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ABSTRACT

Recent advances in Generative Adversarial Networks (GANs) – in architectural
design, training strategies, and empirical tricks – have led nearly photorealistic
samples on large-scale datasets such as ImageNet. In fact, for one model in par-
ticular, BigGAN, metrics such as Inception Score or Frechet Inception Distance
nearly match those of the dataset, suggesting that these models are close to match-
ing the distribution of the training set. Given the quality of these models, it is
worth understanding to what extent these samples can be used for data augmen-
tation, a task expressed as a long-term goal of the GAN research project. To that
end, we train ResNet-50 classifiers using either purely BigGAN images or mix-
tures of ImageNet and BigGAN images, and test on the ImageNet validation set.
Our preliminary results suggest both a measured view of state-of-the-art GAN
quality and highlight limitations of current metrics. Using only BigGAN images,
we find that Top-1 and Top-5 error increased by 120% and 384%, respectively,
and furthermore, adding more BigGAN data to the ImageNet training set at best
only marginally improves classifier performance. Finally, we find that neither In-
ception Score, nor FID, nor combinations thereof are predictive of classification
accuracy. These results suggest that as GANs are beginning to be deployed in
downstream tasks, we should create metrics that better measure downstream task
performance. We propose classification performance as one such metric that, in
addition to assessing per-class sample quality, is more suited to such downstream
tasks.

1 INTRODUCTION

Recent years have witnessed a marked improvement in sample quality in Deep Generative Models.
One model class in particular, Generative Adversarial Networks (Goodfellow et al., 2014), has be-
gun to generate nearly photorealistic images. While applications of adversarial training have found
their way into image translation (Zhu et al., 2017) and style transfer (Chan et al., 2018), a typi-
cally discussed goal for such models, and in particular conditional ones, is data augmentation. Such
models have enjoyed limited success in these tasks thus far for large-scale datasets such as Ima-
geNet, likely because existing models did not generate sufficiently high-quality samples. Recently,
however, BigGANs (Brock et al., 2018) have generated photorealistic images of ImageNet data up
to 512×512 resolution, and moreover, achieve Inception Scores and Frechet Inception Distances
similar to the dataset on which they were trained. Such results suggest, though do not prove, that
BigGANs are indeed capturing the data distribution. If this were true, then it seems plausible that
these samples can be used in downstream tasks, especially in situations in which limited labelled
data are available.

In this work, we test the rather simple hypothesis that BigGANs are indeed useful for data augmen-
tation, or more drastically, data replacement of the original data distribution. To that end, we use
BigGANs for two simple experiments. First, we train ImageNet classifiers, replacing the original
training set with one produced by BigGAN. Second, we augment the original ImageNet training set
with samples from BigGAN. Our working hypothesis is that if BigGANs were indeed capturing the
data distribution, then we could use those samples, instead of or in addition to the original training
set, to improve performance on classification. That it does not – on replacement, Top-5 classification
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Table 1: ResNet-50 Results for replacement experiments for BigGAN.

Training Truncation Resolution Top-5 Top-1 Inception FID-50KSet Error Error Score

Real - 256×256 7.03% 25.99% 331.83± 5.0 2.47

BigGAN-deep 0.20 256×256 86.76% 94.89% 339.06± 3.14 20.75
BigGAN-deep 0.42 256×256 71.32% 86.70% 324.62± 3.29 15.93
BigGAN-deep 0.50 256×256 67.12% 84.34% 316.31± 3.70 14.37
BigGAN-deep 0.60 256×256 54.99% 74.49% 299.51± 3.20 12.41
BigGAN-deep 0.80 256×256 43.32% 67.12% 258.72± 2.86 9.24
BigGAN-deep 1.00 256×256 37.03% 60.93% 214.64± 2.01 7.42
BigGAN-deep 1.50 256×256 34.08% 57.35% 109.39± 1.56 11.78
BigGAN-deep 2.00 256×256 35.63% 59.02% 49.54± 0.98 28.67

error increased by 384% compared to the original training set; and on augmentation, classification
performance improves only marginally while dramatically increasing training time – suggests that
naively augmenting the dataset with BigGAN samples is of limited utility and more work is required
for BigGANs to be used in downstream tasks.

