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Abstract

Diffusion generative models have recently become a powerful technique for creating and
modifying high-quality, coherent video content. This survey provides a comprehensive
overview of the critical components of diffusion models for video generation, including
their applications, architectural design, and temporal dynamics modeling. The paper be-
gins by discussing the core principles and mathematical formulations, then explores var-
ious architectural choices and methods for maintaining temporal consistency. A taxon-
omy of applications is presented, categorizing models based on input modalities such as
text prompts, images, videos, and audio signals. Advancements in text-to-video genera-
tion are discussed to illustrate the state-of-the-art capabilities and limitations of current
approaches. Additionally, the survey summarizes recent developments in training and eval-
uation practices, including the use of diverse video and image datasets and the adoption
of various evaluation metrics to assess model performance. The survey concludes with an
examination of ongoing challenges, such as generating longer videos and managing com-
putational costs, and offers insights into potential future directions for the field. By con-
solidating the latest research and developments, this survey aims to serve as a valuable
resource for researchers and practitioners working with video diffusion models. Website:
https://github.com/ndrwmlnk/Awesome-Video-Diffusion-Models

1 Introduction

Diffusion generative models (Sohl-Dickstein et al., [2015; [Song & Ermon, 2019; Ho et al., 2020} |Song et al.
2021} Ruiz et al., 2024) have already demonstrated a remarkable ability for learning heterogeneous visual
concepts and creating high-quality images conditioned on text descriptions (Rombach et al.| |2022; [Ramesh
et al, 2022). Recent developments have also extended diffusion models to video (Ho et al., |2022c|), with the
potential to revolutionize the generation of content for entertainment or simulating the world for intelligent
decision-making (Yang et al., 2023a). For example, the text-to-video SORA (Brooks et al., 2024) model has
been able to generate high-quality videos up to a minute long conditional on a user’s prompt. Following
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the announcement of SORA, there has been a surge of proprietary and open-source video diffusion models
spanning across a wide variety of video generation problems, such as text-to-video generation, image-to-
video generation, and video editing. Several commercial Al video generation tools are gaining attention for
their unique features. Runway’s Gen-3 stands out with highly photorealistic videos, especially for complex
scenes and faces, offering both text-to-video and image-to-video capabilities with professional-level quality.
Luma Dream Machine, though less coherent in complex scenes, remains user-friendly and affordable for
quick cinematic outputs. Kling AI, with its mobile-first approach, provides strong control over elements
like lighting and motion, while ensuring high video generation quality. Movie Gen (Polyak et al., 2024)
from Meta offers a suite of foundation models capable of generating high-quality, high-resolution videos in
various aspect ratios with synchronized audio. For open-source models, recent foundational video generation
models include OpenSora (Zheng et al., [2024)), VideoCrafter-2 (Chen et al., 2024) and Stable Video Diffusion
(Blattmann et al.l [2023a)). However, the quality, resolution and duration of the generated videos are still
not comparable to commercial video generation solutions. Adapting diffusion models to video generation
poses unique challenges that still need to be fully overcome, including maintaining temporal consistency,
generating long video, and computational costs.

In this survey, we provide an overview over key aspects of video diffusion models including possible applica-
tions, the choice of architecture, mechanisms for modeling of temporal dynamics, and training modes (see
Figure|l|and Table 1/ for an overview). We then provide brief summaries of notable papers in order to outline
developments in the field until now. Finally, we conclude with a discussion of ongoing challenges and identify
potential areas for future improvements.

2 Taxonomy of Applications

The possible applications of video diffusion models can be roughly categorized according to input modalities.
This includes text prompts, images, videos, and auditory signals. Many models also accept inputs that are
a combination of some of these modalities. Figure [2| visualizes the different applications. We summarize
notable papers in each application domain starting from Sec.|7.1.3| For this, we have categorized each model
according to one main task.

In our taxonomy, text-conditioned generation (Sec.|7.1.3) refers to the task of generating videos purely based
on text descriptions. Different models show varying degrees of success in how well they can model object-
specific motion. We thus categorize models into two types: those capable of producing simple movements
such as a slight camera pan or flowing hair, and those that can represent more intricate motion over time,
such as those incorporating Physical Reasoning (Melnik et al., 2023]).
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Figure 1: Overview of the key aspects of video diffusion models that we cover in this survey.
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Table 1: Overview of video diffusion models and their applications.

