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Abstract: Grounding object affordance is fundamental to robotic manipulation
as it establishes the critical link between perception and action among interacting
objects. However, prior works predominantly focus on predicting single-object
affordance, overlooking the fact that most real-world interactions involve relation-
ships between pairs of objects. In this work, we address the challenge of object-
to-object affordance grounding under limited data contraints. Inspired by recent
advances in few-shot learning with 2D vision foundation models, we propose a
novel one-shot 3D object-to-object affordance learning approach for robotic ma-
nipulation. Semantic features from vision foundation models combined with point
cloud representation for geometric understanding enable our one-shot learning
pipeline to generalize effectively to novel objects and categories. We further in-
tegrate our 3D affordance representation with large language models (LLMs) for
robotics manipulation, significantly enhancing LLMs’ capability to comprehend
and reason about object interactions when generating task-specific constraint func-
tions. Our experiments on 3D object-to-object affordance grounding and robotic
manipulation demonstrate that our O3Afford significantly outperforms existing
baselines in terms of both accuracy and generalization capability. Project website:
https://o3afford.github.io.
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1 Introduction

Affordance grounding enables machines to identify the functional properties of objects or environ-
ments that indicate potential interactions. It has been used to effectively communicate how objects
can be interacted with in numerous downstream tasks, including human-computer interaction [1],
visual understanding [2], and robotic manipulation [3]. Many prior works have investigated affor-
dance prediction in 2D pixel space [4, 5, 6, 7, 8]. However, these works predominantly focus on
single-object affordance and neglect that many daily tasks involve object-to-object interactions.

Object-to-object affordance grounding addresses functional relationships in tasks that require mean-
ingful interactions between pairs of objects. For instance, cutting typically requires two objects: a
source (e.g., a knife) and a target (e.g., an apple) to interact in a specific spatial relation. A significant
challenge here is the scarcity of annotated data for model training. It is hard to collect and annotate
large-scale data for object-to-object affordance grounding. O2O-Afford [9] addresses this challenge
in an annotation-free manner through automatic extraction of contacts in simulation, which renders
it only applicable to simple affordances such as placing and fitting. Our work aims to infer complex
affordances such as pouring and cutting, which are crucial in robotic manipulation.

We seek to develop a solution for generalizable object-to-object affordance grounding with min-
imal supervision. Recent advances in vision foundation models (VFMs) [10, 11, 12] have
demonstrated strong zero-shot and few-shot generalization capabilities across various downstream
tasks [13, 14, 15, 16, 17]. A recent study [4] has demonstrated VFMs’ potential for 2D affordance
prediction; however, the limited geometric information available in images restricts generalization
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across different viewpoints and object categories, hindering practical application in robotic manipu-
lation. We hypothesize that the geometric information provided by 3D representations such as point
clouds, when combined with semantic features from VFMs, can enable robust generalization across
varied geometries, unseen object instances, and entirely novel object categories.

In this paper, we introduce O3Afford, a One-shot Object-to-Object Affordance Grounding frame-
work with 3D semantic point cloud distilled from VFMs. We first project features from DINOv2 [10]
from multi-view RGB-D observations onto the point clouds of both the source object and the target
object to be manipulated. The two object point clouds, enriched with part-aware semantic features,
are then processed through our bi-directional affordance discovery module, which considers the ge-
ometric contexts of both objects in both directions to predict the final 3D affordance map. We inte-
grate the output of our affordance grounding module with large language models (LLMs) to generate
constraints for optimization-based robotic manipulation, enabling enhanced spatial understanding
capabilities compared to reasoning solely from images or point clouds in robotic manipulation.

This paper makes the following contributions: 1) We introduce O3Afford, a method for learn-
ing object-to-object affordance in 3D with one-shot examples. 2) We effectively integrate object-
to-object affordance into optimization-based robotics manipulation with constraints generated by
LLMs. 3) We show that O3Afford outperforms baselines of affordance prediction and robotic ma-
nipulation across a range of simulated and real-world robotic manipulation tasks, exhibiting strong
semantic and geometric generalization capabilities.

