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ABSTRACT

Stochastic neural net weights are used in a variety of contexts, including regular-
ization, Bayesian neural nets, exploration in reinforcement learning, and evolution
strategies. Unfortunately, due to the large number of weights, all the examples in
a mini-batch typically share the same weight perturbation, thereby limiting the
variance reduction effect of large mini-batches. We introduce flipout, an efficient
method for decorrelating the gradients within a mini-batch by implicitly sampling
pseudo-independent weight perturbations for each example. Empirically, flipout
achieves the ideal linear variance reduction for fully connected networks, con-
volutional networks, and RNNs. We find significant speedups in training neural
networks with multiplicative Gaussian perturbations. We show that flipout is ef-
fective at regularizing LSTMs, and outperforms previous methods. Flipout also
enables us to vectorize evolution strategies: in our experiments, a single GPU with
flipout can handle the same throughput as at least 40 CPU cores using existing
methods, equivalent to a factor-of-4 cost reduction on Amazon Web Services.

1 INTRODUCTION

Stochasticity is a key component of many modern neural net architectures and training algorithms.
The most widely used regularization methods are based on randomly perturbing a network’s com-
putations (Srivastava et al., 2014; Ioffe & Szegedy, 2015). Bayesian neural nets can be trained with
variational inference by perturbing the weights (Graves, 2011; Blundell et al., 2015). Weight noise
was found to aid exploration in reinforcement learning (Plappert et al., 2017; Fortunato et al., 2017).
Evolution strategies (ES) minimizes a black-box objective by evaluating many weight perturbations
in parallel, with impressive performance on robotic control tasks (Salimans et al., 2017).

Some methods perturb a network’s activations (Srivastava et al., 2014; Ioffe & Szegedy, 2015),
while others perturb its weights (Graves, 2011; Blundell et al., 2015; Plappert et al., 2017; Fortunato
et al., 2017; Salimans et al., 2017). Stochastic weights are appealing in the context of regularization
or exploration because they can be viewed as a form of posterior uncertainty about the parameters.
However, compared with stochastic activations, they have a serious drawback: because a network
typically has many more weights than units, it is very expensive to compute and store separate
weight perturbations for every example in a mini-batch. Therefore, stochastic weight methods are
typically done with a single sample per mini-batch. In contrast, activations are easy to sample in-
dependently for different training examples within a mini-batch. This allows the training algorithm
to see orders of magnitude more perturbations in a given amount of time, and the variance of the
stochastic gradients decays as 1/N , where N is the mini-batch size. We believe this is the main
reason stochastic activations are far more prevalent than stochastic weights for neural net regular-
ization. In other settings such as Bayesian neural nets and evolution strategies, one is forced to use
weight perturbations and live with the resulting inefficiency.
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In order to achieve the ideal 1/N variance reduction, the gradients within a mini-batch need not
be independent, but merely uncorrelated. In this paper, we present flipout, an efficient method
for decorrelating the gradients between different examples without biasing the gradient estimates.
Flipout applies to any perturbation distribution that factorizes by weight and is symmetric around
0—including DropConnect, multiplicative Gaussian perturbations, evolution strategies, and varia-
tional Bayesian neural nets—and to many architectures, including fully connected nets, convolu-
tional nets, and RNNs.

In Section 3, we show that flipout gives unbiased stochastic gradients, and discuss its efficient
vectorized implementation which incurs only a factor-of-2 computational overhead compared with
shared perturbations. We then analyze the asymptotics of gradient variance with and without flipout,
demonstrating strictly reduced variance. In Section 4, we measure the variance reduction effects on
a variety of architectures. Empirically, flipout gives the ideal 1/N variance reduction in all archi-
tectures we have investigated, just as if the perturbations were done fully independently for each
training example. We demonstrate speedups in training time in a large batch regime. We also use
flipout to regularize the recurrent connections in LSTMs, and show that it outperforms methods
based on dropout. Finally, we use flipout to vectorize evolution strategies (Salimans et al., 2017),
allowing a single GPU to handle the same throughput as 40 CPU cores using existing approaches;
this corresponds to a factor-of-4 cost reduction on Amazon Web Services.

2 BACKGROUND

2.1 WEIGHT PERTURBATIONS

We use the term “weight perturbation” to refer to a class of methods which sample the weights of
a neural network stochastically at training time. More precisely, let f(x,W ) denote the output of a
network with weights W on input x. The weights are sampled from a distribution qθ parameterized
by θ. We aim to minimize the expected loss E(x,y)∼D,W∼qθ [L(f(x,W ), y)], where L is a loss
function, and D denotes the data distribution. The distribution qθ can often be described in terms
of perturbations: W = W + ∆W , where W are the mean weights (typically represented explicitly
as part of θ) and ∆W is a stochastic perturbation. We now give some specific examples of weight
perturbations.

Gaussian perturbations. If the entries ∆Wij are sampled independently from Gaussian distribu-
tions with variance σ2

ij , this corresponds to the distribution Wij ∼ N (W ij , σ
2
ij). Using the repa-

rameterization trick (Kingma & Welling, 2014), this can be rewritten as Wij = W ij +σijεij , where
εij ∼ N (0, 1); this representation allows the gradients to be computed using backprop. A variant
of this is multiplicative Gaussian perturbation, where the perturbations are scaled according to the
weights: Wij ∼ N (W ij , σ

2
ijW

2

ij), or Wij = W ij(1 + σijεij), where again εij ∼ N (0, 1). Multi-
plicative perturbations can be more effective than additive ones because the information content of
the weights is the same regardless of their scale.

