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ABSTRACT

Reinforcement learning algorithms rely on carefully engineered rewards from the
environment that are extrinsic to the agent. However, annotating each environ-
ment with hand-designed, dense rewards is difficult and not scalable, motivating
the need for developing reward functions that are intrinsic to the agent. Curiosity
is such intrinsic reward function which uses prediction error as a reward signal.
In this paper: (a) We perform the first large-scale study of purely curiosity-driven
learning, i.e. without any extrinsic rewards, across 54 standard benchmark en-
vironments, including the Atari game suite. Our results show surprisingly good
performance as well as a high degree of alignment between the intrinsic curios-
ity objective and the hand-designed extrinsic rewards of many games. (b) We
investigate the effect of using different feature spaces for computing prediction
error and show that random features are sufficient for many popular RL game
benchmarks, but learned features appear to generalize better (e.g. to novel game
levels in Super Mario Bros.). (c) We demonstrate limitations of the prediction-
based rewards in stochastic setups. Game-play videos and code are at https:
//doubleblindsupplementary.github.io/large-curiosity/.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a popular method for training agents to perform com-
plex tasks. In RL, the agent’s policy is trained by maximizing a reward function that is designed to
align with the task. The rewards are extrinsic to the agent and specific to the environment they are
defined for. Most of the success in RL has been achieved when this reward function is dense and
well-shaped, e.g., a running “score” in a video game (Mnih et al., 2015). However, designing a well-
shaped reward function is a notoriously challenging engineering problem. An alternative to “shap-
ing” an extrinsic reward is to supplement it with dense intrinsic rewards (Oudeyer & Kaplan, 2009),
that is, rewards that are generated by the agent itself. Examples of intrinsic reward include “curios-
ity” (Mohamed & Rezende, 2015; Schmidhuber, 1991b; Singh et al., 2005; Houthooft et al., 2016;
Pathak et al., 2017) which uses prediction error as reward signal, and “visitation counts” (Bellemare
et al., 2016; Ostrovski et al., 2017; Poupart et al., 2006; Lopes et al., 2012) which discourages the
agent from revisiting the same states. The idea is that these intrinsic rewards will bridge the gaps
between sparse extrinsic rewards by guiding the agent to efficiently explore the environment to find
the next extrinsic reward.

But what about scenarios with no extrinsic reward at all? This is not as strange as it sounds. Devel-
opmental psychologists talk about intrinsic motivation (i.e., curiosity) as the primary driver in the
early stages of development (Smith & Gasser, 2005; Ryan, 2000): babies appear to employ goal-less
exploration to learn skills that will be useful later on in life. There are plenty of other examples, from
playing Minecraft to visiting your local zoo, where no extrinsic rewards are required. Indeed, there
is evidence that pre-training an agent on a given environment using only intrinsic rewards allows it
to learn much faster when fine-tuned to a novel task in a novel environment (Pathak et al., 2017;
2018). Yet, so far, there has been no systematic study of learning with only intrinsic rewards.

In this paper, we perform a large-scale empirical study of agents driven purely by intrinsic rewards
across a range of diverse simulated environments. In particular, we choose the dynamics-based cu-
riosity model of intrinsic reward presented in Pathak et al. (2017) because it is scalable and trivially
parallelizable, making it ideal for large-scale experimentation. The central idea is to represent in-
trinsic reward as the error in predicting the consequence of the agent’s action given its current state,
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Figure 1: A snapshot of the 54 environments investigated in the paper. We show that agents are able to make
progress using no extrinsic reward, or end-of-episode signal, and only using curiosity. Video results, code and
models at https://doubleblindsupplementary.github.io/large-curiosity/.

i.e., the prediction error of learned forward-dynamics of the agent. We thoroughly investigate the
dynamics-based curiosity across 54 environments: video games, physics engine simulations, and
virtual 3D navigation tasks, shown in Figure 1.

To develop a better understanding of curiosity-driven learning, we further study the crucial factors
that determine its performance. In particular, predicting the future state in the high dimensional raw
observation space (e.g., images) is a challenging problem and, as shown by recent works (Pathak
et al., 2017; Stadie et al., 2015), learning dynamics in an auxiliary feature space leads to improved
results. However, how one chooses such an embedding space is a critical, yet open research problem.
To ensure stable online training of dynamics, we argue that the desired embedding space should: 1)
be compact in terms of dimensionality, 2) preserve sufficient information about the observation, and
3) be a stationary function of the observations.

Through systematic ablation, we examine the role of different ways to encode agent’s observation
such that an agent can perform well, driven purely by its own curiosity. Here “performing well”
means acting purposefully and skillfully in the environment. This can be assessed quantitatively,
in some cases, by measuring extrinsic rewards or environment-specific measures of exploration, or
qualitatively, by observing videos of the agent interacting. We show that encoding observations via
a random network turn out to be a simple, yet surprisingly effective technique for modeling curiosity
across many popular RL benchmarks. This might suggest that many popular RL video game test-
beds are not as visually sophisticated as commonly thought. Interestingly, we discover that although
random features are sufficient for good performance in environments that were used for training, the
learned features appear to generalize better (e.g., to novel game levels in Super Mario Bros.).