2 Related Work

Affordance Grounding. Several prior works have focused on learning 2D affordance, with estab-
lished datasets and benchmarks [5, 7, 18, 19]. The primary goal is to predict a 2D functional affor-
dance map under a finite set of affordance types [6, 20, 21] or language-conditioned settings [22, 23].
Recent efforts have extended it to weak supervision [21, 20], intra-class generalization [4, 24], and
open-vocabulary [25, 22] settings. However, limited geometric information in 2D images poses
challenges for downstream tasks like spatial understanding and manipulation, motivating efforts to
ground affordance in 3D point cloud [26], from 2D images [27, 28], or language models [29, 30].
While effective, these works neglect the reality that many daily tasks involve object-to-object inter-
actions in which the geometry of both objects should be considered. Furthermore, the challenge in
this setting is the limited annotated data for training. O2O-Afford [9] addresses this issue through
automatic annotation by extracting contact information from randomized configurations in simulated
environments; however, this approach limits its scalability and generalizability to broader real-world
scenarios. In comparison, our work aims to use minimal annotation (i.e., one-shot) for supervision
while achieving better generalization, making it more suitable for real-world robotic manipulations.

Few-shot Learning with Foundation Models. Foundation models have demonstrated remarkable
capabilities as few-shot learners [31, 32]. Pretraining on internet-scale datasets has endowed these
models with common sense knowledge [11, 10, 33, 34], enabling them to adapt to new tasks with a
limited number of demonstrations. ZegClip [15] extends CLIP’s zero-shot prediction capability to
zero-shot segmentation. Han and Lim [16] leveraged features from DINOv2 and utilized LLMs as
few-shot learners to achieve few-shot object detection. Several works [35, 36, 37] harness the gen-
erative capabilities of latent diffusion models for few-shot semantic segmentation. In 3D, several
studies [38, 39] explored pretraining on large-scale point cloud datasets, achieving promising results
in downstream tasks, e.g., one-shot part segmentation and point cloud classification. While effec-
tive, these methods still lag significantly behind the successes demonstrated in image and language
domains, due to limited 3D data. We investigate one-shot learning with point clouds for object-to-
object affordance grounding using VFMs, demonstrating geometric and semantic generalization.

Affordance-Guided Robotic Manipulation. Affordance, as an intermediate representation that
links perception and action, has been widely used for robotic manipulation. In reinforcement learn-
ing, several works have explored using affordance as guidance for sample-efficient policy learn-
ing [40], reward shaping [41, 42, 43], and sub-goal specification [44, 42]. In imitation learning, af-
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Figure 1: O3Afford framework. O3Afford first (a) constructs semantic point clouds; (b) employs
joint cross-attention between the source and target objects for decoding; lastly, (c) leverages LLMs
for task-relevant constraint function generation and optimizes the target pose for robot execution.

fordance is commonly used either as an additional conditional input [45, 46] or as an auxiliary learn-
ing objective [47, 48] to enhance generalization and improve sample efficiency. In planning-based
manipulation, recent efforts utilized affordance as a versatile representation for low-level planning.
RAM [3] adapt a retrieval-based approach for affordance transfer and action planning. [49, 50] used
LLM-generated 3D affordance map or VLM-identified key points for low-level planning. Robo-
Point [51] fine-tunes a VLM with affordance data to enable affordance reasoning capability for
pick-and-place manipulation tasks. Our work, on the other hand, formulates planning as an opti-
mization problem while employing LLMs to automatically create constraint functions that use the
learned affordance maps, which effectively link affordance with actions.

3 Problem Formulation

We aim to address the problem of learning 3D object-to-object affordance under extreme data con-
straints, specifically, with only one training sample for each affordance category. We formulate
object-to-object (O2O) affordance grounding as predicting a functional map between two object
point clouds in which an O2O affordance category is defined as being uniquely identified by an in-
teraction verb, e.g., put or pour, not by a specific object pair. Given a source object point cloud
Ps ∈ RNs×(3+n) and a target object point cloud Pt ∈ RNt×(3+n), where Ns and Nt repre-
sent the number of points in each point cloud respectively, our goal is to predict affordance maps
As ∈ [0, 1]Ns and At ∈ [0, 1]Nt that indicate the likelihood of O2O interaction at each point. Each
point is represented by its 3D coordinates (x, y, z) and an n-dimensional semantic feature vector
extracted from vision foundation models. Our model fθ with parameters θ maps a pair of input
point clouds to their respective affordance maps: fθ : (Psrc,Ptgt) 7→ (Asrc,Atgt)

The training set consists of a set of K interacting object pairs, each corresponding to a distinct
affordance category: Dtrain = {(Psrc

i ,Ptgt
i ,Asrc

i ,Atgt
i )}Ki=1 where each (Psrc

i ,Ptgt
i ) represents a

unique object pair exhibiting the i-th category of affordance, and each affordance category appears
only once in the training set. At test time, the model is evaluated in a zero-shot manner on novel
object pairs exhibiting the same set of affordance categories Dtest = {(Psrc

j ,Ptgt
j )}Kj=1, but with

entirely unseen objects: Dtrain ∩ Dtest = ∅.

