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Abstract

Computing optimal transport (OT) between measures in high dimensions is doomed
by the curse of dimensionality. A popular approach to avoid this curse is to project
input measures on lower-dimensional subspaces (1D lines in the case of sliced
Wasserstein distances), solve the OT problem between these reduced measures,
and settle for the Wasserstein distance between these reductions, rather than that
between the original measures. This approach is however difficult to extend to
the case in which one wants to compute an OT map (a Monge map) between
the original measures. Since computations are carried out on lower-dimensional
projections, classical map estimation techniques can only produce maps operating
in these reduced dimensions. We propose in this work two methods to extrapolate,
from an transport map that is optimal on a subspace, one that is nearly optimal
in the entire space. We prove that the best optimal transport plan that takes such
“subspace detours” is a generalization of the Knothe-Rosenblatt transport. We show
that these plans can be explicitly formulated when comparing Gaussian measures
(between which the Wasserstein distance is commonly referred to as the Bures or
Fréchet distance). We provide an algorithm to select optimal subspaces given pairs
of Gaussian measures, and study scenarios in which that mediating subspace can be
selected using prior information. We consider applications to semantic mediation
between elliptic word embeddings and domain adaptation with Gaussian mixture
models.

1 Introduction

Minimizing the transport cost between two probability distributions [32] results in two useful
quantities: the minimum cost itself, often cast as a loss or a metric (the Wasserstein distance), and
the minimizing solution, a function known as the Monge [20] map that pushes forward the first
measure onto the second with least expected cost. While the former has long attracted the attention
of the machine learning community, the latter is playing an increasingly important role in data
sciences. Indeed, important problems such as domain adaptation [8], generative modelling [[L7, 2} [16]],
reconstruction of cell trajectories in biology [28] and auto-encoders [19, 130] among others can be
recast as the problem of finding a map, preferably optimal, which transforms a reference distribution
into another. However, accurately estimating an OT map from data samples is a difficult problem,
plagued by the well documented instability of OT in high-dimensional spaces [11,113]] and its high
computational cost.

Optimal Transport on Subspaces. Several approaches, both in theory and in practice, aim at
bridging this gap. Theory [33] supports the idea that sample complexity can be improved when
the measures are supported on lower-dimensional manifolds of high-dimensional spaces. Practical
insights [9] supported by theory [15] advocate using regularizations to improve both computational
and sample complexity. Some regularity in OT maps can also be encoded by looking at specific
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families of maps [29}23]]. Another trend relies on lower-dimensional projections of measures before
computing OT. In particular, sliced Wasserstein (SW) distances [4] leverage the simplicity of OT
between 1D measures to define distances and barycentres, by averaging the optimal transport between
projections onto several random directions. This approach has been applied to alleviate training
complexity in the GAN/VAE literature [10, [34] and was generalized very recently in [22] who
considered projections on k-dimensional subspaces that are adversarially selected. However, these
subspace approaches only carry out half of the goal of OT: by design, they do result in more robust
measures of OT costs, but they can only provide maps in subspaces that are optimal (or nearly so)
between the projected measures, not transportation maps in the original, high-dimensional space in
which the original measures live. For instance, the closest thing to a map one can obtain from using
several SW univariate projections is an average of several permutations, which is not a map but a
transport plan or coupling [26][25} p.6].

Our approach. Whereas the approaches cited above focus on OT maps and plans in projection
subspaces only, we consider here plans and maps on the original space that are constrained to be
optimal when projected on a given subspace E. This results in the definition of a class of transportation
plans that figuratively need to make an optimal “detour” in . We propose two constructions to
recover such maps corresponding respectively (i) to the independent product between conditioned
measures, and (ii) to the optimal conditioned map.