The main contributions of this paper are: (a) Large-scale study of curiosity-driven exploration
across a variety of environments including: the set of Atari games (Bellemare et al., 2013), Su-
per Mario Bros., virtual 3D navigation in Unity (Juliani et al., 2018), multi-player Pong, and Ro-
boschool (Schulman et al., 2017) environments. (b) Extensive investigation of different feature
spaces for learning the dynamics-based curiosity: random features, pixels, inverse-dynamics (Pathak
et al., 2017) and variational auto-encoders (Kingma & Welling, 2013) and evaluate generalization to
unseen environments. (c) Analysis of some limitations of a direct prediction-error based curiosity
formulation. We observe that if the agent itself is the source of stochasticity in the environment, it
can reward itself without making any actual progress. We empirically demonstrate this limitation in
a 3D navigation task where the agent controls different parts of the environment.

2 DYNAMICS-BASED CURIOSITY-DRIVEN LEARNING

Consider an agent that sees an observation xt, takes an action at and transitions to the next state with
observation xt+1. We want to incentivize this agent with a reward rt relating to how informative
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the transition was. To provide this reward, we use an exploration bonus involving the following
elements: (a) a network to embed observations into representations φ(x), (b) a forward dynamics
network to predict the representation of the next state conditioned on the previous observation and
action p(φ(xt+1)|xt, at). Given a transition tuple {xt, xt+1, at}, the exploration reward is then
defined as rt = − log p(φ(xt+1)|xt, at), also called the surprisal (Achiam & Sastry, 2017).

An agent trained to maximize this reward will favor transitions with high prediction error, which
will be higher in areas where the agent has spent less time, or in areas with complex dynamics. Such
a dynamics-based curiosity has been shown to perform quite in some cases (Pathak et al., 2017),
especially when the dynamics are learned in an embedding space rather than raw observations. In
this paper, we explore dynamics-based curiosity further. We use mean-squared error corresponding
to a fixed-variance Gaussian density as surprisal, i.e., ‖f(xt, at)− φ(xt+1)‖22 where f is the learned
dynamics model. However, any other density model could be used.

2.1 FEATURE SPACES FOR FORWARD DYNAMICS

Consider the representation φ in the curiosity formulation above. If φ(x) = x, the forward dynamics
model makes predictions in the observation space. A good choice of feature space can make the
prediction task more tractable and filter out irrelevant aspects of the observation space. But what
makes a good feature space for dynamics driven curiosity? We propose the qualities that a good
feature space must have:

• Compactness: The features should be easy to model by being low(er)-dimensional and
filtering out irrelevant parts of the observation space.

• Sufficiency: The features should contain all the important information. Otherwise, the agent
may fail to be rewarded for exploring some relevant aspect of the environment.

• Stability: Non-stationary rewards make it difficult for reinforcement agents to learn. Explo-
ration bonuses by necessity introduce non-stationarity since what is new and novel becomes
old and boring with time. In a dynamics-based curiosity formulation, there are two sources
of non-stationarity: the forward dynamics model is evolving over time as it is trained and
the features are changing as they learn. The former is intrinsic to the method, and the latter
should be minimized where possible

In this work, we systematically investigate the efficacy of a number of feature-learning methods,
summarized briefly as follows:

Pixels The simplest case is where φ(x) = x and we fit our forward dynamics model in the obser-
vation space. Pixels are sufficient, since no information has been thrown away, and stable since there
is no feature learning component. However, learning from pixels is tricky because the observation
space may be high-dimensional and complex.

Random Features (RF) The next simplest case is where we take our embedding network, a con-
volutional network, and fix it after random initialization. Because the network is fixed, the features
are stable. The features can be made compact in dimensionality, but they are not constrained to be.
However, random features may fail to be sufficient.

VAE IDF RF Pixels

Stable No No Yes Yes
Compact Yes Yes Maybe No
Sufficient Yes Maybe Maybe Yes

Table 1: Table summarizing the categorization of
different kinds of feature spaces considered.

Variational Autoencoders (VAE) VAEs
were introduced in (Kingma & Welling, 2013;
Rezende et al., 2014) to fit latent variable
generative models p(x, z) for observed data
x and latent variable z with prior p(z) using
variational inference. The method calls for an
inference network q(z|x) that approximates
the posterior p(z|x). This is a feedforward
network that takes an observation as input and
outputs a mean and variance vector describing a Gaussian distribution with diagonal covariance.
We can then use the mapping to the mean as our embedding network φ. These features will be a
low-dimensional approximately sufficient summary of the observation, but they may still contain
some irrelevant details such as noise, and the features will change over time as the VAE trains.
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Inverse Dynamics Features (IDF) Given a transition (st, st+1, at) the inverse dynamics task is
to predict the action at given the previous and next states st and st+1. Features are learned using
a common neural network φ to first embed st and st+1. The intuition is that the features learned
should correspond to aspects of the environment that are under the agent’s immediate control. This
feature learning method is easy to implement and in principle should be invariant to certain kinds
of noise (see (Pathak et al., 2017) for a discussion). A potential downside could be that the features
learned may not be sufficient, that is they do not represent important aspects of the environment that
the agent cannot immediately affect.

