how largely will the resulting model change?

• We propose a novel estimator of SGD-influence based on the analysis of SGD. We then construct
a proposed influence estimation algorithm based on this estimator. We also study the estimation
error of the proposed estimator on both convex and non-convex loss functions.

• Through experiments, we demonstrate that the proposed method can accurately infer the influential
instances. Moreover, we used MNIST and CIFAR10 to show that the models can be effectively
improved by removing the influential instances suggested by the proposed method.

2 Preliminaries

Notations For vectors a, b 2 Rp, we denote the inner product by ha, bi =
P

p

i=1 aibi, and the norm
by kak =

p
ha, ai. For a function f(✓) with ✓ 2 Rp, we denote its derivative byr✓f(✓).

Supervised Learning Let z = (x, y) 2 Rd ⇥Y be an observation, which is a pair of d-dimensional
input feature vector x and output y in a certain domain Y (e.g., Y = R for regression, and Y =
{�1, 1} for binary classification). The objective of learning is to find a model f(x; ✓) that well
approximates the output as y ⇡ f(x; ✓). Here, ✓ 2 Rp is a parameter of the model.

Let D := {zn = (xn, yn)}Nn=1 be a training set with independent and identically distributed
observations. We denote the loss function for an instance z with the parameter ✓ by `(z; ✓). The
learning problem is then denoted as

✓̂ = argmin✓2Rp
1
N

P
N

n=1 `(zn; ✓). (1)

SGD Let g(z; ✓) := r✓`(z; ✓). SGD starts the optimization from the initial parameter ✓[1]. An
update rule of the mini-batch SGD at the t-th step for the problem (1) is given by ✓[t+1] ✓[t] �
⌘t

|St|
P

i2St
g(zi; ✓[t]), where St denotes the set of instance indices used in the t-th step, and ⌘t > 0

is the learning rate. We denote the number of total SGD steps by T .

3 SGD-Influence

We propose a novel notion of influence for the models trained with SGD, which we name as SGD-

influence. We then formalize the influence estimation problem we consider in this paper.

2

We define SGD-influence based on the following counterfactual SGD where one instance is absent.
Definition 2 (Counterfactual SGD). The counterfactual SGD starts the optimization from the same
initial parameter as the ordinary SGD ✓[1]�j

= ✓[1]. The t-th step of the counterfactual SGD with the
j-th instance zj absent is defined by ✓[t+1]

�j
 ✓[t]�j

� ⌘t

|St|
P

i2St\{j} g(zi; ✓
[t]
�j

).

Definition 3 (SGD-Influence). We refer to the parameter difference ✓[t]�j
� ✓[t] as the SGD-influence

of the instance zj 2 D at step t.

It should be noted that SGD-influence can be defined in every step of SGD, even for non-optimal
models. Thus, SGD-influence is a suitable notion of influence for the cases where we no longer look
for the exact optimal of (1). In this study, we specifically focus on estimating an inner product of a
query vector u 2 Rp and the SGD-influence after T SGD steps, as follows.
Problem 4 (Linear Influence Estimation (LIE)). For a given query vector u 2 Rp, estimate the linear

influence L[T]
�j

(u) := hu, ✓[T]
�j
� ✓[T]i.

LIE includes several important applications (see [Koh and Liang, 2017]). One important application is
the influence estimation on the loss. If we take u = r✓`(x; ✓[T]) for an input x, LIE amounts to esti-
mating the change in loss L[T]

�j
(r✓`(x; ✓[T])) ⇡ `(x; ✓[T]

�j
)� `(x; ✓[T]). Negative L[T]

�j
(r✓`(x; ✓[T]))

indicates that the loss on the input x can be decreased by removing zj .

Note that SGD-influence as well as linear influence can be computed exactly by running the counter-
factual SGD for all zj 2 D. However, this requires running SGD N times, which is computationally
demanding even for N ⇡ 100. Therefore, our goal is to develop an estimation algorithm for LIE,
which does not require running SGD multiple times.