DropConnect. DropConnect (Wan et al., 2013) is a regularization method inspired by dropout
(Srivastava et al., 2014) which randomly zeros out a random subset of the weights. In the case of
a 50% drop rate, this can be thought of as a weight perturbation where W = W/2 and each entry
∆Wij is sampled uniformly from ±W ij .

Variational Bayesian neural nets. Rather than fitting a point estimate of a neural net’s weights, one
can adopt the Bayesian approach of putting a prior distribution p(W ) over the weights and approx-
imating the posterior distribution p(W |D) ∝ p(W )p(D|W ), where D denotes the observed data.
Graves (2011) observed that one could fit an approximation qθ(W ) ≈ p(W |D) using variational
inference; in particular, one could maximize the evidence lower bound (ELBO) with respect to θ:

F(θ) = E
W∼qθ

[log p(D |W )]−DKL(qθ ‖ p).

The negation of the second term can be viewed as the description length of the data, and the negation
of the first term can be viewed as the description length of the weights (Hinton & Van Camp, 1993).
Graves (2011) observed that if q is chosen to be a factorial Gaussian, sampling from θ can be thought
of as Gaussian weight perturbation where the variance is adapted to maximize F . Blundell et al.
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(2015) later combined this insight with the reparameterization trick (Kingma & Welling, 2014) to
derive unbiased stochastic estimates of the gradient of F .

Evolution strategies. ES (Rechenberg & Eigen, 1973) is a family of black box optimization algo-
rithms which use weight perturbations to search for model parameters. ES was recently proposed as
an alternative reinforcement learning algorithm (Schmidhuber et al., 2007; Salimans et al., 2017).
In each iteration, ES generates a collection of weight perturbations as candidates and evaluates each
according to a fitness function F . The gradient of the parameters can be estimated from the fitness
function evaluations. ES is highly parallelizable, because perturbations can be generated and eval-
uated independently by different workers. Suppose M is the number of workers, W is the model
parameter, σ is the standard deviation of the perturbations, α is the learning rate, F is the objective
function, and ∆Wm is the Gaussian noise generated at worker m. The ES algorithm tries to max-
imize E∆W

[
F
(
W + σ∆W

)]
. The gradient of the objective function and the update rule can be

given as:

∇W E
∆W

[
F (W + ∆W )

]
=

1

σ2 E
∆W

[
∆WF (W + ∆W )

]
, where ∆W ∼ N (0, σI)

=⇒ W t+1 = W t + α
1

Mσ2

M∑
m=1

F (W t + ∆Wm)∆Wm

(1)

2.2 LOCAL REPARAMETERIZATION TRICK

In some cases, it’s possible to reformulate weight perturbations as activation perturbations, thereby
allowing them to be efficiently computed fully independently for different examples in a mini-batch.
In particular, Kingma et al. (2015) showed that for fully connected networks with no weight sharing,
unbiased stochastic gradients could be computed without explicit weight perturbations using the
local reparameterization trick (LRT). For example, suppose X is the input mini-batch, W is the
weight matrix and B = XW is the matrix of activations. The LRT samples the activations B rather
than the weights W . In the case of a Gaussian posterior, the LRT is given by:

qθ(Wi,j) = N (µi,j , σ
2
i,j) ∀Wi,j ∈W =⇒ qθ(bm,j |X) = N (γm,j , δm,j)

γm,j =
∑
i=1

xm,iµi,j , and δm,j =
∑
i=1

x2
m,iσ

2
i,j ,

(2)

where bm,j denotes the perturbed activations. While the exact LRT applies only to fully connected
networks with no weight sharing, Kingma et al. (2015) also introduced variational dropout, a reg-
ularization method inspired by the LRT which performs well empirically even for architectures the
LRT does not apply to.

2.3 OTHER RELATED WORK

Control variates are another general class of strategies for variance reduction, both for black-box
optimization (Williams, 1992; Ranganath et al., 2014; Mnih & Gregor, 2014) and for gradient-based
optimization (Roeder et al., 2016; Miller et al., 2017; Louizos et al., 2017). Control variates are
complementary to flipout, so one could potentially combine these techniques to achieve a larger
variance reduction. We also note that the fastfood transform (Le et al., 2013) is based on similar
mathematical techniques. However, whereas fastfood is used to approximately multiply by a large
Gaussian matrix, flipout preserves the random matrix’s distribution and instead decorrelates the
gradients between different samples.

3 METHODS

As described above, weight perturbation algorithms suffer from high variance of the gradient esti-
mates because all training examples in a mini-batch share the same perturbation. More precisely,
sharing the perturbation induces correlations between the gradients, implying that the variance can’t
be eliminated by averaging. In this section, we introduce flipout, an efficient way to perturb the
weights quasi-independently within a mini-batch.
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3.1 FLIPOUT

We make two assumptions about the weight distribution qθ: (1) the perturbations of different weights
are independent; and (2) the perturbation distribution is symmetric around zero. These are nontrivial
constraints, but they encompass important use cases: independent Gaussian perturbations (e.g. as
used in variational BNNs and ES) and DropConnect with drop probability 0.5. We observe that,
under these assumptions, the perturbation distribution is invariant to elementwise multiplication by
a random sign matrix (i.e. a matrix whose entries are ±1). In the following, we denote elementwise
multiplication by ◦.
Observation 1. Let qθ be a perturbation distribution that satisfies the above assumptions, and let
∆̂W ∼ qθ. Let E be a random sign matrix that is independent of ∆̂W . Then ∆W = ∆̂W ◦ E is
identically distributed to ∆̂W . Furthermore, the loss gradients computed using ∆W are identically
distributed to those computed using ∆̂W .