A summary of these characteristics is provided in Table 1. Note that the learned features are not
stable because their distribution changes as learning progresses. One way to achieve stability could
be to pre-train VAE or IDF networks. However, unless one has access to the internal state of the
game, it is not possible to get a representative data of the game scenes to train the features. One way
is to act randomly to collect data, but then it will be biased to where the agent started, and won’t
generalize further. Since all the features involve some trade-off of desirable properties, it becomes
an empirical question as to how effective each of them is across environments.

2.2 PRACTICAL CONSIDERATIONS IN TRAINING AN AGENT DRIVEN PURELY BY CURIOSITY

Deciding upon a feature space is only first part of the puzzle in implementing a practical system.
Here, we detail the critical choices we made in the learning algorithm. Our goal was to reduce non-
stationarity in order to make learning more stable and consistent across environments. Through the
following considerations outlined below, we are able to get exploration to work reliably for different
feature learning methods and environments with minimal changes to the hyper-parameters.

• PPO. In general, we have found the PPO algorithm (Schulman et al., 2017) to be a robust
learning algorithm that requires little hyper-parameter tuning and so we stick to it for our
experiments.

• Reward normalization. Since the reward function is non-stationary, it is useful to normalize
the scale of the rewards so that the value function can learn quickly. We did this by divid-
ing the rewards by a running estimate of the standard deviation of the sum of discounted
rewards.

• Advantage normalization. While training with PPO, we normalize the advantages (Sutton
& Barto, 1998) in a batch to have a mean of 0 and a standard deviation of 1.

• Observation normalization. We run a random agent on our target environment for 10000
steps, then calculate the mean and standard deviation of the observation and use these to
normalize the observations when training. This is useful to ensure that the features do not
have very small variance at initialization, and also ensure features have less variation across
different environments.

• More actors. The stability of the method is greatly increased by increasing the number of
parallel actors (which affects the batch-size) used. We typically use 128 parallel runs of the
same environment for data collection while training an agent.

• Normalizing the features. In combining intrinsic and extrinsic rewards, we found it use-
ful to ensure that the scale of the intrinsic reward was consistent across state space. We
achieved this by using batch-normalization (Ioffe & Szegedy, 2015) in the feature embed-
ding network.

2.3 ‘DEATH IS NOT THE END’: DISCOUNTED CURIOSITY WITH INFINITE HORIZON

One important point is that the use of an end-of-episode signal, sometimes called ‘done’, can often
leak information about the true reward function (assuming, as is common, that we have access to an
extrinsic reward signal that we hide from the agent to measure pure exploration). If we don’t remove
the ‘done’ signal, many of the Atari games become too simple. For example, a simple strategy of
giving +1 artificial reward at every time-step when the agent is alive and 0 upon death is sufficient
to obtain a high score in some games, e.g. the Atari game ‘Breakout’ where it will seek to maximize
the episode length and hence its score. In the case of negative rewards, the agent will try to end the
episode as quickly as possible.
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Figure 2: A comparison of feature learning methods on 8 selected Atari games and the Super Mario Bros.
These evaluation curves show the mean reward (with standard error) of agents trained purely by curiosity,
without reward or an end-of-episode signal. We see that our purely curiosity-driven agent is able to gather
rewards in these environments without using any extrinsic reward at training. Results on all of the Atari games
are in the appendix in Figure 8. We find curiosity model trained on pixels does not work well across any
environment and VAE features perform either same or worse than random and inverse dynamics features.
Further, inverse dynamics-trained features perform better than random features in 55% of the Atari games. An
interesting outcome of this analysis is that random features for modeling curiosity are a simple, yet surprisingly
strong baseline and likely to work well in half of the Atari games.

In light of this, if we want to study the behavior of a pure exploration agent, we should not bias
it. In the infinite horizon setting (i.e., the discounted returns are not truncated at the end of the
episode and always bootstrapped using the value function), death is just another transition to the
agent, to be avoided only if it is “boring”. Therefore, we removed ‘done’ to separate the gains of an
agent’s exploration from merely that of the death signal. In practice, we do find that the agent avoids
dying in the games since that brings it back to the beginning of the game – an area it has already
seen many times and where it can predict the dynamics well. This subtlety has been neglected by
previous works showing experiments without extrinsic rewards.

3 EXPERIMENTS

In all of our experiments, both the policy and the embedding network work directly from pixels.
For our implementation details including hyper-parameters and architectures, please refer to the
Appendix A. Unless stated otherwise, all curves are the average of three runs with different seeds,
and the shaded areas are standard errors of the mean. We have released the code and videos of a
purely curious agent playing across all environments on our website.