Paper Structure. After recalling background material on OT in|section 2| we introduce in section 3
the class of subspace-optimal plans that satisfy projection constraints on a given subspace E. We
characterize the degrees of freedom of E-optimal plans using their disintegrations on E and introduce
two extremal instances: Monge-Independent plans, which assume independence of the conditionals,
and Monge-Knothe maps, in which the conditionals are optimally coupled. We give closed forms
for the transport between Gaussian distributions in respectively as a degenerate Gaussian
distribution, and a linear map with block-triangular matrix representation. We provide guidelines
and a minimizing algorithm for selecting a subspace E when it is not prescribed a priori in|section 5.
Finally, in [section 6]we showcase the behavior of MK and MI transports on (noisy) synthetic data,
show how using a mediating subspace can be applied to selecting meanings for polysemous elliptical
word embeddings, and experiment using MK maps with the minimizing algorithm on a domain
adaptation task with Gaussian mixture models.

Notations. For F a linear subspace of R, E* is its orthogonal complement, Vi € R¥** (resp.
Vi € R¥47k) the matrix of orthonormal basis vectors of E (resp EL). pg : ©# — V Lz is the
orthogonal projection operator onto E. P, (R?) is the space of probability distributions over R¢ with
finite second moments. B(IRY) is the Borel algebra over R?. — denotes the weak convergence of
measures. ® is the product of measures, and is used in measure disintegration by abuse of notation.

2 Optimal Transport: Plans, Maps and Disintegration of Measure

Kantorovitch Plans. For two probability measures y, v € Py (R?), we refer to the set of couplings

(p,v) < {y € P(R? x RY) : VA, B € B(R%), v(A x RY) = pu(A), v(R% x B) = v(B)}

as the set of transportation plans between u,v. The 2-Wasserstein distance between p and v is

defined as
def

W2(p,v)= min E —[IX=Y|%.

5 (1) et(n ) (X,Y )~y [H [ ]

Conveniently, transportation problems with quadratic cost can be reduced to transportation between
centered measures. Indeed, let m,, (resp. m,) denote first moment of y (resp. v). Then, Vy €
(. ), B,y on 15X = Y IP] = [0, =m0, [P 4B x s [ (X —my,) — (¥ — 1, )2, Therefore,
in the following all probability measures are assumed to be centered, unless stated otherwise.

Monge Maps. For a Borel-measurable map 7', the push-forward of p by T is defined as the measure
Ty satisfying for all A € B(RY), Tyu(A) = u(T~1(A)). A map such that Tyu = v is called a
transportation map from p to v. When a transportation map exists, the Wasserstein distance can be
written in the form of the Monge problem

Wi (n.v) = min Ex X - T(X))



When it exists, the optimal transportation map 7™ in the Monge problem is called the Monge map
from p to v. It is then related to the optimal transportation plan v* by the relation v* = (Id, 7).
When p and v are absolutely continuous (a.c.), a Monge map always exists ([27], Theorem 1.22).

Global Maps or Plans that are Locally Optimal. Considering the projection operator on E, pg,
we write g = (pg )¢ for the marginal distribution of 1 on E. Suppose that we are given a Monge
map S between the two projected measures (g and vg. One of the contributions of this paper is to
propose extensions of this map S as a transportation plan -y (resp. a new map 71') whose projection
ve = (pe,pe)yy on that subspace E coincides with the optimal transportation plan (Idg, S)¢pp
(resp. pp o T' = S o pg). Formally, the transports introduced in [section 3]only require that S be a
transport map from f1p to v, but optimality is required in the closed forms given in section § for
Gaussian distributions. In either case, this constraint implies that +y is built “assuming that” it is equal
to (Idg, S)gup on E. This is rigorously defined using the notion of measure disintegration.

Disintegration of Measures. The disintegration of 1 on a subspace FE is the collection of measures
(fzp )zper supported on the fibers {xx} x EL such that any test function ¢ can be integrated
against p1 as [p. ¢dp = [ (/51 ¢(¥)dpay (y)) dup(zp). In particular, if X ~ 4, then the law of
X given T 1S g 5. By abuse of the measure product notation ®, measure disintegration is denoted
as {4 = lz, @ pE. A more general description of disintegration can be found in [1], Ch. 5.5.