4 Methodology

4.1 Overview

Our affordance grounding pipeline consists of three components as summarized in Fig. 1. First,
we construct 3D semantic features from DINOv2 for object point clouds. Subsequently, our affor-
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dance grounding module takes these semantically-enriched point clouds as input and predicts the
corresponding affordance maps. To enable robotic manipulation, we leverage LLM for constraint
function generation, which is integrated with optimization-based planning.

4.2 Semantic Point Cloud

To construct our 3D feature field for point cloud scenes, we draw inspiration from D3Field [14] for
projecting 2D semantic features into 3D space using DINOv2 [10]. In their framework, multi-view
RGBD images are processed to extract DINOv2 features, which are then projected onto arbitrary 3D
coordinates by mapping them to each camera’s image space, interpolating features, and fusing them
across views. Specifically, for a 3D point x, we compute its projection ui in the i-th camera view,
determine the truncated depth difference di = ri − r′i (where ri is sensor-captured depth and r′i is
the interpolated depth), and assign visibility vi and weight wi to prioritize points near the surface.
These weights guide the fusion of semantic features fi and instance masks pi across K views, yield-
ing a unified 3D descriptor field. We adapt this method by aligning multi-view RGB observations
with the point cloud geometry, projecting DINOv2 features onto the 3D points, and fusing them to
encode semantic information directly onto the point cloud representation. This approach enables ef-
ficient and generalizable feature representation without additional training, supporting robust scene
understanding in our work.

4.3 One-Shot Affordance Grounding

To enable effective affordance prediction from point clouds, we propose a joint-attention transformer
decoder to predict affordance, which enables effective feature interaction across objects. Our net-
work processes paired point clouds representing a source object Psrc ∈ RB×N×3 and a target object
Ptgt ∈ RB×N×3, along with corresponding visual features extracted from DINOv2 [10], denoted
by Fsrc,Ftgt ∈ RB×N×1024. The output consists of per-point affordance scores optimized via binary
cross-entropy (BCE) loss against ground-truth annotations during training. Our model fθ comprises
two primary components: (1) a Point Cloud Encoder, (2) a Joint-attention Transformer Decoder.

Point Cloud Encoder. The point cloud encoder first jointly processes concatenated point clouds
and their DINOv2-derived features. Given the combined input P = [Psrc,Ptgt] ∈ R2B×N×3 and
features F = [Fsrc,Ftgt] ∈ R2B×N×1024, we first tokenize the input using farthest point sampling
(FPS) to select T patch centers, then employ k-nearest neighbors for each patch center to con-
struct the corresponding patches. To effectively aggregate local geometric information into compact
patch-level feature representations, we employ PointNet for feature extraction. This process finally
produces tokenized input Z ∈ R2B×T×512. The object tokens are then concatenated with one-hot
embeddings that distinguish between source object tokens and target object tokens for subsequent
processing.

Joint-attention Transformer Decoder. We apply a joint attention transformer to effectively capture
geometric and semantic contextual dependencies across source and target objects. Specifically, we
implement a cross-attention mechanism to enable dynamic feature interaction between objects. Our
multi-head attention module with 8 heads captures these contextual dependencies:

Asrc = CrossAttention(Zsrc,Ztgt,Ztgt),Atgt = CrossAttention(Ztgt,Zsrc,Zsrc).

This bidirectional interaction module effectively encodes the complementary affordance relation-
ships between interacting objects.

To generate per-point predictions, we interpolate the final patch-level embeddings back to individual
points in the original point clouds using nearest-neighbor interpolation based on distance to patch
centroids. This process yields dense point-level embeddings Esrc,Etgt ∈ RB×N×512. These dense
embeddings are concatenated and processed through a lightweight MLP projection head to produce
the final affordance map A ∈ [0, 1]2B×K×N , representing predicted interaction probabilities, where
the dimension K corresponds to separate channels for each affordance type prediction.
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Training and Optimization. In training, we optimize our affordance grounding network using the
binary cross-entropy (BCE) loss:

LBCE = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)]

During inference, the network directly outputs per-point affordance predictions, facilitating effective
robotic manipulation planning and execution in real-world scenarios.

4.4 Affordance-Based Manipulation

Given the predicted affordance on the objects’ point clouds, which clearly reveals the spatial rela-
tionship between the two objects (e.g., how they should make contact), we formulate affordance-
based manipulation as a constraint-based optimization problem. Specifically, given a source object
point cloud Psrc and a target object point cloud Ptgt, along with their respective affordance maps
Asrc and Atgt, we optimize a 6-DoF transformation T ∈ SE(3) applied to the source object that
aligns the objects for the intended task while satisfying several constraints formulated as:

min
T∈SE(3)

N∑
i=1

λi · Si(P
src,Asrc,Ptgt,Atgt,T) (1)

where Si represents the i-th constraint function evaluating specific aspects of the task requirements
(e.g., collision avoidance, etc.) and λi is the weight reflecting the importance of each objective.