3.1 CURIOSITY-DRIVEN LEARNING WITHOUT EXTRINSIC REWARDS

We begin by scaling up a pure curiosity-driven learning to a large number of environments with-
out using any extrinsic rewards. We pick a total of 54 diverse simulated environments, as shown
in Figure 1, including 48 Atari games, Super Mario Bros., 2 Roboschool scenarios (learning Ant
controller and Juggling), Two-player Pong, 2 Unity mazes (with and without a TV controlled by
the agent). The goal of this large-scale analysis is to investigate the following questions: (a) What
happens when you run a pure curiosity-driven agent on a variety of games without any extrinsic
rewards? (b) What kinds of behaviors can you expect from these agents? (c) What is the effect of
the different feature-learning variants in dynamics-based curiosity on these behaviors?

Atari Games To answer these questions, we began with a collection of well-known Atari games
and ran a suite of experiments with different feature-learning methods. One way to measure how
well a purely curious agent performs is to measure the extrinsic reward it is able to achieve, i.e. how
good is the agent at playing the game. We show the evaluation curves of mean extrinsic reward in on
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8 common Atari games in Figure 2 and all 48 Atari suite in Figure 8 in the appendix. It is important
to note that the extrinsic reward is only used for evaluation, not for training. However, this is just a
proxy for pure exploration because the game rewards could be arbitrary and might not align at all
with how the agent explores out of curiosity.

The first thing to notice from the curves is: most of them are going up. This shows that a pure
curiosity-driven agent can often learn to obtain external rewards without seeing any extrinsic rewards
during training! To understand why this is happening, consider the game ‘Breakout’. The main
control action of the game is to keep hitting the bouncing ball with the paddle, but this does not
earn any points. The game score increases only when the ball hits a brick (which then disappears).
But the more bricks are struck by the ball, the more complicated the pattern of remaining bricks
becomes, making the agent more curious to explore further, hence, collecting points as a bi-product.
Furthermore, when the agent runs out of lives, the bricks are reset to the initial configuration, which
has been seen by the agent many times before and is hence very predictable, so the agent tries to
increase curiosity by staying alive and avoiding the death reset.

The fact that the curiosity reward is often sufficient is an unexpected result and might suggest that
many popular RL test-beds do not need an external reward at all. It is likely that game designers
(similar to architects, urban planners, gardeners, etc.) are purposefully setting up curricula to guide
agents through the task by curiosity alone. This could explain why curiosity-like objective aligns
reasonably well with the extrinsic reward in many human-designed environments (Lazzaro, 2004;
Costikyan, 2013; Hunicke et al., 2004; Wouters et al., 2011). However, this is not always the case,
and sometimes a curious agent can even do worse than a random agent. This happens when the
extrinsic reward has little correlation with the agent’s exploration, or when the agent fails to explore
efficiently (e.g. see games ‘Atlantis’ and ‘IceHockey’ in Figure 8). We encourage the reader to
refer to the game-play videos of the agent available on the website for a better understanding of the
learned skills.

Comparison of feature learning methods: We compare four feature learning methods in Figure 2:
raw pixels, random features, inverse dynamics features and VAE features. Training dynamics on raw
pixels performs poorly across all the environments, while encoding pixels into features does better.
This is likely because it is hard to learn a good dynamics model in pixel space, and prediction errors
may be dominated by small irrelevant details.

Surprisingly, random features (RF) perform quite well across tasks and sometimes better than using
learned features. One reason for good performance is that the random features are kept frozen
(stable), the dynamics model learned on top of them has an easier time because of the stationarity of
the target. In general, random features should work well in the domains where visual observations
are simple enough, and random features can preserve enough information about the raw signal, for
instance, Atari games. One scenario where IDF features consistently outperform random features is
for generalization, e.g. training on one level of Mario Bros and testing on another (see Section 3.2
for details).

The VAE method also performed well but was somewhat unstable, so we decided to use RF and IDF
for further experiments. The detailed result in appendix Figure 8 compares IDF vs. RF across the
full Atari suite. To quantify the learned behaviors, we compared our curious agents to a randomly
acting agent. We found that an IDF-curious agent collects more game reward than a random agent
in 75% of the Atari games, an RF-curious agent does better in 70%. Further, IDF does better than
RF in 55% of the games. Overall, random features and inverse dynamics features worked well in
general. Further details in the appendix.

Super Mario Bros. We compare different feature-learning methods in Mario Bros in Figure 2.
Super Mario Bros has already been studied in the context of extrinsic reward free learning (Pathak
et al., 2017) in small-scale experiments, and so we were keen to see how far curiosity alone can push
the agent. We used a more efficient version of the Mario simulator, allowing for longer training,
while keeping observation space, actions, and dynamics of the game the same. Due to 100x longer
training and using PPO for optimization, our agent was able to pass several levels of the game,
significantly improving over prior exploration results on Mario Bros.