3 Lifting Transport from Subspace to Full Space

Given two distributions p1, v € P2(R9), it is often easier to compute a Monge map S between their
marginals (1, Vg on a k-dimensional subspace F rather than in the whole space R%. When k = 1,
this fact is at the heart of sliced wasserstein approaches [4], which have recently sparked interest
in the GAN/VAE literature [10} 34]. However, when k < d, there is in general no straightforward
way of extending .S to a transportation map or plan between p and v. In this section, we prove the
existence of such extensions and characterize them.

Subspace-Optimal Plans. A transportation plan between g and v is a coupling living in P(E X E).
In general, it cannot be cast directly as a transportation plan between p and v taking values in
P(RY x R?). However, the existence of such a “lifted” plan is given by the following result, which is
used in OT theory to prove that W, is a metric:

Lemma 1 (The Gluing Lemma, [32]). Let pu1, pi2, 13 € P(R?). If v12 is a coupling of (ju1, ) and
o3 is a coupling of (ua, us3), then one can construct a triple of random variables (Z1, Za, Z3) such
that (Zl, ZQ) ~ Y12 and (ZQ, Z3) ~ Y23.

By extension of the lemma, if we define (i) a coupling between p and p g, (ii) a coupling between
v and vg, and (iii) the optimal coupling between p g and vg, (Id, S)gpr (where S stands for the
Monge map from ug to vg), we get the existence of four random variables (with laws u, pg, v and
v) which follow the desired joint laws. However, the lemma does not imply the uniqueness of those
random variables, nor does it give a closed form for the corresponding coupling between p and v.

Definition 1 (Subspace-Optimal Plans). Let p1, v € Po(R?) and E be a k-dimensional subspace of

R?. Let S be a Monge map from i to vi. We define the set of E-optimal plans between y and v as

g (p,v) Sy € W(u,v) : yp = (g, S)gus )

Degrees of freedom in I1z(p, v). When k& < d, there can be infinitely many E-optimal plans.
However, we can further characterize the degrees of freedom available to define plans in Iz (u, v).
Indeed, let v € I (u, v). Then, disintegrating v on E' x E, we get 7 = V(3 .y) @ VE, i.€. plans
in ITg (s, v) only differ on their disintegrations on E x E. Further, since vz stems from a transport
(Monge) map S, it is supported on the graph of S on E, G(S) = {(zg, S(zg)) : 2 € E} C EXE.
This implies that ~y puts zero mass when ygp # S(xg) and thus that ~ is fully characterized by

e5,S(zr))s TE € F, i.e. by the couplings between p,,, and vg ;) for g € E. This is illustrated
in F1gurei Two such couplings are presented: the first, MI (Definition[2) corresponds to independent
couplings between the conditionals, while the second (MK, Definition [3) corresponds to optimal
couplings between the conditionals.

Definition 2 (Monge-Independent Plans). o (,ul 5 DVS(ap)) ® (IdE, S)sup.



Monge-Independent transport only re-
quires that there exists a Monge map
S between ug and vg (and notonthe | ..
whole space), but extends S as a trans- N

. . /
portation plan and not a map. Since \
7))

it couples disintegrations with the in-

dependent law, it is particularly suited £ \ U/(f @& E)

to settings where all the information =
is contained in £, as shown in section

6l
When there exists a Monge map be-

tween disintegrations /iy 0 Vs(zp) Figure 1: A d = 2,k = 1 illustration. Any v € Iz (u,v)
forall zp € E (é.bgl. when ,u;rgi Y being supported on G(S) x (EL)?, all the mass from z
zrz?ilﬁcsg:)ﬁ;tsigr?sr?llapebt:t\j/)::r?u ar?s is transported on the fiber {S(xrx)} x E+. Different v’s

in ITg(u, v) correspond to different couplings between the

v using those maps. Indeed, for all 7 i
25 € B, let T(zp;) : BEX — B+ fibers {xg} x E+ and {S(zg)} x E+.

denote the Monge map from fi;, t0 Vg (5 ). The Monge-Knothe transport corresponds to the F-
optimal plan with optimal couplings between the disintegrations:

{xe} XE* {S(xe)} x E*

Definition 3 (Monge-Knothe Transport). Tyx(zg, zpL) dﬁf(S(xE), T(zp;zpL)) € E® EL.