Though a negative result, a more positive byproduct of the work is the introduction of a new metric
that can better identify issues with GAN and other generative models. In particular, training a
classifier allows us to identify, for conditional generative models, which classes are particularly
poor, either due to low quality samples or underrepresentation of dataset diversity.

2 EXPERIMENTS

2.1 SETUP

Our experiments are rather simple: we use BigGAN-deep (further denoted as BigGAN) models to
either replace or augment the ImageNet training set, train an image classifier, and compare per-
formance on the ImageNet validation set. In the data replacement experiments, we replace the
ImageNet training set with one from BigGAN-deep, and each example from the original training
set is replaced with a model sample from the same class. In the augmentation experiments, we add
to the ImageNet training set, 25%, 50%, or 100% more data from BigGAN. Moreover, since the
truncation trick – which resamples dimensions that are outside the mean of the distribution – seems
to trade off quality for diversity, we perform experiments for a sweep of truncation parameters: 0.2,
0.42, 0.5, 0.8, 1.0, 1.5, and 2.0.1 In addition, we compare performance on replacement and augmen-
tation to two traditional GAN metrics: Inception Score (Salimans et al., 2016) and Frechet Inception
Distance (FID) (Heusel et al., 2017), as these metrics are the current gold standard for GAN compar-
ison. Both rely on a feature space from a classifier trained on ImageNet, suggesting that if metrics
are useful at predicting performance on a downstream task, it would indeed be this one.

We used ResNet-50 (He et al., 2016) classifier for our models, with single-crop evaluation. The
classifier is trained for 90 epochs using TensorFlow’s momentum optimizer, a learning rate schedule
linearly increasing from 0.0 to 0.4 for the first 5 epochs, and decreased by a factor of 10 at epochs
30, 60, and 80. It mirrors the 8,192 batch setup of Goyal et al. (2017) with gradual warmup.

2.2 RESULTS

Table 1 shows the performance of classifiers trained on BigGAN datasets compared to the real
dataset. At every truncation level, ResNet-50 classifiers trained on BigGAN samples generalize
substantially worse to real images than the classifier trained on real data. To better understand
why this has occurred, we broke down the performance by class for the best-performing truncation
level: 1.5. As shown in the left pane of Figure 1, nearly every class suffers a drop in performance

1Dimensions of the noise vector z whose value are greater outside the range of −2τ to 2τ (τ is the truncation
parameter) are resampled. Lower values of τ lead to less diverse datasets.
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Figure 1: Left: comparison of per-class accuracy of original (blue) vs. BigGAN-deep (red) training
data at 1.5 truncation level. Right: the top two rows are the BigGAN-deep samples from classes –
squirrel monkey, and red fox – that achieved the best test set performance relative to original dataset.
The bottom two rows are those from classes – balloon and paddlewheel – which achieved the worst.

compared to the original dataset. Performance on six classes – partridge, red fox, jaguar/panther,
squirrel monkey, African elephant, and strawberry – did improve over the original dataset, though
the improvement for those classes was marginal. The right pane of Figure 1 shows the two best
and two worst performing categories, as measured by the difference in classification performance.
Notably, for the two worst performing categories and two others – balloon, paddlewheel, pencil
sharpener, and spatula – classification accuracy was 0% on the validation set. That said, at the
best truncation levels, Top-5 Error is roughly 35%, suggesting that BigGANs are learning nontrivial
distributions.

Given the performance of BigGAN in the replacement experiments, one should not necessarily
expect improved classifier accuracy by augmenting ImageNet training set with BigGAN samples.
Figure 2 illustrates the performance of the classifiers when we increase the amount of BigGAN
training data. Perhaps somewhat surprisingly, BigGAN models that sample from lower truncation
values, and have lower sample diversity, are able to perform better on data augmentation compared
to those models that performed the best on the data replacement experiment. In fact, for some of the
lowest truncation values, one found modest improvement in classification performance: roughly 3%
improvement relative on Top-1 Error (but at the cost of 1.5 times the amount of training time).

