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ABSTRACT

A popular machine learning strategy is the transfer of a representation (i.e. a
feature extraction function) learned on a source task to a target task. Examples
include the re-use of neural network weights or word embeddings. Our work pro-
poses novel and general sufficient conditions for the success of this approach. If
the representation learned from the source task is fixed, we identify conditions
on how the tasks relate to obtain an upper bound on target task risk via a VC
dimension-based argument. We then consider using the representation from the
source task to construct a prior, which is fine-tuned using target task data. We give
a PAC-Bayes target task risk bound in this setting under suitable conditions. We
show examples of our bounds using feedforward neural networks. Our results mo-
tivate a practical approach to weight sharing, which we validate with experiments.

1 INTRODUCTION

Empirical studies have shown the success of transferring representations between tasks (Donahue
et al., 2014; Hoffman et al., 2014; Girshick et al., 2014; Socher et al., 2013; Bansal et al., 2014).
Word embeddings learned on a source task have been shown (Qu et al., 2015) to perform better than
unigram features on target tasks such as part of speech tagging, and comparably or better than em-
beddings fine-tuned on the target task. Yosinski et al. (2014) learned neural network weights using
half of the ImageNet classes, and then learned the other classes with a neural network initialized with
these weights, finding a benefit compared to random initialization only with target task fine-tuning.
The transfer of representations, both with and without fine-tuning, is widely and successfully used.

Often a representation is learned by a different organization that may have greater access to data,
computational and human resources. Examples are the Google word2vec package (Mikolov et al.,
2013) and downloadable pre-trained neural networks.1 Under this ‘representation-as-a-service’
model, a user may expect to access the representation itself, as well as information about its perfor-
mance on the source task data on which it was trained. We aim to convert this into a guarantee of
the usefulness of the representation on the user’s target task. Our analysis also covers the case where
the source task is constructed from unlabeled data, as in neural network unsupervised pre-training.

We consider two approaches to transferring a representation learned from a source task to a target
task, as shown in Figure 1. We may either treat the representation as fixed, or we may narrow the
class of representations considered on the target task, which we call fine-tuning. The fixed option
may be attractive when very little labeled target task data is available and hence overfitting is a strong
concern, while the advantage of fine-tuning is relatively greater hypothesis class expressiveness.

Let X,Y and Z be sets known as the input, output and feature spaces respectively. Let F be a
class of representations, where f : X → Z for f ∈ F . Let G be a class of specialized classifiers,
where g : Z → Y for g ∈ G. Let the hypothesis class H := {h : ∃f ∈ F, g ∈ G such that
h = g ◦ f}. Let hS , hT : X → Y be the labeling functions and PS , PT be the input distributions
for source task S and target task T respectively. Let the risk of a hypothesis h on S and T be
RS(h) := Ex∼PS [hS(x) 6= h(x)] and RT (h) := Ex∼PT [hT (x) 6= h(x)] respectively. Let R̂S(h)
and R̂T (h) be the corresponding empirical (i.e. training set) risks. We have mS labelled points for
S and mT labelled points for T . Let dH be the VC dimension of H .

∗Daniel McNamara was a visitor at Carnegie Mellon University during the period of this research.
1For examples see http://code.google.com/archive/p/word2vec, http://caffe.

berkeleyvision.org/model_zoo and http://vlfeat.org/matconvnet/pretrained.

1

http://code.google.com/archive/p/word2vec
http://caffe.berkeleyvision.org/model_zoo
http://caffe.berkeleyvision.org/model_zoo
http://vlfeat.org/matconvnet/pretrained


Workshop track - ICLR 2017

Learning representation
from scratch

Transferring representation
without fine-tuning

Transferring representation
with fine-tuning

F

f
f̂
f

F F

F̂

f
f̂

Figure 1: A comparison of approaches to learning a representation on a target task, where the search
space in each case is the shaded area. Learning from scratch, we search a representation class F for
a good representation f ∈ F . Without fine-tuning, we fix a representation f̂ learned from the source
task. With fine-tuning, we narrow the search to F̂ ⊆ F near f̂ , which still contains f .