Constraint Generation with LLMs. To make our system versatile and scalable, we utilize LLMs to
generate task-specific constraint functions instead of manually designed rules. Equipped with com-
monsense knowledge of daily tasks, LLMs can reason about how objects should interact and trans-
late high-level semantics (e.g., “pouring”, “cutting”) into concrete geometric objectives. Specifi-
cally, we prompt the LLM with a task description, and it outputs Python functions that take the
object point clouds and their affordance maps as input. These functions serve as score terms Si,
capturing task-relevant spatial relationships such as alignment, contact, or insertion. The result-
ing constraint scores are then combined in the framework of Eq. 4.4 to optimize the final object
pose T ∈ SE(3) with off-the-shelf solvers. We provide a detailed prompt template and example
generated score functions in the Appendix B.3 and B.4.

5 Experiments

We evaluate our method for both affordance prediction and robotic manipulation tasks. We aim to
answer three key research questions: (1) How effectively does our method perform in object-to-
object affordance grounding tasks? (2) To what extent can our method generalize when training
with only a single example for each affordance type? (3) How effectively can our method improve
downstream robotic manipulation? We first demonstrate our experiment settings in Sec. 5.1. We then
address the above three questions through two stages: evaluating the accuracy and generalization
capability of affordance grounding (Sec. 5.2) and validating our approach in both simulation and
real-world robotic manipulation (Sec. 5.3).

5.1 Experiment Setup

Given the absence of high-quality object-to-object affordance grounding datasets, we annotate and
construct our own dataset in simulation using SAPIEN [52]. The affordance map is generated in
two steps: first, we have several user-assigned contact points on the point cloud, and then propagate
the affordance label to other points based on distance following [26].

We conduct robot manipulation experiments in both simulated environments using SAPIEN [52]
and the real-world Franka Research 3. In simulation, we position four stereo-depth sensors [53]
from different viewpoints around the workspace. In the real world, we position two Orbbec Femto
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Figure 2: Qualitative examples of the predicted object-to-object affordance in O3Afford.

Bolt cameras to get RGB-D observations. We employ the LLM GPT-4o [54] from OpenAI for
constraint function generation in planning. We design five tasks that require two objects to interact
meaningfully with each other: pouring from teapot into bowl, inserting toast into toaster, pressing
the button with hammer, hanging mug onto mug tree and cutting apple with knife to evaluate our
system’s performance in varying contact geometries and spatial relationships between objects. Our
training dataset consists of a single pair of interacting objects for each affordance type.

5.2 Affordance Grounding

5.2.1 Main Results

Baselines. We evaluate our affordance grounding module against 3 baselines: O2O-Afford [9], a
training-based 3D object-to-object method; IAGNet [27], a method learning from 2D images; and
RoboPoint [51], a VLM-based approach. We adopt four metrics during evaluation: aIOU [55],
SIMilarity [56], MAE [57], and AUC [58], which systematically measure spatial overlap, visual
similarity, pixel-wise error, and overall prediction quality.

Method ↑ IOU ↑ SIM ↓ MAE ↑ AUC
O2O-Afford 14.31 0.5123 0.1219 74.29

IAGNet 16.89 0.5574 0.1402 73.30
RoboPoint 11.84 0.4376 0.3344 59.78

Ours 26.19 0.6387 0.0612 96.00

Table 1: Quantitative comparison on object-to-
object affordance grounding methods.

Results. Tab. 1 shows the quantitative com-
parison. We also present our qualitative ex-
amples in Fig. 2. Each row in Fig. 2 repre-
sents a distinct affordance type, with three dif-
ferent affordance types illustrated. For each
affordance type, we present two correspond-
ing rows: the upper showing the source object
and the lower displaying the target object. We
observed that RoboPoint, as a vision-language
model, demonstrates capability in object localization but lacks the precision to infer fine-grained
affordance regions on objects. IAGNet exhibits the best performance among all baselines but suf-
fers significantly from overfitting due to the one-shot training paradigm. Our method significantly
outperforms all baselines and demonstrates robust generalization.

6



So
ur
ce

Ta
rg
et

GT Ours GT Ours GT Ours

Figure 4: Qualitative Results of Unseen Object Category.

5.2.2 Generalization Analysis

Beyond the robust intra-class generalization under extreme data constraints demonstrated in
Sec. 5.2.1, we also analyze the generalization capability of O3Afford in this section. We study
two forms of generalization: generalization to different levels of occlusion and cross-category gen-
eralization, both of which are prevalent and essential in real-world manipulation scenarios.