4 Estimating SGD-Influence

In this section, we present our proposed estimator of SGD-influence and show its theoretical properties.
We then derive an algorithm for LIE based on the estimator in the next section.

4.1 Proposed Estimator

We estimate SGD-influence using the first-order Taylor approximation of the gradi-
ent. Here, we assume that the loss function `(z; ✓) is twice differentiable. We
then obtain 1

|St|
P

i2St

⇣
r✓`(zi; ✓

[t]
�j

)�r✓`(zi; ✓[t])
⌘
⇡ H [t](✓[t]�j

� ✓[t]), where H [t] :=
1

|St|
P

i2St
r2

✓
`(zi; ✓[t]) is the Hessian of the loss on the mini-batch St. With this approximation,

denoting an identity matrix by I , we have

✓[t]�j
� ✓[t] = (✓[t�1]

�j
� ✓[t�1])� ⌘t�1

|St�1|
X

i2St�1

(r✓`(zi; ✓
[t�1]
�j

)�r✓`(zi; ✓
[t�1]))

⇡ (I � ⌘t�1H
[t�1])(✓[t�1]

�j
� ✓[t�1]).

We construct an estimator for the SGD-influence based on this approximation. For simplicity, here,
we focus on one-epoch SGD where each instance appears only once. Let Zt := I � ⌘tH [t] and
⇡(j) be the SGD step where the instance zj is used. By recursively applying the approximation and
recalling that ✓[⇡(j)+1]

�j
� ✓[⇡(j)+1] =

⌘⇡(j)

|S⇡(j)|g(zj ; ✓
[⇡(j)]), we obtain the following estimator

✓[T]
�j
� ✓[T] ⇡

⌘⇡(j)
|S⇡(j)|

ZT�1ZT�2 · · ·Z⇡(j)+1g(zj ; ✓
[⇡(j)]) =: �✓�j . (2)

4.2 Properties of �✓�j

Here, we evaluate the estimation error of the proposed estimator �✓�j for both convex and non-
convex loss functions. A notable property of the estimator �✓�j is that, unlike existing methods, the
error can be evaluated even without assuming the convexity of the loss function `(z; ✓).

Convex Loss For smooth and strongly convex problems, there exists a uniform bound on the gap
between the SGD-influence ✓[T]

�j
� ✓[T] and the proposed estimator �✓�j .

3

Theorem 5. Assume that `(z; ✓) is twice differentiable with respect to the parameter ✓ and there
exist �,⇤ > 0 such that �I � r2

✓
`(z; ✓) � ⇤I for all z, ✓. If ⌘s 1/⇤, then we get

k(✓[T]
�j
� ✓[T])��✓�jk

q
2(hj(�)2 + hj(⇤)2), (3)

where hj(a) :=
⌘⇡(j)

|S⇡(j)|
Q

T�1
s=⇡(j)+1(1� ⌘sa)kg(zj ; ✓[⇡(j)])k.

Non-Convex Loss For non-convex loss functions, the aforementioned uniform bound no longer
holds. However, we can still evaluate the growth of the estimation error. For simplicity, we consider a
constant learning rate ⌘ = O(�/

p
T) that depends only on the number of total SGD steps T . It should

be noted that SGD with this learning rate is theoretically justified to converge to a stationary point
[Ghadimi and Lan, 2013]. The next theorem indicates that �✓�j can approximate SGD-influence
well if Hessian r2

✓
`(✓, z) is Lipschitz continuous.