Finally, Inception Score and FID had very little correlation with performance on either the replace-
ment or augmentation experiments, suggesting that alternative metrics will be needed when we
turn our attention to downstream tasks. For our replacement experiments, the correlation coeffi-
cient between Top-1 error and FID is 0.16, and Inception Score 0.86, the latter result incorrectly
suggesting that improved Inception Score is highly correlated with increased error. Moreover, the
best-performing methods have rather poor Inception Score and FIDs. That models that perform
poorly on Inception Score and Frechet Inception Distance also perform poorly on classification is
no surprise; that models that perform well on Inception Scores and FID perform poorly on classifi-
cation suggests that alternative metrics are needed. One can easily diagnose the issue with Inception
Score: as Barratt & Sharma (2018) noted, Inception Score does not account for intra-class diver-
sity, and a training set with little intra-class diversity may make the classifier fail to generalize to
a more diverse test set. FID should better account for this lack of diversity at least grossly, as the
metric, calculated as FID(Px, Py) = ‖µx − µy‖2 + tr(Σx + Σy − 2(ΣxΣy)1/2), compares the
covariance matrices of the data and model distribution. By comparison, per-class classification error
offers a finer measure of model performance, as it provides us a per-class metric to identify which
classes have better or worse performance. While in theory one could calculate a per-class FID, FID
is known to suffer from high bias (Bińkowski et al., 2018) for low number of samples, likely making
the per-class estimates unreliable. 2

2Bińkowski et al. (2018) proposed Kernel Inception Distance, an unbiased alternative to FID, but this metric
suffers from variance too large to be reliable when using the number of per-class samples in the ImageNet
training set (roughly 1,000 per class), much less when using the 50 in the validation set.

3



Published as a workshop paper at ICLR 2019

Figure 2: Top-1 (left) and Top-5 (Right) accuracy as training data is augmented by x% examples
from BigGAN-deep for different truncation levels. Lower truncation generates datasets with less
sample diversity.

The results on augmentation highlight different desiderata for samples that are added to the dataset
rather than replaced. Clearly, the samples added should be sufficiently different from the data to
allow the classifier to better generalize, and yet, poorer sample quality may lead to poorer gener-
alization compared to the original dataset. This may be the reason why extending the dataset with
samples generated from a lower truncation value noise – which are higher-quality, but less diverse
– perform better on augmentation than replacement. Furthermore, this may also explain why Incep-
tion Score, Frechet Inception Distance, and data replacement classification error are not predictive
of data augmentation classification performance.

3 RELATED WORK

This work encompasses two lines of work: GANs for data augmentation and improved evaluation
metrics for GANs. For data augmentation, Antoniou et al. (2017) proposed an image-conditioned
model for augmentation, and found improved results on smaller datasets. Frid-Adar et al. (2018)
used a GAN to generate synthetic training data of size 64×64×1 of images of liver lesions. For
evaluation metrics, Theis et al. (2016) noted there is difficulty in designing evaluation metrics that
will illustrate the general performance in the model. Despite this finding, those interested in mea-
suring the quality of implicit generative models have proposed practical metrics to compare sample
quality from different models: which have led to introduction of Inception Score and FID. Lopez-Paz
& Oquab (2016) recommends the use classifier two-sample tests to test GAN samples as a metric.
Other measures attempt to determine other properties of generative models. Lucic et al. (2018)
constructs synthetic datasets for which precision and recall can be computed approximately and
compares Inception Score and FID to changes in precision and recall. Geometry Score (Khrulkov &
Oseledets, 2018) constructs approximate manifolds from data and samples, and uses them for GAN
samples to determine whether there was mode collapse. Arora & Zhang (2017) attempt to determine
the support size of GANs by using a Birthday Paradox test, though it requires a human to identify
two nearly-identical samples.

4 CONCLUSION

In this work, we investigated to what extent BigGAN, the state-of-the-art GAN on ImageNet, cap-
tures the data distribution, and to what extent those samples can be used for data augmentation. Our
results demonstrate that despite excellent scores on traditional GAN metrics such as Inception Score
and Frechet Inception Distance, current state-of-the-art GAN models do not capture the distribution
for large-scale datasets such as ImageNet. Moreover, we found only a modest improvement in clas-
sifier performance when the training set was augmented with BigGAN samples. Finally, through
classifier metrics outlined in the work, we can identify on which classes BigGAN performed well,
and on which ones researchers should focus their future efforts.

An open question in this work is how to create metrics predictive of performance on downstream
tasks. Even for the classifier metric, results on data replacement did not necessarily correlate with
those on data augmentation. Better evaluation metrics will help us understand to what extent GANs,
or any other Deep Generative Models, can be used for downstream tasks.
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