Flipout exploits this fact by using a base perturbation ∆̂W shared by all examples in the mini-batch,
and multiplies it by a different rank-one sign matrix for each example:

∆Wn = ∆̂W ◦ rns>n , (3)

where the subscript denotes the index within the mini-batch, and rn and sn are random vectors
whose entries are sampled uniformly from ±1. According to Observation 1, the marginal distribu-
tion over gradients computed for individual training examples will be identical to the distribution
computed using shared weight perturbations. Consequently, flipout yields an unbiased estimator for
the loss gradients. However, by decorrelating the gradients between different training examples, we
can achieve much lower variance updates when averaging over a mini-batch.

Vectorization. The advantage of flipout over explicit perturbations is that computations on a mini-
batch can be written in terms of matrix multiplications. This enables efficient implementations on
GPUs and modern accelerators such as the Tensor Processing Unit (TPU) (Jouppi et al., 2017). Let
x denote the activations in one layer of a neural net. The next layer’s activations are given by:

yn = φ
(
W>xn

)
= φ

((
W + ∆̂W ◦ rns>n

)>
xn

)
= φ

(
W
>
xn +

(
∆̂W

>
(xn ◦ sn)

)
◦ rn

)
,

where φ denotes the activation function. To vectorize these computations, we define matrices R and
S whose rows correspond to the random sign vectors rn and sn for all examples in the mini-batch.
The above equation is vectorized as:

Y = φ
(
XW +

(
(X ◦ S)∆̂W

)
◦R
)
. (4)

This defines the forward pass. Because R and S are sampled independently of W and ∆̂W , we can
backpropagate through Eqn. 4 to obtain derivatives with respect to W , ∆̂W , and X .

Computational cost. In general, the most expensive operation in the forward pass is matrix mul-
tiplication. Flipout’s forward pass requires two matrix multiplications instead of one, and therefore
should be roughly twice as expensive as a forward pass with a single shared perturbation when the
multiplications are done in sequence.1 However, note that the two matrix multiplications are inde-
pendent and can be done in parallel; this incurs the same overhead as the local reparameterization
trick (Kingma et al., 2015).

A general rule of thumb for neural nets is that the backward pass requires roughly twice as many
FLOPs as the forward pass. This suggests that each update using flipout ought to be about twice
as expensive as an update with a single shared perturbation (if the matrix multiplications are done
sequentially); this is consistent with our experience.

1Depending on the efficiency of the underlying libraries, the overhead of sampling R and S may be non-
negligible. If this is an issue, these matrices may be reused between all mini-batches. In our experience, this
does not cause any drop in performance.
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Evolution strategies. ES is a highly parallelizable algorithm; however, most ES systems are en-
gineered to run on multi-core CPU machines and are not able to take full advantage of GPU par-
allelism. Flipout enables ES to run more efficiently on a GPU because it allows each worker to
evaluate a batch of quasi-independent perturbations rather than only a single perturbation. To apply
flipout to ES, we can simply replicate the starting state by the number of flipout perturbations N , at
each worker. Instead of Eqn. 1, the update rule using M workers becomes:

W t+1 = W t + α
1

MNσ2

M∑
m=1

N∑
n=1

Fmn

{
∆̂Wm ◦ rmns>mn

}
(5)

where m indexes workers, n indexes the examples in a worker’s batch, and Fmn is the reward
evaluated with the nth perturbation at worker m. Hence, each worker is able to evaluate multiple
perturbations as a batch, allowing for parallelism on a GPU architecture.

3.2 VARIANCE ANALYSIS

In this section, we analyze the variance of stochastic gradients with and without flipout. We show
that flipout is guaranteed to reduce the variance of the gradient estimates compared to using naı̈ve
shared perturbations.

Let Gx = G(x,∆W ) = ∂
∂θi
L(y, f(x,W,∆W )) denote one entry of the stochastic gradient

∇θL(y, f(x,W,∆W )) under the perturbation ∆W for a single training example x. (Note that
Gx is a random variable which depends on both x and ∆W . We analyze a single entry of the gra-
dient so that we can work with scalar-valued variances.) We denote the gradient averaged over a
mini-batch as the random variable GB = 1

N

∑N
n=1 G(xn,∆Wn), where B = {xn}Nn=1 denotes a

mini-batch of size N , and ∆Wn denotes the perturbation for the nth example. (The randomness
comes from both the choice of B and the random perturbations.) For simplicity, we assume that the
xn are sampled i.i.d. from the data distribution.

Using the Law of Total Variance, we decompose Var(GB) into a data term (the variance of the exact
mini-batch gradients) and an estimation term (the estimation variance for a fixed mini-batch):

Var (GB) = Var
B

(
E

∆W

[
GB | B

])
︸ ︷︷ ︸

data

+E
B

[
Var
∆W

(
GB | B

)]
︸ ︷︷ ︸

estimation

. (6)

Notice that the data term decays with N while the estimation term may not, due to its dependence
on the shared perturbation. But we can break the estimation term into two parts for which we can
analyze the dependence on N . To do this, we reformulate the standard shared perturbation scheme
as follows: ∆W is generated by first sampling ∆̂W and then multiplying it by a random sign matrix
rs> as in Eqn. 3 — exactly like flipout, except that the sign matrix is shared by the whole mini-
batch. According to Observation 1, this yields an identical distribution for ∆W to the standard
shared perturbation scheme. Based on this, we obtain the following decomposition:
Theorem 2 (Variance Decomposition Theorem). Define α, β, and γ to be

α = Var
x

(
E

∆W

[
Gx |x

])
+ E

x

[
Var
∆W

(Gx |x)
]

(7)

β = E
x,x′,∆̂W

[
Cov
∆W

(Gx,Gx′ |x, x′, ∆̂W )
]

(8)

γ = E
x,x′

[
Cov
∆̂W

(
E

∆W
[Gx |x, ∆̂W ], E

∆W
[Gx′ |x′, ∆̂W ] |x, x′

)]
(9)

Under the assumptions of Observation 1, the variance of the gradients under shared perturbations
and flipout perturbations can be written in terms of α, β, and γ as follows:

Fully independent perturbations: Var(GB) =
1

N
α (10)

Shared perturbation: Var(GB) =
1

N
α+

N − 1

N
(β + γ) (11)

Flipout: Var(GB) =
1

N
α+

N − 1

N
γ (12)
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Proof. Details of the proof are provided in Appendix A.