2 REPRESENTATION FIXED BY SOURCE TASK

Suppose labeled source data is abundant, labeled target data is scarce, and we believe the tasks
share a representation. A natural approach to leveraging the source data is to learn ĝS ◦ f̂ ∈ H on
S, from which we assume we may extract f̂ ∈ F , then conduct empirical risk minimization over
G◦f̂ := {g◦f̂ : g ∈ G} on T yielding ĝT ◦f̂ . Theorem 1 upper-bounds the risk on T for this method
via a VC dimension-based argument involving four terms: a function ω measuring a transferrability
property obtained analytically from the problem setting (while the property does not hold in general,
see example below where it does hold), the empirical risk R̂S(ĝS ◦ f̂), the generalization error of a
hypothesis in H learned from mS samples, and the generalization error of a hypothesis in G learned
from mT samples. If ω(R) = O(R), R̂S(ĝS ◦ f̂) is a small constant, mS � mT and dH � dG, the
bound is tighter compared to learning T from scratch since we avoid the generalization error of a
hypothesis in H learned from mT samples. We may use the result to select S given several options.

Theorem 1. Let ω : R → R be some non-decreasing function. Suppose PS , PT , hS , hT , f̂ , G
have the property that ∀ĝS ∈ G, min

g∈G
RT (g ◦ f̂) ≤ ω(RS(ĝS ◦ f̂)). Let ĝT := argmin

g∈G
R̂T (g ◦ f̂).

Then with probability at least 1 − δ over pairs of training sets for tasks S and T , RT (ĝT ◦ f̂) ≤
ω(R̂S(ĝS ◦ f̂) + 2

√
2dH log(2emS/dH)+2 log(8/δ)

mS
) + 4

√
2dG log(2emT /dG)+2 log(8/δ)

mT
.

In Theorem 2 we give an example of the property required by Theorem 1. We consider a neural
network with a single hidden layer. We transfer the lower-level weights (corresponding to f̂ ) learned
on S, so that only the upper-level weights (corresponding to G) are learned on T . We assume that
some lower-level weights perform well on both tasks, and that a point x for which f̂(x) contributes
to the risk on T cannot be ‘hidden’ from the risk of using f̂ on S either through low PS(x) or low
magnitude upper-level weights. Hence RS(ĝS ◦ f̂) reliably indicates the usefulness of f̂ on T .

The proof of Theorem 2 relies on a novel argument which exploits the following assumptions. Let
X = Rn and Z = Rk. Let F be the function class s.t. f(x) = [a(w1 · x), . . . , a(wk · x)], where
wi ∈ Rn for 1 ≤ i ≤ k and a : R → R is an odd function. Let G be the function class s.t. g(z) =
sign(v ·z), where v ∈ {−1, 1}k. Suppose ∃f ∈ F, gS , gT ∈ G s.t. max[RS(gS ◦f), RT (gT ◦f)] ≤
ε. Let f̂(x) := [a(ŵ1 · x), . . . , a(ŵk · x)]. Pick constants αi and βi s.t. ||wi|| = ||αiŵi − βiwi|| and
wi·(αiŵi−βiwi) = 0. LetM be a 2k×nmatrix with rowsw1, α1ŵ1−β1w1, . . . , wk, αkŵk−βkwk.
Suppose M is full rank. Suppose ∀x, x′ s.t. ||Mx|| = ||Mx′||, PT (x) ≤ cPS(x′) for some c ≥ 1.

Theorem 2. Let ω(R) := cR+ ε(1 + c). Then ∀ĝS ∈ G, min
g∈G

RT (g ◦ f̂) ≤ ω(RS(ĝS ◦ f̂)).

3 REPRESENTATION FINE-TUNED USING TARGET TASK

Consider learning ĝS ◦ f̂ on S, and then using f̂ and RS(ĝS ◦ f̂) to find F̂ ⊆ F , as in Figure 1. Let
h̃g◦f be a distribution over H associated with g ◦ f (e.g. g ◦ f is the mode of h̃g◦f ). We propose
learning T with the hypothesis class H̃G◦F̂ := {h̃g◦f : f ∈ F̂ , g ∈ G} and the prior h̃ĝS◦f̂ . Let

RT (h̃) := Ex∼PT ,h∼h̃[hT (x) 6= h(x)] and let R̂T (h̃) be computed on the training set distribution of
T . In Theorem 3 we show that if F̂ is ‘small enough’ that all h̃ ∈ H̃G◦F̂ have a small KL divergence
from h̃ĝS◦f̂ , we may apply a PAC-Bayes bound to the generalization error of hypotheses in H̃G◦F̂ .

F̂ is useful if it is also ‘large enough’ in the sense that ∃h̃gT ◦f ∈ H̃G◦F̂ such that RT (h̃gT ◦f ) ≤ ε.
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Table 1: Evaluation of transferring representations. Entries are the test set accuracy of the technique
(row) for the task (column) averaged over 10 trials, with the best result for each task shown in bold.