Occlusion Level (%)
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O
U
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M

Figure 3: Quantitative results under different
occlusion levels. Occlusion level (x-axis) ranges
from 10% to 50% occluded point clouds.

Occlusion Generalization. Rather than sim-
ulating occlusion by directly dropping points
from the object point cloud, we evaluate gen-
eralization in a more realistic setting where ob-
jects are occluded by other objects (e.g., cubes).
We exclude RoboPoint in the comparison, as it
is not a training-based method. Fig. 3 shows
how aIOU and SIM change at different levels of
occlusion. Our method exhibits the least perfor-
mance drop under varying levels of occlusion,
whereas the two baselines suffer significant de-
clines as occlusion increases due to larger geo-
metric deviations from the training distribution.

Category-level Generalization. We consider object categories that are entirely unseen during train-
ing but may exhibit similar semantic or geometric functionality in manipulation tasks. Fig. 4 shows
the example affordance predictions in a scissor for cutting, a coat rack for hanging, and a spray bot-
tle for pouring. These are unseen categories but exhibit similar semantic functionality. Our model
successfully predicts the affordance maps for these novel objects. This capability stems from both
DINOv2’s semantic features for identifying parts with similar semantics and the PointNet encoder
for identifying similar local geometry, where we observe that latent patches with similar local ge-
ometries tend to be clustered together, as visualized in Appendix A.5.

Method Pour Hang Press Insert Cut
2-view 3-view 4-view 2-view 3-view 4-view 2-view 3-view 4-view 2-view 3-view 4-view 2-view 3-view 4-view

Baseline 0/10 2/10 2/10 0/10 1/10 0/10 4/10 5/10 5/10 1/10 2/10 5/10 3/10 5/10 4/10
Rekep 2/10 3/10 3/10 1/10 0/10 2/10 4/10 4/10 6/10 3/10 2/10 3/10 4/10 4/10 4/10
Ours 6/10 8/10 8/10 3/10 3/10 5/10 9/10 9/10 9/10 5/10 7/10 8/10 8/10 7/10 8/10

Table 2: Success rate of manipulation tasks in simulation. Each method is evaluated under 2-
view, 3-view, and 4-view setups over 10 trials.

5.3 Affordance-Guided Manipulation

Baselines. We evaluate our approach for robotic manipulation against two methods: (1) ReKep,
which solves keypoint constraints through optimization for action planning; and (2) Baseline, an
ablated version of our method that plans directly from object point clouds. The evaluation is con-
ducted across 5 tasks, with ten trials per task. We record the success rate as the primary metric.
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Figure 5: Example execution of real-world manipulation tasks. (Top) inserting, hanging, and
cutting; (Bottom) pouring and pressing. The colors on the point clouds indicate the predicted affor-
dance values as mapped to the colorbar on the right.

Results in simulation. Tab. 2 shows the success rate of each method. We evaluate in settings
with different numbers of camera views, ranging from four views, representing full observation,
to as few as two views, representing partial observation with significant occlusion challenges. Our
method achieves the best overall performance, exhibiting the smallest performance drop when tested
with fewer views, which highlights its robustness to occlusion. In contrast, the baseline planning
approach without affordance performs the worst due to its lack of awareness of object relationships
during manipulation, underscoring the importance of incorporating affordance. Compared to our
method, ReKep exhibits two main drawbacks. First, although ReKep can propose keypoints on ob-
jects for planning, it does not guarantee the task-awareness of the proposed keypoints, as evidenced
by its lower performance compared to ours under the full observation setting. Second, it is sensi-
tive to occlusion, with its performance dropping significantly as the number of observation views
decreases, making accurate keypoint proposal and tracking more challenging.

Results in real world. We evaluate our approach on 5 real-world manipulation tasks compared
against the same baselines. Tab. 3 shows their success rates.

Method Pour Hang Press Insert Cut

Baseline 2/10 0/10 2/10 3/10 3/10
ReKep 3/10 2/10 5/10 4/10 5/10
Ours 8/10 5/10 9/10 8/10 9/10

Table 3: Success rate for different tasks on the real
robot. Each task is evaluated over 10 trials. Orange
indicates improvements over the baseline.

The result shows that affordance, as a
mid-level representation, significantly en-
hances manipulation success rates. In
common tasks requiring two-object in-
teraction, our method achieves approxi-
mately an 80% success rate, while the
baseline exhibits considerably poorer per-
formance due to its inability to recognize
functional properties from object point clouds. In more complex and extended-horizon tasks such as
hanging, the baseline fails in all trials, whereas our method maintains approximately 50% success
rate. We present qualitative examples in Fig. 5. The results demonstrate that affordance represen-
tation significantly enhances the feasibility of the generated constraint function for more reasonable
interaction, as evidenced by the resulting coherent manipulation sequences.