We can interpret α, β, and γ as follows. First, α combines the data term from Eqn. 6 with the
expected estimation variance for individual data points. This corresponds to the variance of the gra-
dients on individual training examples, so fully independent perturbations yield a total variance of
α/N . The other terms, β and γ, reflect the covariance between the estimation errors on different
training examples as a result of the shared perturbations. The term β reflects the covariance that
results from sampling r and s, so it is eliminated by flipout, which samples these vectors indepen-
dently. Finally, γ reflects the covariance that results from sampling ∆̂W , which flipout does not
eliminate.

Empirically, for all the neural networks we investigated, we found that α � β � γ. This implies
the following behavior for Var(GB) as a function of N : for small N , the data term α/N dominates,
giving a 1/N variance reduction; with shared perturbations, once N is large enough that α/N < β,
the variance Var(GB) levels off to β. However, flipout continues to enjoy a 1/N variance reduction
in this regime. In principle, flipout’s variance should level off at the point where α/N < γ, but in
all of our experiments, γ was small enough that this never occurred: flipout’s variance was approxi-
mately α/N throughout the entire range of N values we explored, just as if the perturbations were
sampled fully independently for every training example.

4 EXPERIMENTS

We first verified empirically the variance reduction effect of flipout predicted by Theorem 2; we
measured the variance of the gradients under different perturbations for a wide variety of neural
network architectures and batch sizes. In Section 4.2, we show that flipout applied to Gaussian
perturbations and DropConnect is effective at regularizing LSTM networks. In Section 4.3, we
demonstrate that flipout converges faster than shared perturbations when training with large mini-
batches. Finally, in Section 4.4 we present experiments combining Evolution Strategies with flipout
in both supervised learning and reinforcement learning tasks.

In our experiments, we consider the four architectures shown in Table 1 (details in Appendix B).

4.1 VARIANCE REDUCTION

Since the main effect of flipout is intended to be variance reduction of the gradients, we first esti-
mated the gradient variances of several architectures with mini-batch sizes ranging from 1 to 8196
(Fig. 1). We experimented with three perturbation methods: a single shared perturbation per mini-
batch, the local reparameterization trick (LRT) of Kingma et al. (2015), and flipout.

For each of the FC, ConVGG, and LSTM architectures, we froze a partially trained network to use
for all variance estimates, and we used multiplicative Gaussian perturbations with σ2 = 1. We
computed Monte Carlo estimates of the gradient variance, including both the data and estimation
terms in Eqn. 6. Confidence intervals are based on 50 independent runs of the estimator. Details are
given in Appendix C.

The analysis in Section 3.2 makes strong predictions about the shapes of the curves in Fig. 1. By
Theorem 2, the variance curves for flipout and shared perturbations each have the form a + b/N ,
where N is the mini-batch size. On a log-log plot, this functional form appears as a linear regime
with slope -1, a constant regime, and a smooth phase transition in between. Also, because the distri-
bution of individual gradients is identical with and without flipout, the curves must agree forN = 1.

Name Network Type Data Set
ConvLe (Shallow) Convolutional MNIST (LeCun et al., 1998)

ConVGG (Deep) Convolutional CIFAR-10 (Krizhevsky & Hinton, 2009)
FC Fully Connected MNIST

LSTM LSTM Network Penn Treebank (Marcus et al., 1993)

Table 1: Network Configurations
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(a) Fully-connected Net (FC)
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(b) Convolutional Net (conVGG)
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(c) LSTM

Figure 1: Empirical variance of gradients with respect to mini-batch size for several architectures. (a) FC
on MNIST; FC1 denotes the first layer of the FC network. (b) ConVGG on CIFAR-10; Conv1 denotes the
first convolutional layer. (c) LSTM on Penn Treebank; the variance is shown for the hidden-to-hidden weight
matrices in the first LSTM layer: Wf , Wi, Wo, and Wc are the weights for the forget, input and output gates,
and the candidate cell update, respectively. Dotted: shared perturbations. Solid: flipout. Dashed: LRT.

Our plots are consistent with both of these predictions. We observe that for shared perturbations,
the phase transition consistently occurs for mini-batch sizes somewhere between 100 and 1000. In
contrast, flipout gives the ideal linear variance reduction throughout the range of mini-batch sizes
we investigated, i.e., its behavior is indistinguishable from fully independent perturbations.

As analyzed by Kingma et al. (2015), the LRT gradients are fully independent within a mini-batch,
and are therefore guaranteed to achieve the ideal 1/N variance reduction. Furthermore, they reduce
the variance below that of explicit weight perturbations, so we would expect them to achieve smaller
variance than flipout, as shown in Fig. 1a. However, flipout is applicable to a wider variety of
architectures, including convolutional nets and RNNs.