The proof that Ty defines a transport map from y to v is a direct adaptation of the proof for the
Knothe-Rosenblatt transport ([27], Section 2.3). When it is not possible to define a Monge map
between the disintegrations, one can still consider the optimal couplings Tor (fiz 1, , V$(x 1)) and define
MK = ToT (M s VS(ep)) @ (IdE, S)s e, which we still call Monge-Knothe plan by abuse. In either
case, myk is the E-optimal plan with lowest global cost:

Proposition 1. The Monge-Knothe plan is optimal in g (u, v), namely

Tuk € argmin E(x yy.,[[|X = Y[]?].
YElE (1v)

Proof. E-optimal plans only differ in the couplings they induce between pi,, and vg(, ) for zg € E.
Since myk corresponds to the case when these couplings are optimal, disintegrating -y over I/ X E in
Jaxga Iz = yl|?dy(x,y) shows that v = myk has the lowest cost. B

Relation with the Knothe-Rosenblatt (KR) transport. These definitions are related to the KR
transport ([27]], section 2.3), which consists in defining a transport map between two a.c. measures
by recursively (i) computing the Monge map 7} between the first two one-dimensional marginals of
w and v and (ii) repeating the process between the disintegrated measures fi,, and vy, (). MI and
MK marginalize on the £ > 1 dimensional subspace F, and respectively define the transport between
disintegrations pi, and vg(, ) as the product measure and the optimal transport instead of recursing.

MK as a limit of optimal transport with re-weighted quadratic costs. Similarly to KR [5]], MK
transport maps can intuitively be obtained as the limit of optimal transport maps, when the costs on
E+ become negligible compared to the costs on E.

Proposition 2. Let R = EQEL, (Vg Vi) anorthonormal basis of E® E+ and ., v € Py (RY)
be two a.c. probability measures. Define

def

Ve>0, P.¥ def

Z(x—y) Pz —y).

Let T, be the optimal transport map for the cost d%)g Then T, — Tyx in La(p).

VEVL+eVpi Vi, dp (z,9)

Proof in the supplementary material.

MI as a limit of the discrete case. When p and v are a.c., for n € N let p,,, v, denote the uniform
distribution over n i.i.d. samples from y and v respectively, and let 7,, be an optimal transportation
plan between (pg )it and (pg)gvy given by a Monge map (which is possible assuming uniform
weights and non-overlapping projections). We have that u, — p and v,, — p. From [27], Th
1.50, 1.51, we have that 7,, € P2(E x E) converges weakly, up to subsequences, to a coupling
m € Po(E x E) that is optimal for ug and vg. On the other hand, up to points having the same



projections, the discrete plans 7,, can also be seen as plans in P(R? x R?). A natural question is
then whether the sequence 7, € P(R? x R%) has a limit in P(R? x R%).

Proposition 3. Let y1,v € Py(RY) be a.c. and compactly supported, i, Vn,n > 0 be uniform
distributions over n i.i.d. samples, and m, € Il g(pn,vn),n > 0. Then m, — mpy(p, V).

Proof in the supplementary material. We conjecture that under additional assumptions, the compact-
ness hypothesis can be relaxed. In particular, we empirically observe convergence for Gaussians.

4 Explicit Formulas for Subspace Detours in the Bures Metric

Multivariate Gaussian measures are a specific case of continuous distributions for which Wasserstein
distances and Monge maps are available in closed form. We first recall basic facts about optimal
transport between Gaussian measures, and then show that the E-optimal transports MI and MK
introduced in section E are also in closed form. For two Gaussians j, v, one has W3 (u,v) =
[m, — m,||? + B?(var y, var v) where B is the Bures metric [3] between PSD matrices [14]:
B2(A,B) € TrA + T'B — 2Tr(A/2BA1/2)1/2. The Monge map from a centered Gaussian
distribution y with covariance matrix A to one v with covariance matrix B is linear and is represented
by the matrix TAB et A~1/2(AY2BAY2)1/2A-1/2. For any linear transport map, Ty has
covariance TAT ", and the transportation cost from p to v is Ex.,[[|X — TX|*] = TrA +

TrB — Tr(TA + ATT). In the following,  (resp. v) will denote the centered Gaussian distribution
Az A
with covariance matrix A (resp. B). We write A = ( ATE AEEL
EEL EL
orthonormal basis (Vg Vi) of E® EL.