Paper Model Application Max. Resolution | Methodology Shots
Ho et a1.|(]2022c} VDM @ @ @ 128 128% 64 FA|[1S|[tT Many
Singer et al.MZOZZ, Make-a-Video @ @ @ 768X T68x 76 FA[[1S||1T Many
Ho et a1.|q2022a' ImagenVideo @ 1280x768% 128 FA|[1S|[tT Many
Zhou et a1.|(]2022} MagicVideo @ @ ® 1024x1024x61 P |[ L |[FAl[1S][+T Many
Blattmann et al. | (]20231)} VideoLDM @ @ 2048 x 1280x 90000 P [[ L [|ral[+s][tT Many
Khachatryan et a1.|q2023k Text2Video-Zero @ @ 512x512x 8+ P(|L Many
Guo et al.|(2023) AnimateDiff @ 512x512x 16 Pl[L Many
Chen et al. 2023d} MCDiff @ 256%256x 10 L |[AR] Many
Chen et al. 20230P SEINE @ 512x320x16 P (| L |AR} Many
Yin et al.|(2023) Nuwa-XL @@ NaNxNaNx 1024 P || L [[FA|[+T Many
He et al.|(2022b) LVDM @@ 256x256x 1024 P [[ L ||FaAl[+T Many
Harvey et alNZOQZP FDM @@ 128x 128 x 15000 P |[FA|{+T|[AR] Many
Lu et al.|(2023b) VDT @@ 256 %256 x 30 L |[FA[[+T Many
‘Wang et a1.|42023b Gen-L-Video @ @ @ 512x512xhundreds P || L||3D NaN
Zhu et al.[(2023 MovieFactory @ @ 3072x1280x NaN P || L |[FA|[rs Many
Sun et al.[(2023 GLOBER @@ 256 x 256 128 P |[ L |[3D][Fa Many
Luo et al.|(2023 VideoFusion @ @ 128x128%512 P [[+S]|AR] Many
Hu et al.| (2023a) GAIA-1 @ @ @ 288x512xminutes | |FA|[1T|[AR] Many
Lee et al.|(2023a. Soundini @ 256 %256 x NaN P One
Lee et al.|(2023b AADIff @ @ 512x512x 150 P|[L Zero
Liu et al.|(2023d Generative Disco @ 512x512x NaN P||IL Zero
Tang et al.|42023k Composable Diffusion @ @ @ 512x512x16 Pl L Many
Styputkowski et al.|(12023b Diffused Heads @ 128x128x8-9s AR Many
Zhua et al.|(2023) (Audio Heads) @ 1024x 1024 x NaN P |[ts Many
Casademunt et al. (12023P Laughing Matters @ 128 x 128 x50 FA||ARJ Many
Molad et al. (2023 Dreamix @ @ 1280x768% 128 P |[FA|[4S][1T One
Wu et al. 4202213, Tune-A-Video @ 512x512x 100 P |[ L |[FA][AR] One
Qi et al.l 2023p FateZero @ 512x512x 100 P || L |[FA||AR] One
Liu et al. (]2023bp Video-P2P @ 512x512x 100 | P [ L|[FA][AR] One
Ceylan et a1.|(|2023p Pix2Video @ 512x512xNaN P |[ L |[FA|[AR] Zero
Esser et a1.|42023} Runway Gen-2 @ @ @ 448 %x256%x8 P || L ||FA Many
Xing et al.|q2023a} Make-Your-Video @ 256 x 256 x 64 P || L |[FA|[AR] Many
Ma et aLl (12023} Follow Your Pose ® 512x512x100 P (| L ||FA[|AR] Many
Zhao et a1.|42023p Make-A-Protagonist ® 768X 768x8 P || L ||FA One
Bai et a1.|(]2024p UniEdit @ 512x320% 16 P|lL Zero
Ku et al.|(2024) AnyVav @ 512x512x 16 Pl[L Zero
Zhang et al.|(l2023c} ControlVideo ® 512x512x100 P || L ||3D Zero
Wang et a1.|(]2023bp vid2vid-zero @ 512x512x8 P || L |[AR] Zero
Huang et aLl (12023} Style-A-Video ® 512x256xNaN P(lL Zero
Yang et a1.|42023bk Rerender A Video @ 512x512xNaN P|IL 1T Zero
Liu et al. q% ColorDiffuser @ 256 x256x NaN [P][L][FA] Many