4.2 REGULARIZATION FOR LANGUAGE MODELING

We evaluated the regularization effect of flipout on the character-level and word-level language
modeling tasks with the Penn Treebank corpus (PTB) (Marcus et al., 1993). We compared flipout
to several other methods for regularizing RNNs: naı̈ve dropout (Zaremba et al., 2014), variational
dropout (Gal & Ghahramani, 2016), recurrent dropout (Semeniuta et al., 2016), zoneout (Krueger
et al., 2016), and DropConnect (Merity et al., 2017). Zaremba et al. (2014) apply dropout only to
the feed-forward connections of an RNN (to the input, output, and connections between layers). The
other methods regularize the recurrent connections as well: Semeniuta et al. (2016) apply dropout
to the cell update vector, with masks sampled either per step or per sequence; Gal & Ghahramani
(2016) apply dropout to the forward and recurrent connections, with all dropout masks sampled per
sequence. Merity et al. (2017) use DropConnect to regularize the hidden-to-hidden weight matrices,
with a single DropConnect mask shared between examples in a mini-batch. We denote their model
WD (for weight-dropped LSTM).

Character-Level. For our character-level experiments, we used a single-layer LSTM with 1000
hidden units. We trained each model on non-overlapping sequences of 100 characters in batches
of size 32, using the AMSGrad variant of Adam (Reddi et al., 2018) with learning rate 0.002. We
perform early stopping based on validation performance. Here, we applied flipout to the hidden-to-
hidden weight matrix. More hyperparameter details are given in Appendix D. The results, measured
in bits-per-character (BPC) for the validation and test sequences of PTB, are shown in Table 2. In the
table, shared perturbations and flipout (with Gaussian noise sampling) are denoted by Mult. Gauss
and Mult. Gauss + Flipout, respectively. We also compare to RBN (recurrent batchnorm) (Cooij-
mans et al., 2017) and H-LSTM+LN (HyperLSTM + LayerNorm) (Ha et al., 2016). Mult. Gauss +
Flipout outperforms the other methods, and achieves the best reported results for this architecture.

Word-Level. For our word-level experiments, we used a 2-layer LSTM with 650 hidden units per
layer and 650-dimensional word embeddings. We trained on sequences of length 35 in batches
of size 40, for 100 epochs. We used SGD with initial learning rate 30, and decayed the learning
rate by a factor of 4 based on the nonmonotonic criterion introduced by Merity et al. (2017). We
used flipout to implement DropConnect, as described in Section 2.1, and call this WD+Flipout. We
applied WD+Flipout to the hidden-to-hidden weight matrices for recurrent regularization, and used
the same hyperparameters as Merity et al. (2017). We used embedding dropout (setting rows of the
embedding matrix to 0) with probability 0.1 for all regularized models except Gal, where we used
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Model Valid Test
Unregularized LSTM 1.468 1.423
Semeniuta (2016) 1.337 1.300
Zoneout (2016) 1.306 1.270
Gal (2016) 1.277 1.245
Mult. Gauss (σ = 1) (ours) 1.257 1.230
Mult. Gauss + Flipout (ours) 1.256 1.227
RBN (2017) – 1.32
H-LSTM + LN (2016) 1.281 1.250

Table 2: Bits-per-character (BPC) for the character-
level PTB task. The RBN and H-LSTM+LN results
are from the respective papers. All other results are
from our own experiments.

Model Valid Test
Unregularized LSTM 132.23 128.97
Zaremba (2014) 80.40 76.81
Semeniuta (2016) 81.91 77.88
Gal (2016) 78.24 75.39
Zoneout (2016) 78.66 75.45
WD (2017) 78.82 75.71
WD + Flipout (ours) 76.88 73.20

Table 3: Perplexity on the PTB word-level valida-
tion and test sets. All results are from our own exper-
iments.

probability 0.2 as specified in their paper. More hyperparameter details are given in Appendix D. We
show in Table 3 that WD+Flipout outperforms the other methods with respect to both validation and
test perplexity. In Appendix E.4, we show that WD+Flipout yields significant variance reduction for
large mini-batches, and that when training with batches of size 8192, it converges faster than WD.

4.3 LARGE BATCH TRAINING WITH FLIPOUT

Theorem 2 and Fig. 1 suggest that the variance reduction effect of flipout is more pronounced in the
large mini-batch regime. In this section, we train a Bayesian neural network with mini-batches of
size 8192 and show that flipout speeds up training in terms of the number of iterations.

We trained the FC and ConvLe networks from Section 4.1 using Bayes by Backprop (Blundell et al.,
2015). Since our primary focus is optimization, we focus on the training loss, shown in Fig. 2a:
for FC, we compare flipout with shared perturbations and the LRT; for ConvLe, we compare only
to shared perturbations since the LRT does not give an unbiased gradient estimator. We found that
flipout converged in about 3 times fewer iterations than shared perturbations for both models, while
achieving comparable performance to the LRT for the FC model. Because flipout is roughly twice
as expensive as shared perturbations (see Section 3.1), this corresponds to a 1.5x speedup overall.
Curves for the training and test error are given in Appendix E.2.

4.4 EVOLUTION STRATEGIES

ES typically runs on multiple CPU cores. The challenge in making ES GPU-friendly is that each
sample requires computing a separate weight perturbation, so traditionally each worker can only
generate one sample at a time. In Section 3.1, we showed that ES with flipout allows each worker to
evaluate a batch of perturbations, which can be done efficiently on a GPU. However, flipout induces
correlations between the samples, so we investigated whether these correlations cause a slowdown
in training relative to fully independent perturbations (which we term “IdealES”). In this section,
we show empirically that flipout ES is just as sample-efficient as IdealES, and consequently one can
obtain significantly higher throughput per unit cost using flipout ES on a GPU.