Monge-Independent Transport for Gaussians. The MI transport between Gaussian measures is
given by a degenerate Gaussian, i.e. a measure with Gaussian density over the image of its covariance
matrix X (we refer to the supplementary material for the proof).

) when A is represented in an

Proposition 4 (Monge-Independent (MI) Transport for Gaussians). Let

CY (VpAp + Vi Afp, ) TAPB2 (Vigr + (Bp) 'Bppa Vi) and S (4 Q).
Then mp(p1, v) = N(09q, %) € P(R? x RY).

A

Knothe-Rosenblatt and Monge-Knothe for Gaus-
sians. Before giving the closed-form MK map for
Gaussian measures, we derive the KR map s
section 2.3) with successive marginalization'| on
T1,29,...,£q. When d = 2 and the basis is orthonor-
mal for £ @ E-L, those two notions coincide.

Proposition 5 (Knothe-Rosenblatt (KR) Transport
between Gaussians). Let L (resp. Lp) be the
Cholesky factor of A (resp. B). The KR transport
from p to v is a linear map whose matrix is given by
TRB = Lp(La)~L. Its cost is the squared Frobe-
nius distance between the Cholesky factors L 4 and
L B

Exu[l| X — T&BXHQ] = ||Ls — Lp|? Figure 2: MI transport from a 2D Gaussian
(red) to a 1D Gaussian (blue), projected on
Proof. The KR transport with successive marginaliza- the z-axis. The two 1D distributions repre-
tion on x1, X2, ..., Tq between two a.c. distributions sent the projections of both Gaussians on the
has a lower triangular Jacobian with positive entries 2-axis, the blue one being already originally
on the diagonal. Further, since the one-dimensional supported on the z-axis. The oblique hyper-
disintegrations of Gaussians are Gaussians them- plane is the support of myy, onto which its
selves, and since Monge maps between Gaussians density is represented.

"Note that compared to [[27], this is the reversed marginalization order, which is why the KR map here has
lower triangular Jacobian.



are linear, the KR transport between two centered Gaussians is a linear map, hence its matrix
representation equals its Jacobian and is lower triangular.

Let T = Lp(La)~!. We have TAT' = LgL'L4L L, 'L} = LpL} = B, ie. Tyu = v.
Further, since TL 4 is the Cholesky factor for B, and since A is supposed non-singular, by unicity of
the Cholesky decomposition T is the only lower triangular matrix satisfying Tyu = v. Hence, it is
the KR transport map from p to v.

Finally, we have that Ey..,[| X — Tkr X ||?] = Tr(A + B — (A(Txr) " + TkrA)) = Tr(L4L} +
LgL} — (LAL} +LgL})) = |Ls —Lp|* N

Corollary 1. The (square root) cost of the Knothe-Rosenblatt transport (Ex ,,[|| X — Tz X ||?])'/2
between centered gaussians defines a distance (i.e. it satisfies all three metric axioms).

Proof. This comes from the fact that (Ex~,,[|| X — TKRXHQ])U2 =|Ls—Lg|. W

As can be expected from the fact that MK can be seen as a generalization of KR, the MK transportation

map is linear and has a block-triangular structure. The next proposition shows that the MK transport

map can be expressed as a function of the Schur complements A /A g A EL — Ag BL AElA EEL

of A w.rt. Ag, and B w.r.t. Bg, which are the covariance matrices of y (resp. v) conditioned on F.