@ txt2vid, @: img2vid, ®: vid2vid, @: aud2vid, @: long vid

pre-trained model, : latent space, : full 3D attn./conv., ﬁ: factorized attn./conv.,
spatial upsampling, : temporal upsampling, : auto-regressive
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In image-conditioned video generation (Sec. tasks, an existing reference image is animated. Sometimes,
a text prompt or other guidance information is provided. Image-conditioned video generation has been
extensively studied recently, due to its high controllability to the generated video content. For models
introduced in other sections, we mention their capability for image-to-video generation where applicable.

We treat video completion (Sec.|8|) models that take an existing video and extend it in the temporal domain as
a distinct group, even though they intersect with the previous applications. Video diffusion models typically
have a fixed number of input and output frames due to architectural and hardware limitations. To extend
such models to generate videos of arbitrary length, both auto-regressive and hierarchical approaches have
been explored.

Audio-conditioned models (Sec. E[) accept sound clips as input, sometimes in combination with other modal-
ities such as text or images. They can then synthesize videos that are congruent with the sound source.
Typical applications include the generation of talking faces, music videos, as well as more general scenes.

Video editing models (Sec. use an existing video as a baseline from which a new video is generated.
Typical tasks include style editing (changing the look of the video while maintaining the identity of objects),
object / background replacement, deep fakes (Sec. , and restoration of old video footage (including tasks
such as denoising, colorization, or extension of the aspect ratio).

Finally, we consider the application of video diffusion models to intelligent decision-making (Sec. . Video
diffusion models can be used as simulators of the real world, conditioned on the current state of an agent or
a high-level text description of the task. This could enable planning in a simulated world, as well as fully
training reinforcement learning policies within a generative world model.
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Figure 2: Applications of video diffusion models. Bounding boxes are clickable links to relevant chapters.

Example images taken from the following papers (top to bottom): Blattmann et al| (2023b)), [Ho et al.
2022al), [Singer et al.| (2022), Lu et al. (2023Db), |Yin et al| (2023), Lee et al.| (2023b)), [Stypulkowski et al.

2023), Wu et al| (2022b), Xing et al.| (2023a)), [Ma et al.|(2023)), Liu et al.| (2023a))
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We conduct a thorough search for relevant papers on video diffusion models. This search includes open lists
of accepted papers from recent conferences and journals in computer vision and machine learning, such as
CVPR and NeurIPS. We select papers based on their relevance to the topic and their publication status,
including archived and in-proceeding papers. Additionally, we utilize specific search terms related to video
diffusion models in our database queries. Our search spans multiple reference databases, including Google
Scholar and Semantic Scholar, to ensure we capture the latest preprint papers and ongoing research in this
rapidly evolving field.

Data Injecting noise in the forward process »Noise

Data€e————— Generating samples in the backward process ———Noise

Figure 3:  Diffusion models add noise to the observed data in the forward process and are trained to learn
how to reverse the process. Denoising diffusion probabilistic model (DDPM) and score-based model (SBM)
are popular approaches that are mathematically equivalent but provide different perspectives.

3 Mathematical Formulation

We first review the mathematical formulation of diffusion generative models, which learn to model a target
distribution, for example, of natural videos, by progressive noise injection in the forward process and reversed
denoising in the backward process, as shown in Fig. 3l A diffusion model generates samples via a chain of
denoising steps that start from an initial noise vector that is often a sample from a Gaussian distribution
of uncorrelated white noise. Each denoising step is performed by a neural network that has been trained to
guide a noisy input toward the target distribution. After a number of such denoising steps, the obtained result
will approximate a noise-free sample of the target domain. The key to this mechanism’s success is training
a suitable denoising network. This is achieved by an objective that learns to reverse the forward noising
process at the corresponding noise levels. Broadly speaking, diffusion models can be categorized into two
families of formulations: denoising diffusion probabilistic models (DDPM) (Ho et al.l 2020; Sohl-Dickstein|
and score-based model (SBM), the latter of which includes the denoising score matching models
with Langevin dynamics (SMLD) (Song & Ermon| [2019; [2020) and the generalized Score SDE
2021)). We give a brief introduction to each of the modeling designs below.