The ES gradient defined in Eqn. 1 has high variance, so a large number of samples are generally
needed before applying an update. We found that 5,000 samples are needed to achieve stable per-
formance in the supervised learning tasks. Standard ES runs the forward pass 5,000 times with
independent weight perturbations, which sees little benefit to using a GPU over a CPU. FlipES
allows the same number of samples to be evaluated using a much smaller number of explicit pertur-
bations. Throughout the experiments, we ran flipout with mini-batches of size 40 (i.e. N = 40 in
Eqn. 5).

We compared IdealES and FlipES with a fully connected network (FC) on the MNIST dataset.
Fig. 2b shows that we incur no loss in performance when using pseudo-independent noise. Next,
we compared FlipES and cpuES (using 40 CPU cores) in terms of the per-update time with respect
to the model size. The result (in Appendix E.3) shows that FlipES scales better because it runs on
the GPU. Finally, we compared FlipES and the backpropagation algorithm on both FC and ConvLe.
Fig. 2c and Fig. 2d show that FlipES achieves data efficiency comparable with the backpropagation
algorithm. IdealES has a much higher computational cost than backpropagation, due to the large
number of forward passes. FlipES narrows the computational gap between them. Although ES is
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Figure 2: Large batch training and ES. a) Training loss per iteration using Bayes By Backprop with batch size
8192 on the FC and ConvLe networks. b) Error rate of the FC network on MNIST using ES with 1,600 samples
per update; there is no drop in performance compared to ideal ES. c) Error rate of FC on MNIST, comparing
FlipES (with either 5,000 or 1,600 samples per update) with backpropagation. (This figure does not imply that
FlipES is more efficient than backprop; FlipES was around 60 times more expensive than backprop per update.)
d) The same as (c), except run on ConvLe.

more expensive than backpropagation, it can be applied to models which are not fully differentiable,
such as models with a discrete loss (e.g., accuracy or BLEU score) or with stochastic units.

5 CONCLUSIONS

We have introduced flipout, an efficient method for decorrelating the weight gradients between dif-
ferent examples in a mini-batch. We showed that flipout is guaranteed to reduce the variance com-
pared with shared perturbations. Empirically, we demonstrated significant variance reduction in the
large batch setting for a variety of network architectures, as well as significant speedups in training
time. We showed that flipout outperforms dropout-based methods for regularizing LSTMs. Flipout
also makes it practical to apply GPUs to evolution strategies, resulting in substantially increased
throughput for a given computational cost. We believe flipout will make weight perturbations prac-
tical in the large batch setting favored by modern accelerators such as Tensor Processing Units
(Jouppi et al., 2017).
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A PROOF OF THEOREM 2

In this section, we provide the proof of Theorem 2 (Variance Decomposition Theorem).

Proof. We use the notations from Section 3.2. Let x, x′ denote two training examples from the
mini-batch B, and ∆W,∆W ′ denote the weight perturbations they received. We begin with the
decomposition into data and estimation terms (Eqn. 6), which we repeat here for convenience:

Var (GB) = Var
B

(
E

∆W

[
GB | B

])
︸ ︷︷ ︸

data

+E
B

[
Var
∆W

(
GB | B

)]
︸ ︷︷ ︸

estimation

. (13)

The data term from Eqn. 13 can be simplified:

Var
B

(
E

∆W

[
GB | B

])
= Var
B

(
E

∆W

[ 1

N

N∑
n=1

Gxn

∣∣B])

= Var
B

(
1

N

N∑
n=1

E
∆W

[
Gxn
|xn
])

=
1

N
Var
x

(
E

∆W

[
Gx |x

])
(14)

We break the estimation term from Eqn. 13 into variance and covariance terms:

E
B

[
Var
∆W

(
GB | B

)]
= E
B

[
Var
∆W

(
1

N

N∑
n=1

Gxn

∣∣xn)]

=
1

N2 E
B

[
N∑
n=1

N∑
n′=1

Cov
∆Wn,∆Wn′

(
Gxn

,Gxn′ |xn, xn′
)]

=
1

N2 E
B

 N∑
n=1

Var
∆Wn

(Gxn
|xn) +

∑
n 6=n′

Cov
∆Wn,∆Wn′

(
Gxn

,Gxn′ |xn, xn′
)

=
1

N
E
x

[
Var
∆W

(Gx |x)
]

+
N − 1

N
E
x,x′

[
Cov

∆W,∆W ′
(Gx,Gx′ |x, x′)

]
(15)

We now separately analyze the cases of fully independent perturbations, shared perturbations, and
flipout.

Fully independent perturbations. If the perturbations are fully independent, the second term in
Eqn. 15 disappears. Hence, combining Eqns. 13, 14, and 15, we are left with

Var(GB) =
1

N
Var
x

(
E

∆W

[
Gx |x

])
+

1

N
E
x

[
Var
∆W

(Gx |x)
]
, (16)

which is just α/N .

Shared perturbations. Recall that we reformulate the shared perturbations in terms of first sam-
pling ∆̂W , and then letting ∆W = ∆̂W ◦ rs>, where r and s are random sign vectors shared by
the whole batch. Using the Law of Total Variance, we break the second term in Eqn. 15 into a part
that comes from sampling ∆̂W and a part that comes from sampling r and s.

Cov
∆W,∆W ′

(Gx,Gx′ |x, x′) = E
∆̂W

[
Cov

∆W,∆W ′
(Gx,Gx′ |x, x′, ∆̂W )

∣∣x, x′]+

+ Cov
∆̂W

(
E

∆W
[Gx |x, ∆̂W ], E

∆W ′
[Gx′ |x′, ∆̂W ]

∣∣x, x′) (17)
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Since the perturbations are shared, ∆W ′ = ∆W , so this can be simplified slightly to:

E
∆̂W

[
Cov
∆W

(Gx,Gx′ |x, x′, ∆̂W )
∣∣x, x′]+ Cov

∆̂W

(
E

∆W
[Gx |x, ∆̂W ], E

∆W
[Gx′ |x′, ∆̂W ]

∣∣x, x′) (18)

Plugging these two terms into the second term of Eqn. 15 yields N−1
N (β + γ), so putting this all

together we get Var(GB) = 1
N α+ N−1

N (β + γ).