Theorem 6. Assume that `(z; ✓) is twice differentiable andr2
✓
`(z; ✓) is L-Lipschitz continuous with

respect to ✓. Moreover, assume that kr✓`(z; ✓)k G, r2
✓
`(z; ✓) � ⇤I for all z, ✓. Consider SGD

with a learning rate ⌘ = O(�/
p
T). Then,

k(✓[T]
�j
� ✓[T])��✓�jk

expO(�⇤
p
T) �2TG2L

⇤
. (4)

5 Proposed Method for LIE

We now derive our proposed method for LIE. First, we extend the estimator �✓�j

to multi-epoch SGD. Let ⇡1(j),⇡2(j), . . . ,⇡K(j) be the steps where the instance zj is
used in K-epoch SGD. We estimate the effect of the step ⇡k(j) based on (2) as
ZT�1ZT�2 · · ·Z⇡k(j)+1

⌘⇡k(j)

|S⇡k(j)|g(zj ; ✓
[⇡k(j)]). We then add all the effects and derive the estima-

tor �✓�j =
P

K

k=1

⇣Q
T�⇡k(j)�1
s=1 ZT�s

⌘
⌘⇡k(j)

|S⇡k(j)|g(zj ; ✓
[⇡k(j)]).

Algorithm 1 LIE for SGD: Training Phase

Initialize the parameter ✓[1]
Initialize the sequence as null: A ;
for t = 1, 2, . . . , T � 1 do
A[t] (St, ⌘t, ✓[t]) // store information

✓[t+1] ✓[t] � ⌘t

|St|
P

i2St
g(zi; ✓[t])

end for

Algorithm 2 LIE for SGD: Inference Phase
Require: u 2 Rp

Initialize the influence: L̂[T]
�j

(u) 0, 8j
for t = T � 1, T � 2, . . . , 1 do
(St, ⌘t, ✓[t]) A[t] // load information

// update the linear influence of zj

L̂[T]
�j

(u) += hu, ⌘t

|St|g(zj ; ✓
[t])i, 8j 2 St

u �= ⌘tH [t]u // update u
end for

Let u[t] := Zt+1Zt+2 . . . ZT�1u. LIE based on
the estimator �✓�j is then obtained as

hu,�✓�ji =
KX

k=1

hu[⇡k(j)],
⌘⇡k(j)

|S⇡k(j)|
g(zj ; ✓

[⇡k(j)])i.

It should be noted that u[t] can be computed
recursively u[t] Zt+1u[t+1] = u[t+1] �
⌘t+1H✓[t+1]u[t+1] by retracing SGD. The proposed
method is based on this recursive computation.

The proposed method consists of two phases, the
training phase and the inference phase, as shown
in Algorithms 1 and 2. In the training phase in Al-
gorithm 1, during running SGD, we store the tuple
of the instance indices St, learning rate ⌘t, and pa-
rameter ✓[t]. In the inference phase in Algorithm 2,
we retrace the stored information and compute u[t]

in each step.

Note that, in Algorithm 2, we need to compute H [t]u[t]. A naive implementation requires O(p2)
memory to store the matrix H [t], which can be prohibitive for very large models. We can avoid this
difficulty by directly computing H [t]u[t] without the explicit computation of H [t]. Because H [t]u[t] =
1

|St|
P

i2St
r✓hu[t],r✓`(zi; ✓[t])i, we only need to compute the derivative of hu[t],r✓`(zi; ✓[t])i,

which does not require the explicit computation of H [t]. For example, in Tensorflow, this can be
implemented in a few lines.4 The time complexity for the inference phase is O(TM�), where M is
the largest batch size in SGD and � is the complexity for computing the parameter gradient.

4
grads = [tf.gradients(loss[i], theta) for i in St]; Hu = tf.reduce_mean(

[tf.gradients(tf.tensordot(u, g, axes), theta) for g in grads], axis)

4

6 Related Studies

Influence Estimation Traditional studies on influence estimation considered the change in the
solution ✓̂ to the problem (1) if an instance zj was absent. For this purpose, they considered the
counterfactual problem ✓̂�j = argmin✓