6 Conclusion
We introduced O3Afford, a one-shot learning framework that addresses object-to-object affordance
grounding under extreme data constraints. By distilling semantic features from VFMs onto point
clouds, our approach achieves effective intra-class and category-level generalization while maintain-
ing robustness to occlusion. When integrated with LLMs to generate constraints for optimization-
based robotic manipulation, our system demonstrates exceptional performance in complex real-
world manipulation tasks, highlighting O3Afford’s potential for broader scenarios. Future work
includes incorporating language instructions into our object-to-object affordance prediction pipeline
to enable open-vocabulary affordance grounding.
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Limitations

While O3Afford shows promise for figuring out where one 3D object can interact with another
after seeing just one example, it still has some limitations. First, the system currently does not use
language instructions to directly guide where it predicts the interaction should happen, which limits
its ability to follow specific human directions. Second, the system’s accuracy can decrease when
parts of an object block the view of other parts (self-occlusion). This can result in an incomplete
3D model of the object and lead to incorrect predictions about interaction points on hidden parts,
even if those hidden parts are important for the task. Finally, the practical performance of O3Afford
is constrained by the inherent limitations and noise present in current RGB-D sensing technologies,
whether based on stereo vision, Time-of-Flight (ToF), structured light, or others. These sensors often
produce imperfect depth data under various real-world conditions. For instance, stereo systems can
struggle with textureless or reflective surfaces, while ToF sensors’ accuracy can be affected by the
target object’s surface material (impacting light reflection) and potentially suffer from multipath
interference in cluttered scenes. This underlying noise and potential inaccuracies in the input depth
data can degrade the quality of the 3D point clouds used by our method, consequently limiting the
precision and reliability of the final affordance predictions.
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Appendices
A Additional Results

A.1 Ablation

We present ablation results on the model architecture to clarify the specific contributions of each
module within our affordance model in Table 4. Specifically, we ablated three components: DI-
NOv2 features (w/o DINOv2), PointNet encoder (w/o PointNet), and joint-attention (w/o Joint-
Attn).

Method ↑ IOU ↑ SIM ↓ MAE ↑ AUC

w/o DINOv2 6.59 0.5261 0.0384 69.16
w/o PointNet 20.06 0.5923 0.0541 98.90
w/o Joint-Attn 17.15 0.5717 0.0707 95.55

Ours 26.19 0.6387 0.0612 96.00
Table 4: Model Ablations.

A.2 Occlusion Qualitative Results

Fig. 6 presents the qualitative examples of our occlusion experiment in the simulated environment.
We show that our method, leveraging the generalizable semantic features of DINOv2, demonstrates
robustness under varying levels of occlusion. This includes extreme case with up to 50% point cloud
occluded which is considered the most difficult scenario in real-world applications.

50% 40% 30% 20% 10%

GT

Pred

Figure 6: Qualitative examples of different occlusion level.

A.3 RoboPoint Qualitative Results

Fig. 7 shows the affordance prediction from RoboPoint [51]. While RoboPoint. As a vision-
language model, RoboPoint demonstrates strong object localization capabilities, but it lacks the
precision required to infer fine-grained affordance regions on objects, as illustrated in Fig. 7. Most
of its predictions successfully fall onto the area of the object, but don’t onto the correct part of the
object which hinders its application for more complex manipulation tasks.

A.4 OOAL Qualitative Results

We highlight the limitations of recent work OOAL [4], which employs vision foundation models
(VFMs) for 2D affordance grounding. OOAL exhibits two main drawbacks: (1) sensitivity to view-
point changes, and (2) a noticeable sim-to-real performance gap. We show the qualitative examples
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Raw pred GT Pred Raw pred GT Pred

Figure 7: Qualitative examples of RoboPoint predictions.

in Fig. 8. We evaluate OOAL on data collected in the simulation environment using multiple view-
points. The results reveal inconsistent predictions across viewpoints and a significant performance
drop, despite the data is collected in the simulation. This highlights the benefit of affordance ground-
ing in the 3D point cloud space, which reduces the sim-to-real gap and provides geometric awareness
and robustness to viewpoint variations.

Back view Front view Left view Right view

Source

Target

Figure 8: Qualitative examples of OOAL predictions for four different views. Each row renders
the affordance heatmaps of the same source/target object across views.