>© © 0 0 é@/@/E@ 0

(a) Usual Monge Interpolation of Gaussians (b) Monge-Knothe Interpolation through E

Figure 3: (a) Wasserstein-Bures geodesic and (b) Monge-Knothe interpolation through F = {(z,y) :
x =y} from pg to p1, at times ¢ = 0, 0.25,0.5,0.75, 1.

Proposition 6 (Monge-Knothe (MK) Transport for Gaussians). Let A, B be represented in an
orthonormal basis for E @ E+. The MK transport map on E between i and v is given by

Tuk = TAsBs Ok x (d—)
MK = [BEEL (TAEBE)—l _ T(A/AE)(B/BE)AEEL} (AE)_l T(A/AR)(B/Bg) | -

Proof. As can be seen from the structure of the MK transport map in Definition E, Twvk has a lower
block-triangular Jacobian (with block sizes k and d — k), with PSD matrices on the diagonal (corre-
sponding to the Jacobians of the Monge maps (i) between marginals and (ii) between conditionals).
Further, since i and v are Gaussian, their disintegrations are Gaussian as well. Hence, all Monge
maps from the disintegrations of w to that of v are linear, and therefore the matrix representing T is
equal to its Jacobian. One can check that the map T in the proposition verifies TAT ' = B and is of
the right form. One can also check that it is the unique such matrix, hence it is the MK transport map.
|

5 Selecting the Supporting Subspace

Both MI and MK transports are highly dependent on the
chosen subspace E. Depending on applications, E can
either be prescribed (e.g. if one has access to a transport Input: A B € PSD,k € [1,d],n

Algorithm 1 MK Subspace Selection

map between the marginals in a given subspace) or has to V « Polar(AB)
be selected. In the latter case, we give guidelines on how  Wwhile not converged do
prior knowledge can be used, and alternatively propose an L+ MK(VTAV,V'BV;k)
algorithm for minimizing the MK distance. V< V-_nVyL
V « Polar(V)

Subspace Selection Using Prior Knowledge. When
prior knowledge is available, one can choose a mediating
subspace E to enforce specific criteria when comparing
two distributions. Indeed, if the directions in E are known to correspond to given properties of the
data, then MK or MI transport privileges those properties when matching distributions over those not
encoded by E. In particular, if one has access to features X from a reference dataset, one can use

end while
Output: E = Span{vy,.., vy}




principal component analysis (PCA) and select the first & principal directions to compare datasets X
and X5. MK and MI then allow comparing X; and X, using the most significant features from the
reference X with higher priority. In section[6] we experiment this method on word embeddings.

Minimal Monge-Knothe Subspace. Alternatively, in the absence of prior knowledge, it is natural
to aim at finding the subspace which minimizes MK. Unfortunately, optimization on the Grassmann
manifold is quite hard in general, which makes direct optimization of MK w.r.t. E impractical.
Optimizing with respect to an orthonormal matrix V of basis vectors of R? is a more practical
parameterization, which allows to perform projected gradient descent (Algorithm[I)). The projection
step consists in computing a polar decomposition, as the projection of a matrix V onto the set of
unitary matrices is the unitary matrix in the polar decomposition of V. The proposed initialization is
V' = Polar(AB), as this is the optimal solution when A, B are co-diagonalizable. Note that since
the function being minimized is non-convex, Algorithm|[T is only guaranteed to converge to a local
minimum. In section[6] experimental evaluation of Algorithm [T]is carried out on noise-contaminated
synthetic data (Figure|6) and on a domain adaptation task with Gaussian mixture models on the Office
Home dataset with inception features (Figure[7).