P
N

n=1;n 6=j
`(z; ✓). The goal of the traditional influence

estimation is to obtain an estimate of the difference ✓̂�j� ✓̂ without retraining the models. Pioneering
studies by Beckman and Trussell [1974], Cook [1977], and Pregibon [1981] have shown that the
influence ✓̂�j � ✓̂ can be computed analytically for linear and generalized linear models. Koh and
Liang [2017] considered a further generalizations of those previous studies. They introduced the
following approximation for strongly convex loss functions `(z; ✓):

✓̂�j � ✓̂ ⇡ 1
N
Ĥ�1r✓`(zj ; ✓̂), (5)

where Ĥ = 1
N

P
z2D
r2`(z; ✓̂) is the Hessian of the loss for the optimal model. We note that Zhang

et al. [2018] and Khanna et al. [2019] further extended this approach. Zhang et al. [2018] used
this approach to fix the labels of the training instances. Khanna et al. [2019] proposed to find the
influential instances using the Bayesian quadrature, which includes (5) as its special case.

Our study differs from these traditional approaches in two ways. First, the proposed SGD-influence
does not assume the optimality of the obtained models. We instead consider the models obtained in
each step of SGD, which are not necessarily optimal. Second, the proposed method does not require
the function loss `(z; ✓) to be convex. The proposed method is valid even for non-convex losses.

Estimation of Data Importance Some recent works [Ren et al., 2018; Ghorbani and Zou, 2019]
focused on estimating the importance of each training instance. Ren et al. [2018] proposed weighting
each training instance so that the validation loss to be minimized. Ghorbani and Zou [2019] introduced
some axioms that the data importance should satisfy, and derived Shapley value as an ideal importance.
These studies demonstrated the effectiveness of the proposed importances only empirically. The
advantage of our study from these prior studies is in theories of the estimation error, that clarified in
which circumstances the estimated importances are accurate.

Learning from Noisy Labels There are plenty of studies for training models from noisy la-
bels [Aslam and Decatur, 1996; Brodley and Friedl, 1999; Natarajan et al., 2013; Zhang et al.,
2018]. The difference from our study is that these studies assumed that the label noise is an only
issue. However, as Figures 13 and 14 show, the model performance depends not only on label noises
but atypical inputs also. For example, in Figure 13, we can find several atypical instances that even
human cannot label them confidently. These atypical instances should be removed from the training
rather than fixing the labels because we cannot put correct labels to them.

Outlier Detection A typical approach for data cleansing is outlier detection. Outlier detection is used
to remove abnormal instances from the training set before training the model to ensure that the model
is not affected by the abnormal instances. For tabular data, there are several popular methods such as
One-class SVM [Schölkopf et al., 2001], Local Outlier Factor [Breunig et al., 2000], and Isolation
Forest [Liu et al., 2008]. For complex data such as images, autoencoders can also be used [Aggarwal,
2016; Zhou and Paffenroth, 2017] along with generative adversarial networks [Schlegl et al., 2017].
It should be noted that although these methods can find abnormal instances, they are not necessarily
influential to the resulting models, as we will show in the experiments.

7 Experiments

Here, we evaluate the two aspects of the proposed method: the performances of LIE and data
cleansing. We used Python 3 and PyTorch 1.0 for the experiments.5 The experiments were conducted
on 64bit Ubuntu 16.04 with six Intel Xeon E5-1650 3.6GHz CPU, 128GB RAM, and four GeForce
GTX 1080ti.

5The codes are available at https://github.com/sato9hara/sgd-influence

5

https://github.com/sato9hara/sgd-influence

7.1 Evaluation of LIE

We first evaluate the effectiveness of the proposed method in the estimation of linear influence. For
this purpose, we artificially created small datasets to ensure that the true linear influence is computable.
The detailed setup can be found in Appendix C.1.

Setup We used three datasets: Adult [Dua and Karra Taniskidou, 2017], 20Newsgroups6, and
MNIST [LeCun et al., 1998]. These are common benchmarks in tabular data analysis, natural
language processing, and image recognition, respectively. We adopted these three datasets to
demonstrate the validity of the proposed method across different data domains. For 20Newsgroups
and MNIST, we selected the two document categories ibm.pc.hardware and mac.hardware and
images from one and seven, respectively, so that the problem to be binary classification.