Could we further push the performance of a purely curious agent by making the underlying opti-
mization more stable? One way is to scale up the batch-size. We do so by increasing the number
of parallel threads for running environments from 128 to 1024. We show the comparison between
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(a) Mario w/ large batch (b) Juggling (Roboschool) (c) Two-player Pong

Figure 3: (a) Left: A comparison of the RF method on Mario with different batch sizes. Results are without
using extrinsic reward. (b) Center: Number of ball bounces in the Juggling (Roboschool) environment. (c)
Right: Mean episode length in the multiplayer Pong environment. The discontinuous jump on the graph corre-
sponds to the agent reaching a limit of the environment - after a certain number of steps in the environment the
Atari Pong emulator starts randomly cycling through background colors and becomes unresponsive to agent’s
actions

training using 128 and 1024 parallel environment threads in Figure 3(a). As apparent from the
graph, training with large batch-size using 1024 parallel environment threads performs much better.
In fact, the agent is able to explore much more of the game: discovering 11 different levels of the
game, finding secret rooms and defeating bosses. Note that the x-axis in the figure is the number of
gradient steps, not the number of frames, since the point of this large-scale experiment is not a claim
about sample-efficiency, but performance with respect to training the agent. This result suggests
that the performance of a purely curiosity-driven agent would improve as the training of base RL
algorithm (PPO in our case) gets better. The video is on the website.

Roboschool Juggling We modified the Pong environment from the Roboschool framework to
only have one paddle and to have two balls. The action space is continuous with two-dimensions,
and we discretized the action space into 5 bins per dimension giving a total of 25 actions. Both the
policy and embedding network are trained on pixel observation space (note: not state space). This
environment is more difficult to control than the toy physics used in games, but the agent learns to
intercept and strike the balls when it comes into its area. We monitored the number of bounces of
the balls as a proxy for interaction with the environment, as shown in Figure 3(b). See the video on
the project website.

Roboschool Ant Robot We also explored using the Ant environment which consists of an Ant
with 8 controllable joints on a track. We again discretized the action space and trained policy and
embedding network on raw pixels (not state space). However, in this case, it was less easy to measure
exploration because the extrinsic distance reward measures progress along the racetrack, but a purely
curious agent is free to move in any direction. We find that a walking like behavior emerges purely
out of a curiosity-driven training. We refer the reader to the result video showing that the agent is
meaningfully interacting with the environment.

Multi-agent curiosity in Two-player Pong We have already seen that a purely curiosity-driven
agent learns to play several Atari games without reward, but we wonder how much of that behavior
is caused by the fact that the opposing player is a computer agent with a hard-coded strategy. What
would happen if we were to make both the players curious-driven? To find out, we set up a two-
player Pong game where both the sides (paddles) of the game are controlled by two curiosity-driven
agents. We shared the initial layers of both the agents but have different action heads, i.e., total
action space is now the cross product of the actions of player 1 by the actions of player 2.

Note that the extrinsic reward is meaningless in this context since the agent is playing both sides, so
instead, we show the length of the episode. The results are shown in Figure 3(c). We see from the
episode length that the agent learns to have longer rallies over time, learning to play pong without
any teacher – purely by curiosity on both sides. In fact, the game rallies eventually get so long that
they break our Atari emulator causing the colors to change radically, which crashes the policy as
shown in the plot.
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3.2 GENERALIZATION ACROSS NOVEL LEVELS IN SUPER MARIO BROS.

In the previous section, we showed that our purely curious agent can learn to explore efficiently
and learn useful skills, e.g., game playing behaviour in games, walking behaviour in Ant etc. So far,
these skills were shown in the environment where the agent was trained on. However, one advantage
of developing reward-free learning is that one should then be able to utilize abundant “unlabeled”
environments without reward functions by showing generalization to novel environments.

To test this, we first pre-train our agent using curiosity only in the Level 1-1 of Mario Bros. We
investigate how well RF and IDF-based curiosity agents generalize to novel levels of Mario. In
Figure 4, we show two examples of training on one level of Mario and fine-tuning on another testing
level, and compare to learning on the testing level from scratch. The training signal in all the cases
is curiosity-only reward. In the first case, from Level 1-1 to Level 1-2, the global statistics of
the environments match (both are ‘day-time’ environments, i.e., blue sky) but levels have different
enemies, different geometry, and different difficulty. We see that there is strong transfer from for
both methods in this scenario. However, the transfer performance is weaker in the second scenario
from Level 1-1 to Level 1-3. This is so because the problem is considerably harder for the latter
level pairing as there is a color pallette shift from day to night, as shown in Figure 4.

We further note that IDF-learned features transfer in both the cases and random features transfer
in the first case, but do not transfer in the second scenario from day to night. These results might
suggest that while random features perform well on training environments, learned features appear
to generalize better to novel levels. However, this needs more analysis in the future across a large
variety of environments. Overall, we find some promising evidence showing that skills learned by
curiosity help our agent explore efficiently in novel environments.