Flipout. Since the perturbations for different examples are independent conditioned on ∆̂W , the
first term of Eqn. 17 vanishes. However, the second term remains. Therefore, plugging this into
Eqn. 15 and combining the result with Eqns. 13 and 14, we are left with Var(GB) = 1

N α+ N−1
N γ.

B NETWORK CONFIGURATIONS

Here, we provide details of the network configurations used for our experiments (Section 4).

The FC network is a 3-layer fully-connected network with 512-512-10 hidden units.

ConvLe is a LeNet-like network (LeCun et al., 1998) where the first two layers are convolutional
with 32 and 64 filters of size [5, 5], and use ReLU non-linearities. A 2×2 max pooling layer follows
after each convolutional layer. Dimensionality reduction only takes place in the pooling layer; the
stride for pooling is two and padding is used in the convolutional layers to keep the dimension. Two
fully-connected layers with 1024 and 10 hidden units are used to produce the classification result.

ConVGG is based on the VGG16 network (Simonyan & Zisserman, 2014). We modified the last
fully connected layer to have 10 output dimensions for our experiments on CIFAR-10. We didn’t
use batch normalization for the variance reduction experiment since it introduces extra stochasticity.

The architectures used for the LSTM experiments are described in Section 4.2. The hyperparameters
used for the language modelling experiments are provided in Appendix D.

C VARIANCE REDUCTION EXPERIMENT DETAILS

Given a network architecture, we compute the empirical stochastic gradient update variance as fol-
lows. We start with a moderately pre-trained model, such as a network with 85% training accuracy
on MNIST. Without updating the parameters, we obtain the gradients of all the weights by perform-
ing a feed-forward pass, that includes sampling ∆̂W , R, and S, followed by backpropagation. The
gradient variance of each weight is computed by repeating this procedure 200 times in the experi-
ments. Let Ṽarlj denote the estimate of the gradient variance of weight j in layer l. We compute the
gradient variance as follows:

Ṽarlj =
1

200

200∑
i=1

(gilj − glj)2 where glj =
1

200

200∑
i=1

gilj

where gilj is the gradient received by weight j in layer l. We estimate the variance of the gradients

in layer l by averaging the variances of the weights in that layer, Ṽ = 1
|J|
∑
j Ṽarlj . In order to

compute a confidence interval on the gradient variance estimate, we repeat the above procedure 50
times, yielding a sequence of average variance estimates, Ṽ1, . . . , Ṽ50. For Fig. 1, we compute the
90% confidence intervals of the variance estimates with a t-test.

For ConVGG, multiple GPUs were needed to run the variance reduction experiment with large
mini-batch sizes (such as 4096 and 8192). In such cases, it is computationally efficient to generate
independent weight perturbations on different GPUs. However, since our aim was to understand
the effects of variance reduction independent of implementation, we shared the base perturbation
among all GPUs to produce the plot shown in Fig. 1. We show in Appendix E that flipout yields
lower variance even when we sample independent perturbations on different GPUs.

For the LSTM variance reduction experiments, we used the two-layer LSTM described in Sec-
tion 4.2, trained for 3 epochs on the word-level Penn Treebank dataset. For Fig. 1, we split large
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mini-batches (size 128 and higher) into sub-batches of size 64; we sampled one base perturbation
∆W that was shared among all sub-batches, and we sampled independent R and S matrices for
each sub-batch.

D LSTM REGULARIZATION EXPERIMENT DETAILS

Long Short-Term Memory networks (LSTMs) are defined by the following equations:
it, ft,ot = σ(Whht−1 + Wxxt + b) (19)

gt = tanh(Wght−1 + Ugxt + bg) (20)
ct = ft ◦ ct−1 + it ◦ gt (21)
ht = ot ◦ tanh(ct) (22)

where it, ft, and ot are the input, forget, and output gates, respectively, gt is the candidate update,
and ◦ denotes elementwise multiplication. Naı̈ve application of dropout on the hidden state of an
LSTM is not effective, because it leads to significant memory loss over long sequences. Several
approaches have been proposed to regularize the recurrent connections, based on applying dropout
to specific terms in the LSTM equations. Semeniuta et al. (2016) propose to drop the cell update
vector, with a dropout mask dt sampled either per-step or per-sequence: ct = ft◦ct−1+it◦(dt◦gt).
Gal & Ghahramani (2016) apply dropout to the input and hidden state at each time step, xt ◦dx and
ht−1 ◦ dh, with dropout masks dx and dh sampled once per sequence (and repeated in each time
step). Krueger et al. (2016) propose to zone out units rather than dropping them; the hidden state
and cell values are either stochastically updated or maintain their previous value: ct = dc

t ◦ ct−1 +
(1− dc

t) ◦ (ft ◦ ct−1 + it ◦ gt) and ht = dh
t ◦ ht−1 + (1− dh

t ) ◦ (ot ◦ tanh(ft ◦ ct−1 + it ◦ gt)),
with zoneout masks dh

t and dc
t sampled per step.

D.1 HYPERPARAMETER DETAILS

For the word-level models (Table 3), we used gradient clipping threshold 0.25 and the following
hyperparameters:

• For Gal & Ghahramani (2016), we used variational dropout with the parameters given in
their paper: 0.35 dropout probability on inputs and outputs, 0.2 hidden state dropout, and
0.2 embedding dropout.