To observe the validity of the proposed method beyond convexity, we adopted two models, linear
logistic regression and deep neural networks. For deep neural networks, we used a network with two
fully connected layers with eight units each and ReLU activation. We used the sigmoid function at
the output layer and adopted the cross entropy as the loss function. It should be noted that the loss
function for linear logistic regression is convex, while that for deep neural networks is non-convex.

In the experiments, we randomly subsampled 200 instances for the training set D and validation set D0.
We then estimated the linear influence for the validation loss using Algorithm 2. Here, we set the query
vector u as u = 1

|D0|
P

z02D0 r✓`(z0; ✓[T]). The estimation of linear influence thus amounts to esti-

mating the change in the validation loss hu, ✓[T]
�j
� ✓[T]i ⇡ 1

|D0|
P

z02D0

⇣
`(z0; ✓[T]

�j
)� `(z0; ✓[T])

⌘
.

Evaluation We ran the counterfactual SGD for all zj 2 D and computed the true linear influence.
For evaluation, we compared the estimated influences with this true influence using Kendall’s tau
and Jaccard index. With Kendall’s tau, a typical metric for ordinal associations, we measured the
correlation between the estimated and true influences. Kendall’s tau takes the value between plus and
minus one, where one indicates that the orders of the estimated and true influences are identical. With
Jaccard index, we measured the identification accuracy of the influential instances. For data cleansing,
the users are interested in instances with large positive or negative influences. We selected ten
instances with the largest positive and negative true influences and constructed a set of 20 important
instances. We compared this important instances with the estimated ones using Jaccard index, which
varies between zero and one, where the value one indicates that the sets are identical.

Results We adopted the method proposed by Koh and Liang [2017] in (5) as the baseline, abbreviated
as K&L. For deep neural networks, the Hessian matrix is not positive definite, which makes the
estimator (5) invalid. To alleviate the effect of negative eigenvalues, we added a positive constant 1.0
to the diagonal as suggested by Koh and Liang [2017].

Figure 1 shows a clear advantage of the proposed method. The proposed method successfully
estimated the true linear influences with high precision. The estimated influences were concentrated
on the diagonal lines, indicating that the estimated influences accurately approximated the true
influences. In contrast, the estimated influences obtained by K&L were less accurate. We observed
that the estimator (5) sometimes gets numerically unstable owing to the presence of small eigenvalues
in the Hessian matrix.

For the quantitative comparison, we repeated the experiment by randomly changing the instance
subsampling 100 times. Table 1 lists the average Kendall’s tau and Jaccard index. The results again
show that the proposed method can accurately estimate the true linear influences.

7.2 Evaluation on Data Cleansing

We now show that the proposed method is effective for data cleansing. Specifically, on MNIST [LeCun
et al., 1998] and CIFAR10 [Krizhevsky and Hinton, 2009], we demonstrate that we can effectively
improve the models by removing influential instances suggested by the proposed method. The
detailed setup and full results can be found in Appendix C.2 and C.4.

Setup We used MNIST and CIFAR10. From the original training set, we held out randomly selected
10,000 instances for the validation set and used the remaining instances as the training set. As models,