A.5 Visualization of Latent Patch Embedding

For the PointNet-encoded patch embeddings, we observe that they encode the reusable geometric
primitives across different objects as shown in our t-SNE plot (Figure 9), which shows that patches
with similar local geometries tend to cluster together. We hypothesize that these patch embeddings
contribute to the model’s robustness to occlusion, as partial occlusion often leaves the local, func-
tional parts unaffected.

A.6 Manipulation Qualitative Results

Fig. 10 shows the example executions of the different types of actions in the simulator using our
proposed method.
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Figure 9: t-SNE visualization of latent patch embeddings.

Pour

Insert

Cut

Hang

Press

Figure 10: Qualitative results in simulation environment.
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B Implementation Details

B.1 Baselines

RoboPoint RoboPoint [51] is a vision-language model finetuned on an image-language affordance
dataset. To apply it to a point cloud, we first prompt RoboPoint to predict affordance pixels in the
image, which are then projected onto the point cloud using the corresponding depth information.
Across all views, we aggregate these predictions by averaging the affordance scores assigned from
different views weighted by depth consistency across views.

IAGNet IAGNet [27] is a training-based method which takes an image, with an annotated object
bounding box, and an object point cloud as input. To adapt the model for the object-to-object setting,
we use the same interaction image, with bounding boxes annotated for both the source and target
objects during training and testing, for each interacting object pair. This modification preserves the
core idea of extracting semantic interaction information from 2D images without altering the model
architecture.

UAD UAD [59] is a concurrent work that also projects features from DINOv2 onto the point cloud
to segment out the parts and uses vision-language models for affordance auto-annotation. Our work
diverges from UAD in task settings.

B.2 Model Details

Point Cloud Encoder We employ a patch-based architecture for point cloud encoding that pro-
cesses the input through local grouping and feature extraction. The encoder first groups points using
kNN, then processes each local patch through a specialized patch encoder, and finally incorporates
positional information through learnable embeddings. This design enables effective capture of both
local geometric structures and global spatial relationships.

Hyperparameter Value
Output dimension 512
Number of groups 256
Group size 64
Group radius 0.15
Position embedding dimension 512
Patch encoder hidden dims [784, 512]

Table 5: Hyperparameters of the point cloud encoder.

Decoder We employ a transformer-based decoder which additionally adopts joint-attention to en-
able feature communication between the source and target objects. We provide detailed hyperpa-
rameters in Table 6.

Hyperparameter Value
Number of attention heads 8
Attention head dimension 512
Dropout 0.1
Cross attention dimension 512
Point cloud embedding dimension 512
Activation function GELU
Output MLP dimensions [512, 256]
Normalization type LayerNorm
Normalization epsilon 1e-5

Table 6: Hyperparameters of the decoder.
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B.3 Prompt Template

We use GPT-4o for constraint function generation. Note that our pipeline can be integrated with any
advanced LLMs for constraint function generation. We provide an example prompt template below.

Prompt Template for Certain Constraint

You are given two 3D objects represented as point clouds. Each point is associated with
an affordance score predicted by a perception model. Your task is to propose a constraint
function for the specified affordance type that evaluates how well the source object can
interact with the target object.
Inputs:

• Source Object Name: [SRC_OBJECT_NAME]

• Target Object Name: [TGT_OBJECT_NAME]

• Interaction Type: [AFFORDANCE] (e.g., pour, hang, press, cut, put, plug in)

• Source Point Cloud: {(xi, yi, zi)}Ni=1, with affordance scores {ai}Ni=1

• Target Point Cloud: {(xj , yj , zj)}Mj=1, with affordance scores {bj}Mj=1

Task: Generate a constraint function that evaluates the quality of an affordance-specific interaction
between source and target objects. The function should consider high-affordance regions, interaction-
specific spatial constraints, and physical plausibility.
Code Skeleton:
def compute_alignment_score(src_aff, tgt_aff, src_pcd, tgt_pcd):

score = 0
"""
# TODO: Implement affordnace alignment contraint

return score

Constraints:
• The function should use the information from high-affordance regions of both objects

• The evaluation must reflect the semantic meaning of the specified affordance type

• Consideration should be given to the physical feasibility of the interaction

• All constraints should be combined into a single cost value (lower is better)

B.4 Example Constraint Functions

We provide an example of a generated constraint function in Fig. 11. A list of LLM-generated
constraint functions with its corresponding weights is listed in Table 7.