3.1 Denoising Diffusion Probabilistic Model (DDPM) Formulation

In the following, we summarize the formalization of the unconditioned denoising diffusion probabilistic model
(DDPM) process from Ho et al.| (2020); |Sohl-Dickstein et al| (2015). The forward diffusion process follows
a Markov chain that iteratively adds sampled noise to an initial input video xy over T time steps, so that
it resembles samples drawn from a Gaussian distribution. The Markov property ensures that the degraded
video z; at time step ¢ only depends on the video x;_; in the immediately preceding step ¢ — 1. The
distribution q(z¢|z—1) of z; in a forward step can be described by the conditional Gaussian transition kernel

q(@e|zi—1) = N(x; /1 — Beay—1, BiI), (1)

where the mean and standard deviation are determined by a variance-preserving noise schedule (1, ..., 81
and I is the identity matrix. Different schedules can be used, such as a linear or cosine schedule, influencing
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how quickly information in the original vide is destroyed. Due to the Markov property that each state only
depends on the preceding state, the overall forward process is described by

T

g(wirleo) = [ [ a(wlzs-n). (2)

t=1

Ho et al.| (2020]) show that the distribution at an arbitrary time step ¢ can be directly computed by

q(zi]wo) = N (z; Vayzo, (1 — ay)I), (3)
where a; := Hizl as and ap := (1 — ;). The analytical solution in the forward process allows for fast

sampling of corrupted samples and reduces training variance.

In the denoising phase, we try to reverse this process, starting from the final time step T. The reverse
process is again a Markov chain, this time with Gaussian transition probabilities that need to be learned by
our model. A single denoising step is described by

po(i—1]ms) := N (@15 g (e, ), So (4, 1)), (4)

where 6 are the trainable parameters of our denoising model used to predict the mean and covariance of the
conditional Gaussian. The full reverse process is described by

T
po(zo:7) = p(ar) H (T—1ze), (5)

where p(z7) := N(zr;0,1) is the prior distribution to start drawing samples from in the reverse process.

To train the model, we minimize the variational lower bound on the negative log-likelihood

xi_1|x
E[—logpg(xo)] < E, | —log p(zr) Zl Po(i-i] t)] . (6)
= @)

This loss function can be rewritten as a sum of Kulback-Leibler divergences between the distributions of the
forward and backward steps

L:=E, | Dxr(q(@r|zo)|p(xr)) + Y Drr(g(wi-ilae, zo)llpe(zi—1|z:)) - log(pe(wolwl))] : (7)

t>1

This formulation has the advantage that we can calculate closed-form solutions for the Kulback-Leibler
terms. First, the conditional distribution g(zr|z¢) admits an analytical solution in Eq. 3, and the reverse
process prior p(zr) is fixed, making the first term Dy (g(xr|zo)||p(z7)) a constant. One can design the
noise schedule properly so that the terminal state in the forward process g(zr|zo) is empirically close to the
prior in the reverse process p(xr) to lower this term.

Note that the forward posteriors are now also conditioned on the initial video xg. Using Bayes’ theorem, it
can be shown that

q(w¢|ws_1,20) q(T4—1]70) - q(we|rs 1) q(@s_1|T0) ZN(mt 1 fie (e |2o0) Btl) (8)

q(xi—1|xs, T0) = =
(@-1le, @o) EAES EAES

where [(xy, x0) 1= Y ;t alfﬁt + ‘ﬁ(l a‘ 1)x and 3, == = “‘ 1Bt The first equality follows from Bayes’
rule, the second from the Markowan property of the forward process and the third is a rearrangement of
Gaussian density functions. Namely, the second loss term Dy (q(x¢—1|zt, xo)||po(zi—1]z¢)) from Eq. [7] is

also tractable, as it characterizes the KL divergence between two Gaussians and has analytical solutions.
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Empirically, Ho et al| (2020) show that predicting the added noise eg(x¢,t) rather than the mean fig(zy,t)
of each forward step leads to a simplified loss function