6http://qwone.com/~jason/20Newsgroups/

6

http://qwone.com/~jason/20Newsgroups/

�2 �1 0 1 2

·10�2

�2

�1

0

1

2
·10�2

True Linear Influence

Es
tim

at
ed

K&L Proposed y = x

�1 �0.5 0 0.5 1

·10�2

�1

�0.5

0

0.5

1
·10�2

True Linear Influence

Es
tim

at
ed

�2 �1 0 1 2

·10�2

�2

�1

0

1

2
·10�2

True Linear Influence

Es
tim

at
ed

(a) LogReg: Adult (b) LogReg: 20Newsgroups (c) LogReg: MNIST

�5 0 5

·10�3
�5

0

5 ·10�3

True Linear Influence

Es
tim

at
ed

�1 �0.5 0 0.5 1

·10�2

�1

�0.5

0

0.5

1
·10�2

True Linear Influence
Es

tim
at

ed
�5 0 5

·10�3�5

0

5
·10�3

True Linear Influence

Es
tim

at
ed

(d) DNN: Adult (e) DNN: 20Newsgroups (f) DNN: MNIST

Figure 1: Estimated linear influences for linear logistic regression (LogReg) and deep neural networks (DNN)
for all the 200 training instances. K&L denotes the method of Koh and Liang [2017].

Table 1: Average Kendall’s tau and Jaccard index (± std.).
Kendall’s tau Jaccard index

LogReg DNN LogReg DNN
Proposed K&L Proposed K&L Proposed K&L Proposed K&L

Adult .93 (.02) .85 (.07) .75 (.10) .54 (.12) .80 (.10) .60 (.17) .59 (.16) .32 (.11)
20News .94 (.05) .82 (.15) .45 (.12) .37 (.12) .79 (.15) .52 (.19) .25 (.08) .11 (.07)
MNIST .95 (.02) .70 (.15) .45 (.12) .27 (.16) .83 (.10) .41 (.16) .37 (.15) .27 (.12)

we used convolutional neural networks. In SGD, we set the epoch K = 20, batch size |St| = 64, and
learning rate ⌘t = 0.05.

As baselines for data cleansing, in addition to K&L, we adopted two outlier detection methods,
Autoencoder [Aggarwal, 2016] and Isolation Forest [Liu et al., 2008]. We also adopted random data
removal as the baseline. For the proposed method, we introduced an approximate version in this
experiment. In Algorithm 2, the proposed method retraces all steps of the SGD. In the approximate
version, we retrace only one epoch, which requires less computation than the original algorithm.
Moreover, it is also storage friendly because we need to store intermediate information only in the
last epoch of SGD.

We proceeded the experiment as follows. First, we trained the model with SGD using the training set.
We then computed the influence of each training instance using the proposed method as well as other
baseline methods. Here, we used the same query vector u as in the previous experiment. Finally, we
removed the top-m influential instances from the training set and retrained the model. For model
retraining, we ran normal SGD for 19 epochs and switched to counterfactual SGD in the last epoch.7
If the misclassification rate of the retrained model decreases, we can conclude that the training set
was effectively cleansed.

Results We repeated the experiment by randomly changing the split between the training and
validation set 30 times. Figure 2 shows the misclassification rates on the test set after data cleansing
with each method.8 It is evident from the figures that the misclassification rates decreased after data
cleansing with the proposed method and its approximate version. We compared the misclassification
rates before and after the data cleansing using t-test with the significance level set to 0.05. We

7We observed that this works well. For the results with full counterfactual SGD, see Apendix C.4.
8See Appendix C.4 for the full results.

7

100 101 102 103 104
0.007

0.008

0.009

0.01

0.011

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

No Removal Random Autoencoder Isolation Forest Proposed Proposed (Approx.) K&L

100 101 102 103 104
0.15

0.16

0.17

0.18

0.19

of instances removed

M
is

cl
as

si
fic

at
io

n
ra

te

(a) MNIST (b) CIFAR10

Figure 2: Average misclassification rates on the test set after data cleansing. The errorbars are omitted for better
visibility. See Appendix C.4 for the full results.

y = 3 y = 4 y = 8 y = 6 y = deer y = frog y = truck y = dog

(a) Proposed (Approx.) (b) Autoencoder (c) Proposed (Approx.) (d) Autoencoder

Figure 3: Examples of found influential instances and their labels in (a)(b) MNIST and (c)(d) CIFAR10.

observed that none of the baseline methods except K&L attained statistically significant improvements.
By contrast, the proposed method and its approximate version attained statistically significant
improvements. For both datasets, the proposed method and its approximate version were found to be
statistically significant for the number of removed instances between 10 and 1000, and 10 and 100,
respectively.9 Moreover, both methods outperformed K&L. The results confirm that the proposed
method can effectively suggest influential instances for data cleansing. We also note that the proposed
method and its approximate version performed comparably well. This observation suggests that, in
practice, we only need to retrace only one epoch for inferring the influential instances, which requires
less computation and storing intermediate information only in the last epoch of SGD.