6 Experiments

Color Transfer. Given a source and a target
image, the goal of color transfer is to map the
color palette of the source image (represented
by its RGB histogram) into that of the target -
image. A natural toolbox for such a task is ~ (a) Gray Source  (b) Gray OT  (c) Gray Target
optimal transport, see e.g. [4] [24]. First,a Figure 4: OT color transfer between gray projections.
k-means quantization of both images is computed. Then, the colors of the pixels within each source
cluster are modified according to the optimal transport map between both color distributions. In
Figure [5, we illustrate discrete MK transport maps for color transfer. In this setting, we project
images on the 1D space of grayscale images, relying on the 1D OT sorting-based algorithm (Figure
). Then, we solve small 2D OT problems on the corresponding disintegrations. We compare this
approach with classic full OT maps and a sliced OT approach (with 100 random projections). As
can be seen in Figure[5, MK results are visually very similar to that of full OT, with a x50 speedup
allowed by the fast 1D OT sorting-based algorithm that is comparable to sliced OT.

(a) Source (e) Target

Figure 5: Color transfer, after quantization using 3000 k-means clusters, with corresponding runtimes.

Synthetic Data. We test the behavior of MK and MI in a noisy environment, where the signal is
supported in a subspace of small dimension. We represent the signal using two normalized PSD
matrices A, B € R% %% and sample noise X1, 3y € R%*42 d, > d; from a Wishart distribution
with parameter I. We then build the noisy covariance A. = (4 ) +eX; € R%*42 (and likewise
B.) for different noise levels € and compute MI and MK distances along the first k£ directions,
k =1,...,ds. As can be seen in Figure @ both MI and MK curves exhibit a local minimum or
an “elbow” when k& = d;, i.e. when E corresponds to the subspace where the signal is located.
However, important differences in the behaviors of MI and MK can be noticed. Indeed, MI has a
steep decreasing curve from 1 to d; and then a slower decreasing curve. This is explained by the fact
that MI transport computes the OT map along the k directions of E only, and treats the conditionals
as being independent. Therefore, if £ > dj, all the signal has been fitted and for increasing values of
k MI starts fitting the noise as well. On the other hand, MK transport computes the optimal transport
on both E and the corresponding (d2 — k)-dimensional conditionals. Therefore, if k& # d, either or
both maps fit a mixture of signal and noise. Local maxima correspond to cases where the signal is the
most contaminated by noise, and minima k = d, k = ds to cases where either the marginals or the
conditionals are unaffected by noise. Using Algorithm I instead of the principle directions allows
to find better subspaces than the first k£ directions when k < dy, and then behaves similarly (up to
the gradient being stuck in local minima and thus being occasionally less competitive). Overall, the



differences in behavior of MI and MK show that MI is more adapted to noisy environments, and MK
to applications where all directions are meaningful, but where one wishes to prioritize fitting on a
subset of those directions, as shown in the next experiment.

Noise level &
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1e-02
—e— 1e-03

-%- Fixed Directions Noise level £ i3] - Buresia. 80
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—e— 0.001
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o 2e01 +| —o— Algorithm 1. x| 02
—— le-01 o, —e— 01
le-02 0.01
—o— le-03 —e— 0.001

MK(A;, Be; k) - B(A¢, Be)

MI(A¢, Be; k) - B(A¢, Be)

10?2
k 3 Noise (logscale)

(a) Monge-Independent (b) Monge-Knothe (c) Bures

Figure 6: (a)-(b): Difference between (a) MI and Bures and (b) MK and Bures metrics for different
noise levels € and subspace dimensions k. (c): Corresponding Bures values. For each €, 100 different
noise matrices are sampled. Points show mean values, and shaded areas the 25%-75% and 10%-90%
percentiles. Top row: d; = 4,d> = 8. Bottom row: d; = 4,dy = 16.

Semantic Mediation. We experiment using reference features for comparing distributions with
elliptical word embeddings [21], which represent each word from a given corpus using a mean vector
and a covariance matrix. For a given embedding, we expect the principal directions of its covariance
matrix to be linked to its semantic content. Therefore, the comparison of two words w1, w2 based on
the principal eigenvectors of a context word ¢ should be impacted by the semantic relations of w;
and ws with respect to ¢, e.g. if wy is polysemous and c is related to a specific meaning. To test this
intuition, we compute the nearest neighbors of a given word w according to the MK distance with E/
taken as the subspace spanned by the principal directions of two different contexts c; and co. We
exclude means and compute MK based on covariances only, and look at the symmetric difference of
the returned sets of words (i.e. words in KNN(w|cy) but not in KNN(w|cz), and inversely). Table[l]
shows that specific contexts affect the nearest neighbors of ambiguous words.