0 10 20 300

250

500

750

1000

1250

1500

1750

2000

World 1 level 1 to world 2 level 1

0 10 20 300

250

500

750

1000

1250

1500

1750

2000

World 1 level 1 to world 3 level 1

Frames (millions)

Ex
tri

ns
ic 

Re
wa

rd
 p

er
 E

pi
so

de

IDF scratch
IDF transfer

RF scratch
RF transfer

Figure 4: Mario generalization experiments. On the
left we show transfer results from Level 1-1 to Level 1-
2, and on the right we show transfer results from Level
1-1 to Level 1-3. Underneath each plot is a map of the
source and target environments. All agents are trained
without extrinsic reward.

Figure 5: Mean extrinsic reward in
the Unity environment while training
with terminal extrinsic + curiosity re-
ward. Note that the curve for extrinsic
reward only training is constantly zero.

3.3 CURIOSITY WITH SPARSE EXTERNAL REWARD

In all our experiments so far, we have shown that our agents can learn useful skills without any
extrinsic rewards, driven purely by curiosity. However, in many scenarios, we might want the agent
to perform some particular task of interest. This is usually conveyed to the agent by defining extrinsic
rewards. When rewards are dense (e.g. game score at every frame), classic RL works well and
intrinsic rewards generally should not help performance. However, designing dense rewards is a
challenging engineering problem (see introduction for details). In this section, we evaluate how
well curiosity can help an agent perform a task in presence of sparse, or just terminal, rewards.

Terminal reward setting: For many real problems, only terminal reward is available, e.g. in nav-
igation, you only get rewards once you find what you were looking for. This is a setting where
classic RL typically performs poorly. Hence, we consider the 3D navigation in a maze designed
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in the Unity ML-agent framework with 9 rooms and a sparse terminal reward. The action space is
discrete, consisting of: move forward, look left 15 degrees, look right 15 degrees and no-op. The
agent starts in room-1, which is furthest away from room-9 which contains the goal. We compare
an agent trained with extrinsic reward (+1 when the goal is reached, 0 otherwise) to an agent trained
with extrinsic + intrinsic reward. Extrinsic only (classic RL) never finds the goal in all our trials,
which means it is impossible to get any meaningful gradients. Whereas extrinsic+intrinsic typically
converges to getting the reward every time. Results in Figure 5 show results for vanilla PPO, PPO +
IDF-curiosity and PPO + RF-curiosity.

Sparse reward setting: In preliminary experiments, we picked 5 Atari games which have sparse
rewards (as categorized by (Bellemare et al., 2016)), and compared extrinsic (classic RL) vs. extrin-
sic+intrinsic (ours) reward performance. In 4 games out of 5, curiosity bonus improves performance
(see Table 2 in the appendix, the higher score is better). We would like to emphasize that this is not
the focus of the paper, and these experiments are provided just for completeness. We just combined
extrinsic (coefficient 1.0) and intrinsic reward (coefficient 0.01) directly without any tuning. We
leave the question on how to optimally combine extrinsic and intrinsic rewards as a future direction.

4 RELATED WORK

Intrinsic Motivation: A family of approaches to intrinsic motivation reward an agent based on pre-
diction error (Schmidhuber, 1991c; Stadie et al., 2015; Pathak et al., 2017; Achiam & Sastry, 2017),
prediction uncertainty (Still & Precup, 2012; Houthooft et al., 2016), or improvement (Schmidhu-
ber, 1991a; Lopes et al., 2012) of a forward dynamics model of the environment that gets trained
along with the agent’s policy. As a result the agent is driven to reach regions of the environment that
are difficult to predict for the forward dynamics model, while the model improves its predictions
in these regions. This adversarial and non-stationary dynamics can give rise to complex behaviors.
Relatively little work has been done in this area on the pure exploration setting where there is no
external reward. Of these mostly closely related are those that use a forward dynamics model of
a feature space such as Stadie et al. (2015) where they use autoencoder features, and Pathak et al.
(2017) where they use features trained with an inverse dynamics task. These correspond roughly to
the VAE and IDF methods detailed in Section 2.1.

Smoothed versions of state visitation counts can be used for intrinsic rewards (Bellemare et al.,
2016; Fu et al., 2017; Ostrovski et al., 2017; Tang et al., 2017). Count-based methods have already
shown very strong results when combining with extrinsic rewards such as setting the state of the
art in the Atari game Montezuma’s Revenge (Bellemare et al., 2016), and also showing significant
exploration of the game without using the extrinsic reward. It is not yet clear in which situations
count-based approaches should be preferred over dynamics-based approaches; we chose to focus on
dynamics-based bonuses in this paper since we found them straightforward to scale and parallelize.
In our preliminary experiments, we did not have sufficient success with already existing count-based
implementations in scaling up for a large-scale study.

Learning without extrinsic rewards or fitness functions has also been studied extensively in the
evolutionary computing where it is referred to as ‘novelty search’ (Lehman & Stanley, 2008; 2011;
Stanley & Lehman, 2015). There the novelty of an event is often defined as the distance of the
event to the nearest neighbor amongst previous events, using some statistics of the event to compute
distances. One interesting finding from this literature is that often much more interesting solutions
can be found by not solely optimizing for fitness.