Figure 11: Example of the generated function for object alignment.
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Task Primary Constraints Evaluation Components Weights

Pour
• Position (above)
• Orientation (tilted 30-60°)
• Distance (medium clearance)

• Affordance alignment
• Position constraint
• Orientation constraint
• Clearance

• 0.3
• 0.2
• 0.3
• 0.1

Hang
• Position (contact)
• Orientation (hooked)
• Stability (CoM below support)

• Affordance alignment
• Contact quality
• Stability
• Collision

• 0.3
• 0.3
• 0.3
• 0.1

Cut
• Position (aligned)
• Orientation (perpendicular)
• Distance (contact)

• Affordance alignment
• Position constraint
• Collision

• 0.4
• 0.4
• 0.2

Press
• Position (aligned)
• Orientation (perpendicular)
• Distance (contact)

• Affordance alignment
• Position constraint
• Orientation constraint
• Collision

• 0.4
• 0.3
• 0.2
• 0.1

Insert
• Position (inside)
• Orientation (aligned)
• Distance (inside container)

• Affordance alignment
• Position constraint
• Orientation constraint
• Collision

• 0.3
• 0.4
• 0.2
• 0.1

Table 7: Generated Constraint Functions for Different Manipulation Tasks

C Failure Cases Analysis

We present an empirical analysis of failure cases in this section. Our manipulation pipeline in-
volves three key stages: constructing a semantic point cloud from multiview RGB-D observations,
grounding affordance on the partially reconstructed point cloud, and executing actions via a low-
level motion planner. As a result, failure cases primarily fall into three categories: (1) inaccurate
point cloud reconstruction due to sensor noise, (2) incorrect affordance predictions caused by ob-
ject self-occlusion and unobservable regions, and (3) inverse kinematics (IK) failure during motion
planning.

Sensor noise We use the Orbbec Femto Bolt camera, a Time-of-Flight-based sensor, for capturing
RGB-D observations. It provides significantly higher-quality depth compared to stereo-based sen-
sors. However, it may still produce erroneous depth measurements when object materials are highly
reflective or when objects are too dark in color, preventing the sensor from receiving sufficient re-
flected light to compute accurate depth. We provide an example of an incorrectly reconstructed point
cloud in Fig. 12.

Figure 12: Example of incorrect point cloud.
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Object Self-occlusion Our pipeline assumes that affordance regions, such as the mouth of a teapot,
are not occluded. However, in practice, these regions can be self-occluded by the object itself. For
example, the bottom of a bottle is difficult to observe even with a top-down camera view. This limita-
tion could potentially be addressed by recent advances in single-view or sparse-view reconstruction
methods (e.g., TRELLIS [60]), which are orthogonal to our approach. We leave the integration of
such techniques for future work.

IK Failure Since we directly optimize the final interaction pose of the object, the resulting pose
may be infeasible for execution due to IK failure in the motion planner. We use a screw-based
planner, and most IK failures occur when the final pose requires drastic rotational movements. We
provide some visualizations of IK failure cases in Fig. 14.

Figure 13: Example of IK failure.

D Environment Setup

Franka Research 3

Femto Bolt

Figure 14: Real robot experiment setup.

Our task uses a Franka Research 3 robot, a 7-DOF manipulator. To capture comprehensive visual
information and mitigate occlusions, we employ two Femto Bolt RGB-D cameras. These Time-
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of-Flight (ToF) based cameras are positioned on the left and right sides in front of the robot’s
workspace, providing robust depth perception across the scene.

We utilize a diverse set of objects for our challenging object-to-object interaction tasks. These tasks
require the model to not only identify the correct manipulation point on the source object but also to
understand the intended interaction point on the target object. This necessitates a deep understanding
of object-to-object affordance. Our tasks include:

• Pouring water from a teapot into a bowl or: In this task, the functional affordance is the
teapot’s spout, which must be correctly aligned with the receiving area of the bowl (e.g.,
its bottom center) or the plate. The model must comprehend this specific object-to-object
affordance for pouring. For instance, while the edge of the bowl might offer a grasping
affordance, it is not the correct target for the pouring task. This task critically evaluates the
model’s ability to understand task-specific affordance.

• Cutting fruit with a knife: The model must identify the sharp edge of the knife (source
object affordance) and the appropriate surface of the fruit (target object affordance) to per-
form a cutting action. This involves understanding the functional relationship between the
knife’s blade and the fruit’s body.

• Pressing a button with a hammer: This task requires the model to recognize the head of
the hammer as the striking surface and the button as the target. The interaction involves a
precise contact between the hammer’s affordance point and the button’s surface.

• Hanging a cup onto a mugtree: The model needs to identify the handle of the cup (source
object affordance) and a free peg on the mug tree (target object affordance). Successful
execution depends on aligning the cup’s handle to engage with the mugtree’s peg.

These tasks are designed to test the model’s understanding of object affordance and how they relate
to each other in the context of specific actions.
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