Limple = Br.z0.c [l€ — oz, 1)II3] (9)

that performs better in practice. Here, €y is called a “denoising model”, or “denoiser”, which predicts the
standard normal noise € added to the input given the input x; at time step t. The denoising model is often
formulated as a UNet (Ronneberger et al., 2015)) or a Vision Transformer (Dosovitskiy et al., |2020) (see
Sec. 4). A more detailed description of how video diffusion models perform such a denoising process can be
found in Sec. [5

To generate samples using DDPM, we utilize the reverse process outlined in Eq. |4/ and Eq. |5t This reverse
Markov chain allows us to generate a data sample z( by initially sampling a noise vector zr ~ p(zr), and
then iteratively sampling from the learnable transition kernel x;_1 ~ pg(x¢—1 | 2¢) until ¢ = 1. The original
DDPM generation process has more recently been complemented by a non-Markovian alternative denoted as
denoising diffusion implicit models (DDIM, [Song et al.|[2020), which offers a deterministic and more efficient
generation process. Here, a backward denoising step can be computed with

() T — /1 — ey, t)

Lo = Ner (10)

677
Ti_1 = \/at,li(()t) + /1= at,169<$t,t). (11)

One distinct advantage of DDIM is that it allows for accurate reconstruction of the original input video xg
from the noise at arbitrary time step t. To accelerate the generation process, we consider defining the
reverse process not on all the intermediate latent variables x;.7, but on a subset {x,,...,24}, where T is
an increasing subsequence of [1,...,T] of length S. Specifically, we define the sequential forward process
OVer Try,...,Trq such that q(z., | ©o) = N(zr,; v/ar,x0, (1 — @, )I) matches the marginals. We can then
draw samples following the sequence z,;, — :%g-s — T7g_, — -+ — x,. This technique, called DDIM
inversion, can be utilized for applications such as image and video editing (see Sec. |10).

3.2 Score-based Model Formulation

Score-based models (SBMs) (Song & Ermon| |2019; [Song et al.,|2021)) center on the concept of the Stein score,
or score function (Hyvéarinen, [2005). For a given probability density function p(z), the score function is the
gradient of the log probability density, V, log p(x). This score function depends on the data z and indicates
the direction of the steepest increase in the probability density. SBMs add increasing Gaussian noise to
data and estimate the score functions for all noisy data distributions by training a noise-conditional score
network (Vincent} 2011). Samples are then generated by chaining these score functions at decreasing noise
levels using methods like Langevin dynamics (Parisi, [1981)), stochastic differential equations (SDEs) (Song
et al 2021)) and ordinary differential equations (ODEs) (Karras et al.,[2022). Unlike DDPM, SBMs decouple
training and sampling, allowing for various sampling techniques after the score functions are estimated. Below
we focus on the two most representative types of SBMs: denoising score matching with Langevin dynamics
(SMLD) and score-based stochastic differential equations (Score SDEs).

Denoising Score Matching with Langevin Dynamics. In denoising score matching with Langevin
dynamics (SMLD), we denote the data distribution by p(x¢) and use a sequence of noise levels 0 < o1 <
o9 < -+ < o for score estimation. A data point z( is perturbed to z; by Gaussian noise, p(z; | xg) =
N (x4; 29, 021). This process creates a series of noisy data distributions p(z1), p(x2), ..., p(zr), where p(z;) =
[ p(z¢ | 2o)p(z0) dzg. A mnoise-conditional score network, sg(z,t), is trained to estimate the score function
V2, log p(z;) using denoising score matching (Vincent), 2011) with the following training objective

Et~t41(1.71),00~p(w0) @0 ~p(at|20) [A(t) lle+ o*tSe(xut)IIQ] + const, (12)

where U[[1,T]] denotes the uniform distribution over discrete indices {1,2,--- , T}, z; = o+ o€, € ~ N(0,1)
and A(t) is a positive weighting function. The training objectives of DDPM and SMLD are equivalent when
eg(x,t) = —oyse(x,t).
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For sampling, SMLD uses iterative approaches like annealed Langevin dynamics (Song & Ermon| 2019)).
Starting with x}N) ~ N(0,1), Langevin dynamics is applied iteratively for ¢ = T, T —1,...,1. At each step,

initialized with xﬁo) = xii\_ff, the update rule is:

N NNONN §st39(x§1),t) + /5@ e~ A0, 1), (13)

where s; > 0 is the step size and N is the number of iterations per step. As s; — 0 and N — oo, x,(JN)

converges to a valid sample from the data distribution p(xg).