Other methods of exploration are designed to work in combination with maximizing a reward func-
tion, such as those utilizing uncertainty about value function estimates (Osband et al., 2016; Chen
et al., 2017), or those using perturbations of the policy for exploration (Fortunato et al., 2017; Plap-
pert et al., 2017). Schmidhuber (2010) and Oudeyer & Kaplan (2009); Oudeyer (2018) provide a
great review of some of the earlier work on approaches to intrinsic motivation. Alternative methods
of exploration include Sukhbaatar et al. (2018) where they utilize an adversarial game between two
agents for exploration. In Gregor et al. (2017), they optimize a quantity called empowerment which
is a measurement of the control an agent has over the state. In a concurrent work, diversity is used
as a measure to learn skills without reward functions Eysenbach et al. (2018).

Random Features: One of the findings in this paper is the surprising effectiveness of random
features, and there is a substantial literature on random projections and more generally randomly
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initialized neural networks. Much of the literature has focused on using random features for clas-
sification (Saxe et al., 2011; Jarrett et al., 2009; Yang et al., 2015) where the typical finding is that
whilst random features can work well for simpler problems, feature learning performs much better
once the problem becomes sufficiently complex. Whilst we expect this pattern to also hold true
for dynamics-based exploration, we have some preliminary evidence showing that learned features
appear to generalize better to novel levels in Mario Bros.

5 DISCUSSION

We have shown that our agents trained purely with a curiosity reward are able to learn useful be-
haviours: (a) Agent being able to play many Atari games without using any rewards. (b) Mario
being able to cross over 11 levels without any extrinsic reward. (c) Walking-like behavior emerged
in the Ant environment. (d) Juggling-like behavior in Robo-school environment (e) Rally-making
behavior in Two-player Pong with curiosity-driven agent on both sides. But this is not always true
as there are some Atari games where exploring the environment does not correspond to extrinsic
reward.

More generally, our results suggest that, in many game environments designed by humans, the
extrinsic reward is often aligned with the objective of seeking novelty.

Limitation of prediction error based curiosity: A more serious potential limitation is the handling
of stochastic dynamics. If the transitions in the environment are random, then even with a perfect
dynamics model, the expected reward will be the entropy of the transition, and the agent will seek out
transitions with the highest entropy. Even if the environment is not truly random, unpredictability
caused by a poor learning algorithm, an impoverished model class or partial observability can lead
to exactly the same problem. We did not observe this effect in our experiments on games so we
designed an environment to illustrate the point.

Figure 6: We add a noisy TV to the unity environ-
ment in Section 3.3. We compare IDF and RF with
and without the TV.

We return to the maze of Section 3.3 to em-
pirically validate a common thought experi-
ment called the noisy-TV problem. The idea
is that local sources of entropy in an environ-
ment like a TV that randomly changes chan-
nels when an action is taken should prove to
be an irresistible attraction to our agent. We
take this thought experiment literally and add
a TV to the maze along with an action to
change the channel. In Figure 6 we show
how adding the noisy-TV affects the perfor-
mance of IDF and RF. As expected the pres-
ence of the TV drastically slows down learn-
ing, but we note that if you run the exper-
iment for long enough the agents do some-
times converge to getting the extrinsic reward
consistently. We have shown empirically that
stochasticity can be a problem, and so it is im-
portant for future work to address this issue in
an efficient manner.

Future Work: We have presented a simple and scalable approach that can learn nontrivial behaviors
across a diverse range of environments without any reward function or end-of-episode signal. One
surprising finding of this paper is that random features perform quite well, but learned features
appear to generalize better. While we believe that learning features will become more important
once the environment is complex enough, we leave that for future work to explore.

Our wider goal, however, is to show that we can take advantage of many unlabeled (i.e., not
having an engineered reward function) environments to improve performance on a task of interest.
Given this goal, showing performance in environments with a generic reward function is just the
first step, and future work will hopefully investigate transfer from unlabeled to labeled environments.
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A IMPLEMENTATION DETAILS

We have released the training code and environments on our website 1. For full details, we refer the reader to
our code and video results in the website.

Pre-processing: All experiments were done with pixels. We converted all images to grayscale and re-
sized to size 84x84. We learn the agent’s policy and forward dynamics function both on a stack of historical
observations [xt−3, xt−2, xt−1, xt] instead of only using the current observation. This is to capture partial
observability in these games. In the case of Super Mario Bros and Atari experiments, we also used a standard
frameskip wrapper that repeats each action 4 times.

Architectures: Our embedding network and policy networks had identical architectures and were based on
the standard convolutional networks used in Atari experiments. The layer we take as features in the embedding
network had dimension 512 in all experiments and no nonlinearity. To keep the scale of the prediction error
consistent relative to extrinsic reward, in the Unity experiments we applied batchnorm to the embedding net-
work. We also did this for the Mario generalization experiments to reduce covariate shift from level to level.
For the VAE auxiliary task and pixel method, we used a similar deconvolutional architecture the exact details
of which can be found in our code submission. The IDF and forward dynamics networks were heads on top of
the embedding network with several extra fully-connected layers of dimensionality 512.