• For Semeniuta et al. (2016), we used 0.1 embedding dropout, 0.5 dropout on inputs and
outputs, and 0.3 dropout on cell updates, with per-step mask sampling.

• For Krueger et al. (2016), we used 0.1 embedding dropout, 0.5 dropout on inputs and
outputs, and cell and hidden state zoneout probabilities of 0.25 and 0.025, respectively.

• For WD (Merity et al., 2017), we used the parameters given in their paper: 0.1 embedding
dropout, 0.4 dropout probability on inputs and outputs, and 0.3 dropout probability on the
output between layers (the same masks are used for each step of a sequence). We use 0.5
probability for DropConnect applied to the hidden-to-hidden weight matrices.

• For WD+Flipout, we used the same parameters as Merity et al. (2017), given above, but
we regularized the hidden-to-hidden weight matrices with the variant of flipout described
in Section 2.1, which implements DropConnect with probability 0.5.

For the character-level models (Table 2), we used orthogonal initialization for the LSTM weight
matrices, gradient clipping threshold 1, and did not use input or output dropout. The input characters
were represented as one-hot vectors. We used the following hyperparameters for each model:

• For recurrent dropout (Semeniuta et al., 2016), we used 0.25 dropout probability on the cell
state, and per-step mask sampling.

• For Zoneout (Krueger et al., 2016), we used 0.5 and 0.05 for the cell and hidden state
zoneout probabilities, respectively.

• For the variational LSTM (Gal & Ghahramani, 2016), we used 0.25 hidden state dropout.
• For the flipout and shared perturbation LSTMs, we sampled Gaussian noise with σ = 1 for

the hidden-to-hidden weight matrix.
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E ADDITIONAL EXPERIMENTS

E.1 VARIANCE REDUCTION

As discussed in Appendix B, training on multiple GPUs naturally induces independent noise for
each sub-batch. Fig. 3 shows that flipout still achieves lower variance than shared perturbations
in such cases. When estimating the variance with mini-batch size 8192, running on four GPUs
naturally induces four independent noise samples, for each sub-batch of size 2048; this yields lower
variance than using a single noise sample. Similarly, for mini-batch size 4096, two independent
noise samples are generated on separate GPUs.

100 101 102 103 104

batch size

10 7

10 6

10 5

10 4

10 3

10 2

va
ria

nc
e

Variance Estimation

Conv1
Conv8

Figure 3: Empirical variance of the gradients when training on multiple GPUs. Solid: flipout. Dotted: shared
perturbations.

E.2 LARGE BATCH TRAINING WITH FLIPOUT

Fig. 4 shows the training and test error for the large mini-batch experiments described in Section 4.3.
For both FC and ConvLe networks, we used the Adam optimizer with learning rate 0.003. We
downscaled the KL term by a factor of 10 to achieve higher accuracy.

While Fig. 2a shows that flipout converges faster than shared perturbations, Fig. 4 shows that flipout
has the same generalization ability as shared perturbations (the faster convergence doesn’t result in
overfitting).
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Figure 4: Left: The training and test errors obtained by training the FC network on large mini-batches (size
8192) with Bayes by Backprop. Right: The training and test errors obtained with ConvLe in the same setting,
with mini-batch size 8192.

E.3 FLIPES V.S. CPUES

Fig. 5 shows that the computational cost of cpuES increases as the model size increases, while
FlipES scales better because it runs on the GPU.
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Figure 5: Per-update time comparison between FlipES and 40-core cpuES (5,000 samples) w.r.t. the
model size. We scale the FC network by modifying the number of hidden units, and we scale the
Conv network by modifying the number of filters (1.0 stands for 32 filters in the first convolutional
layer and 64 filters for the second one).

E.4 LARGE BATCH LSTM TRAINING

The variance reduction offered by flipout allows us to use DropConnect (Wan et al., 2013) effi-
ciently in a large mini-batch setting. Here, we use flipout to implement DropConnect as described
in Section 2.1, and use it to regularize an LSTM word-level language model. We used the LSTM
architecture proposed by Merity et al. (2017), which has 400-dimensional word embedddings and
three layers with hidden dimension 1150. Following Merity et al. (2017), we tied the weights of
the embedding layer and the decoder layer. Merity et al. (2017) use DropConnect to regularize the
hidden-to-hidden weight matrices, with a single mask shared for all examples in a batch. We used
flipout to achieve a different DropConnect mask per example. We applied WD+Flipout to both
the hidden-to-hidden (h2h) and input-to-hidden (i2h) weight matrices, and compared to the model
from Merity et al. (2017), which we call WD (for weight-dropped LSTM), with DropConnect ap-
plied to both h2h and i2h. Both models use embedding dropout 0.1, output dropout 0.4, and have
DropConnect probability 0.5 for the i2h and h2h weights. Both models were trained using Adam
with learning rate 0.001.

Fig. 6 compares the variance of the gradients of the first-layer hidden-to-hidden weights between
WD and WD+Flipout, and shows that flipout achieves significant variance reduction for mini-batch
sizes larger than 256. Fig. 7 shows the training curves of both models with batch size 8192. We see
that WD+Flipout converges faster than WD, and achieves a lower training perplexity, showcasing
the optimization benefits of flipout in large mini-batch settings.
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Figure 6: The variance reduction offered by flipout
compared to the WD model (Merity et al., 2017).
Solid lines represent WD+Flipout, while dotted
lines represent WD. The variance is shown for the
hidden-to-hidden weight matrices in the first layer:
Wf , Wi, Wo, and Wc are the weights for the for-
get, input and output gates, and the candidate cell
update, respectively.
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Figure 7: Training curves for WD and
WD+Flipout, with batch size 8192.
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