Table 1: Symmetric differences of the 20-NN sets of w given ¢; minus w given cy using MK.
Embeddings are 12 x 12 pretrained normalized covariance matrices from [21]. F is spanned by the 4
principal directions of the contexts. Words are printed in increasing distance order.

Word Context 1  Context 2 Difference
instrument  monitor oboe cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient
oboe monitor  tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso
windows pc door netscape, installer, doubleclick, burner, installs, adapter, router, cpus
door pc screwed, recessed, rails, ceilings, tiling, upvc, profiled, roofs
fox media hedgehog Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show

hedgehog media panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny

MK Domain Adaptation with Gaussian Mixture Models. Given a source dataset of labeled data,
domain adaptation (DA) aims at finding labels for a farget dataset by transfering knowledge from the
source. Such a problem has been successfully tackled using OT-based techniques [8]]. We illustrate
using MK Gaussian maps on a domain adaptation task where both source and target distributions
are modeled by a Gaussian mixture model (GMM). We use the Office Home dataset [31], which
comprises 15000 images from 65 different classes across 4 domains: Art, Clipart, Product and
Real World. For each image, we consider 2048-dimensional features taken from the coding layer
of an inception model, as with Fréchet inception distances [[18]]. For each source/target pair, we
represent the source as a GMM by fitting one Gaussian per source class and defining mixture weights
proportional to class frequencies, and we fit a GMM with the same number of components on the
target. Since label information is not available for the target dataset, data from different classes may
be assigned to the same component. We then compute pairwise MK distances between all source and
target components, and solve for the discrete OT plan P using those distances as costs and mixture
weights as marginals (as in [6] with Bures distances). Finally, we map the source distribution on

the target by computing the P-barycentric projection of the component-wise MK maps > . ; Pij T]\i,fk,



and assign target labels using 1-NN prediction over the mapped source data. The same procedure
is applied using Bures distances between the projections on E. We use Algorithm [T between the
empirical covariance matrices of the source and target datasets to select the supporting subspace E,

for different values of the supporting dimension & (Figure 7).
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Figure 7: Domain Adaptation: 1-NN accuracy scores on the Office Home dataset v.s. dimension k.
We compare the k-dimensional projected Bures maps with the F-MK maps and the 2048-D Bures
baseline. E is selected using Algorithm [T between the source and target covariance matrices for
k = 32,64,128, 256,512, 1024. Rows: sources, Columns: targets.

Several facts can be observed from Figure [7. First, using the full 2048-dimensional Bures maps

is regularly sub-optimal compared to Bures (resp. MK) maps on a lower-dimensional subspace,
even though this is dependent on the source/target combination. This shows the interest of not

using all available features equally in transport problems. Secondly, when F is chosen using the

minimizing algorithm|[T} in most cases MK maps yield equivalent or better classification accuracy
that the corresponding Bures maps on the projections, even though they have the same projections on
E. However, as can be expected, this does not hold for an arbitrary choice of E (not shown in the
figure). Due to the relative simplicity of this DA method (which models the domains as GMMs), we
do not aim at comparing with state-of-the-art OT DA methods [8, 7] (which compute transportation
plans between the discrete distributions directly). The goal is rather to illustrate how MK maps can
be used to compute maps which put higher priority on the most meaningful feature dimensions. Note
also that the mapping between source and target distributions used here is piecewise linear, and is
therefore more regular.

Conclusion and Future Work. We have proposed in this paper a new class of transport plans and
maps that are built using optimality constraints on a subspace, but defined over the whole space. We
have presented two particular instances, MI and MK, with different properties, and derived closed
formulations for Gaussian distributions. Future work includes exploring other applications of OT to
machine learning relying on low-dimensional projections, from which subspace-optimal transport
could be used to recover full-dimensional plans or maps.
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