Hyper-parameters: We used a learning rate of 0.0001 for all networks. In most experiments, we used
128 parallel environments with the exceptions of the Unity and Roboschool experiments where we could only
run 32 parallel environments, and the large scale Mario experiment where we used 1024. We used rollouts of
length 128 in all experiments except for the Unity experiments where we used 512 length rollouts so that the
network could quickly latch onto the sparse reward. In the initial 9 experiments on Mario and Atari, we used
3 optimization epochs per rollout in the interest of speed. In the Mario scaling, generalization experiments, as
well as the Roboschool experiments, we used 6 epochs. In the Unity experiments, we used 8 epochs, again to
more quickly take advantage of sparse rewards.

B ADDITIONAL RESULTS

B.1 ATARI

To better measure the amount of exploration, we provide the best return of curiosity-driven agents in figure 7(a)
and the episode lengths in figure 7(b). Notably on Pong the increasing episode length combined with a plateau
in returns shows that the agent maximizes the number of ball bounces, rather than the reward.

Figure 8 shows the performance of curiosity-driven agents based on Inverse Dynamics and Random features
on 48 Atari games.

Although not the focus of this paper, for completeness we include some results on combining intrinsic and
extrinsic reward on several sparse reward Atari games. When combining with extrinsic rewards, we use the end
of the episode signal. The reward used is the extrinsic reward plus 0.01 times the intrinsic reward. The results
are shown in Table 2. We don’t observe a large difference between the settings, likely because the combination
of intrinsic and extrinsic reward needs to be tuned. We did observe that one of the intrinsic+extrinsic runs on
Montezuma’s Revenge explored 10 rooms.

(a) Best returns (b) Episode length

Figure 7: (a) Left: Best extrinsic returns on eight Atari games and Mario. (c) Right: Mean episode lengths on
eight Atari games and Mario.

1Website at https://doubleblindsupplementary.github.io/large-curiosity/
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Figure 8: Pure curiosity-driven exploration (no extrinsic reward, or end-of-episode signal) on 48 Atari games.
We observe that the extrinsic returns of curiosity-driven agents often increases despite the agents having no ac-
cess to the extrinsic return or end of episode signal. In multiple environments, the performance of the curiosity-
driven agents is significantly better than that of a random agent, although there are environments where the
behavior of the agent is close to random, or in fact seems to minimize the return, rather than maximize it. For
the majority of the training process RF perform better than a random agent in about 67% of the environments,
while IDF perform better than a random agent in about 71% of the environments.
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Reward Gravitar Freeway Venture PrivateEye MontezumaRevenge

Ext Only 999.3± 220.7 33.3± 0.6 0± 0 5020.3± 395 1783± 691.7
Ext + Int 1165.1± 53.6 32.8± 0.3 416± 416 3036.5± 952.1 2504.6± 4.6

Table 2: These results compare the mean reward (± std-error) after 100 million frames across 3
seeds for an agent trained with intrinsic plus extrinsic reward versus extrinsic reward only. The
extrinsic (coefficient 1.0) and intrinsic reward (coefficient 0.01) were directly combined without any
hyper-parameter tuning. We leave the question on how to optimally combine extrinsic and intrinsic
rewards up to future work. This is to emphasize that combining extrinsic with intrinsic rewards is
not the focus of the paper, and these experiments are provided just for completeness.

B.2 MARIO

We show the analogue of the plot shown in Figure 3(a) showing max extrinsic returns. See Figure 9.

Figure 9: Best extrinsic returns on the Mario scaling experiments. We observe that larger batches allow the
agent to explore more effectively, reaching the same performance in less parameter updates, and also achieving
better ultimate scores.
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Algorithm 1: Curiosity-driven Learning
1 Initialize the networks f(xt, at; θf ), π(xt; θπ) and φ(x; θφ)
2 D = {}
3 for iteration i = 1 to . . . do
4 for envs in parallel t = 1 to 128 do
5 for iteration t = 1 to 128 do
6 Sample a ∼ π(xt; θπ) and act using a in the environment
7 D ⇐ D + (xt, at, xt+1, rt) where rt = ‖f(xt, at; θf )− φ(xt+1; θφ)‖22
8 end
9 end

10 for steps k = 1 to 64 do
11 Sample batch size of 2048 from D and update using ADAM as follows:
12 θ

′

f := θf − η1 ∇θfE
[
‖f(xt, at; θf )− φ(xt+1; θφ)‖22

]
13 θ

′

φ := θφ − η2 ∇θφE
[
‖ . . . ‖22

]
: some auxiliary task

14 θ
′

π := θπ + η3 ∇θπEπ(xt;θπ)
[∑

t rt
]
: use PPO with discounted returns

15 θf ⇐ θ
′

f

16 θφ ⇐ θ
′

φ

17 θπ ⇐ θ
′

π

18 end
19 end
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