Figure 3 shows examples of found influential instances. An interesting observation is that Autoencoder
tended to find images with noisy or vivid backgrounds. Visually, it seems reasonable to select them
as outliers. However, as we have seen in Figure 2, removing these outliers did not help to improve
the models. In contrast, the proposed method found images with confusing shapes or backgrounds.
Although they are not strongly visually appealing as the outliers, Figure 2 confirms that these instances
significantly affect the models. These observations indicate that the proposed method could find the
influential instances, which can be missed even by users with domain knowledge.

8 Conclusion

We considered supporting non-experts to build accurate machine learning models through data
cleansing by suggesting influential instances. Specifically, we aimed at establishing an algorithm that
can infer the influential instances even for non-convex loss functions such as deep neural networks.
Our idea is to use the fact that modern machine learning models are trained using SGD. We introduced
a refined notion of influence for the models trained with SGD, which was named SGD-influence. We
then proposed an algorithm that can accurately approximate the SGD-influence without running extra
SGD. We also proved that the proposed method can provide valid estimates even for non-convex
loss functions. The experimental results have shown that the proposed method can accurately infer
influential instances. Moreover, on MNIST and CIFAR10, we demonstrated that the models can be
effectively improved by removing the influential instances suggested by the proposed method.

9See Appendix C.3 for a possible way to determine the number of removal in practice.

8

Acknowledgments

Satoshi Hara is supported by JSPS KAKENHI Grant Number JP18K18106. Atsushi Nitanda is
supported by JSPS KAKENHI Grant Number JP19K20337.

References
Charu C Aggarwal. Outlier Analysis Second Edition. Springer, 2016.

Javed A Aslam and Scott E Decatur. On the sample complexity of noise-tolerant learning. Information

Processing Letters, 57(4):189–195, 1996.

RJ Beckman and HJ Trussell. The distribution of an arbitrary studentized residual and the effects of
updating in multiple regression. Journal of the American Statistical Association, 69(345):199–201,
1974.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, volume 29, pages 93–104. ACM, 2000.

Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. Journal of artificial

intelligence research, 11:131–167, 1999.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1):15–18,
1977.

Dheeru Dua and Efi Karra Taniskidou. UCI machine learning repository, 2017.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In Proceedings of the 36th International Conference on Machine Learning, 2019.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Oluwasanmi Koyejo. Interpreting black box pre-
dictions using fisher kernels. In Proceedings of the 22nd International Conference on Artificial

Intelligence and Statistics, pages 3382–3390, 2019.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning, pages 1885–1894, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE International

Conference on Data Mining, pages 413–422. IEEE, 2008.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
noisy labels. In Advances in neural information processing systems, pages 1196–1204, 2013.

Andrew Ng. Machine learning yearning, 2017.

Daryl Pregibon. Logistic regression diagnostics. The Annals of Statistics, 9(4):705–724, 1981.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In Proceedings of the 35th International Conference on Machine Learning,
2018.

9

Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In International Conference on Information Processing in Medical Imaging, pages
146–157. Springer, 2017.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson.
Estimating the support of a high-dimensional distribution. Neural computation, 13(7):1443–1471,
2001.

Xuezhou Zhang, Xiaojin Zhu, and Stephen Wright. Training set debugging using trusted items. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages 4482–4489, 2018.

Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 665–674. ACM, 2017.

10