TECHNIQUE MNIST, γ = NEWSGROUPS, γ =
0.6 0.8 1 0.6 0.8 1

Learn T from scratch 88.4 87.9 87.9 62.6 63.2 66.1
Transfer f̂ from S, fine-tune f and train g on T 91.9 93.9 95.4 62.3 72.3 83.3
Transfer f̂ from S and fix, train g on T 87.5 92.3 97.3 52.2 69.6 83.3
Transfer ĝS ◦ f̂ from S and fix 67.4 85.6 98.1 55.5 70.7 83.6

Theorem 3. Let ω : R → R be non-decreasing. Suppose given f̂ ∈ F and RS(ĝS ◦ f̂) estimated
from S, it is possible to construct F̂ with the property ∀h̃ ∈ H̃G◦F̂ ,KL(h̃||h̃ĝS◦f̂ ) ≤ ω(RS(ĝS◦f̂)).
Then with probability at least 1 − δ over pairs of training sets for tasks S and T , ∀h̃ ∈ H̃G◦F̂ ,

RT (h̃) ≤ R̂T (h̃) +

√
ω(R̂S(ĝS◦f̂)+2

√
2dH log(2emS/dH )+2 log(8/δ)

mS
)+log 2mT /δ

2(mT−1) .

We transfer and fine-tune weights in a feedforward neural network with one hidden layer to instan-
tiate the property required by Theorem 3. We learn a deterministic hypothesis of this type on S and
obtain estimated lower-level weight vectors ŵi. For T we consider hypotheses formed by adding
independent sources of noise to the weights of a deterministic network, using lower-level weights
near ŵi (corresponding to F̂ ). We assume some lower-level weights wi perform well on both S and
T . We make F̂ ‘small enough’ by only including lower-level weights with small angles to ŵi, and
‘large enough’ by upper-bounding the angle between each pair wi and ŵi in terms of the risk using
ŵi on S. Using similar assumptions to those for Theorem 2, we derive a comparable result.

4 MODIFIED REGULARIZATION PENALTY

Relaxing the hard constraint on F̂ motivates a loss function with modified regularization (1). Let
yi and ŷi be the label and prediction respectively for the ith training point. In a fully-connected
feedforward network with l layers of weights, letW (j) be the jth weight matrix, Ŵ (j) be its estimate
from S (excluding weights for bias units in both cases), and ||·||2 be the entry-wise 2 norm. Since we
expect the tasks to share a low-level representation (e.g. edge detectors for vision, word embeddings
for text) but be distinct at higher levels (e.g. image components for vision, topics for text), we set
λ1(·) to be a decreasing function, while λ2(·) controls standard L2 regularization. The technique
is novel to our knowledge, although other approaches to transferring regularization between tasks
exist (Evgeniou & Pontil, 2004; Raina et al., 2006; Argyriou et al., 2008; Ghifary et al., 2014).

m∑
i=1

[−yi log ŷi − (1− yi) log(1− ŷi)] +
l∑

j=1

[
λ1(j)

2
||W (j) − Ŵ (j)||22 +

λ2(j)

2
||W (j)||22] (1)

We experiment on basic image and text classification datasets.2 We randomly partition label classes
into sets S+ and S−, where |S+| = |S−|. We construct T+ by randomly picking from S+ up to
γ := |S+∩T+|

|S+| , then randomly picking from S− such that |T+| = |T−|. We let S be the task of
distinguishing between S+ and S− and T be that of distinguishing T+ and T−. We set λ1(1) =
λ2(2) = λ := 1, λ1(2) = λ2(1) = 0, mT = 500 and use the sigmoid activation. For MNIST we
use raw pixel intensities, a 784 × 50 × 1 network and mS = 50000. For NEWSGROUPS we use
TF-IDF weighted counts of most frequent words, a 2000× 50× 1 network and mS = 15000.

For MNIST, fine-tuning with (1) outperforms learning T from scratch with a λ
2 ||W

(j)||22 penalty for
all j (see Table 1). It appears that learning a digit requires a dense weight vector, so that Ŵ (1) tends
to encode single digits. On NEWSGROUPS it appears we may learn a newsgroup with a sparse weight
vector and so Ŵ (1) tends to encode disjunctions of newsgroups, somewhat reducing transferrability.

2The MNIST and 20 Newsgroups datasets are available at http://yann.lecun.com/exdb/mnist
and http://qwone.com/˜jason/20Newsgroups respectively.
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