Score-based Stochastic Differential Equations. Models like DDPM and SMLD can be extended to
infinite time steps or noise levels using stochastic differential equations (SDEs), forming the Score SDE (Song
et al.,[2021)). This approach uses SDEs for noise perturbation and sample generation, requiring the estimation
of score functions of noisy data distributions. Score SDEs perturb data with a forward process governed by:

dz = f(x,t)dt + g(t) dw, (14)
where f(z,t) and g(t) are the drift and diffusion functions, and w is a standard Wiener process.

DDPM and SMLD can be seen as discrete versions of this SDE. For DDPM, the corresponding SDE is:

dr = —%ﬁ(t)x dt + /B() dw, 8 (;) — T8, (15)
For SMLD, the SDE is:
2
dz = % dw, o (;) = 0%. (16)

Here T refers to the total number of noise levels used in DDPM and SMLD.
Any diffusion process in the form of Eq. [14] can be reversed by solving the reverse-time SDE:
dz = [f(z,1) = g(t)*V, logpy(x)] dt + g(t) dw, (17)

where w is a reverse-time Wiener process. The solution trajectories of the reverse SDE share the same
marginal densities as the forward SDE but evolve in the opposite direction, progressively converting noise
into data. Additionally, [Song et al.| (2021) introduce the probability flow ODE, with trajectories matching
those of the reverse-time SDE:

dz = [f(a;,t) - %g(t)Qng 1ogpt(x)] dt. (18)

The key to building Score SDE generative models is accurately learning the score function Vy logp:(x) at
each time step t. We achieve this by training a time-dependent score model sy(x¢,t) using a continuous-time
score matching objective:

2
Bt 24[0,7 30 ~p(5x0) 30 ~p(x2|%0) [A(t) l[so(xt,t) = Vi, log p(x¢ [ x0)[ , (19)
where U0, T denotes the uniform distribution over [0, T], and other notations follow the definition in Eq. |12l

With a trained score estimation network, we can solve the reverse-time SDE and probability flow ODE to
generate samples. Methods include annealed Langevin dynamics [Song & Ermon| (2019)), numerical SDE
solvers [Song et al.| (2021), numerical ODE solvers [Song et al.| (2021); Karras et al.| (2022), and predictor-
corrector methods [Song et al.| (2021)), effectively solving the reverse processes.

4 Architecture

Next, we review popular architectures used for video diffusion models including UNets and transformers. We
first introduce image-based variants before discussing how they may be suitably adapted for video generation,
in Sec. |5l We also discuss common variations on these including latent diffusion models and cascaded diffusion
models.
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4.1 UNet

The UNet (Ronneberger et al., 2015) is currently the most popular architectural choice for the denoiser
in visual diffusion models (see Figure . Originally developed for medical image segmentation, it has
more recently been successfully adapted for generative tasks in image, video, and audio domains. A UNet
transforms an input image into an output image of the same size and shape by encoding the input first into
increasingly lower spatial resolution latent representations while increasing the number of feature channels
by progressing through a fixed number of encoding layers. Then, the resulting ‘middle’ latent representation
is upsampled back to its original size through the same number of decoding layers. While the original
UNet (Ronneberger et al.l 2015) only used ResNet blocks, most diffusion models interleave them with Vision
Transformer blocks in each layer. The ResNet blocks mainly utilize 2D-Convolutions, while the Vision
Transformer blocks implement spatial self-attention, as well as cross-attention. This happens in a way that
allows conditioning of the generative process on additional information such as text prompts and current
timestep. Layers of the same resolution in the encoder and decoder part of the UNet are connected through
residual connections. The UNet can be trained by the process outlined in Sec.

4.2 Vision Transformer

The Vision Transformer (ViT, [Dosovitskiy et al| (2020)) is an important building block of generative dif-
fusion models based on the transformer architecture developed for natural language processing

iterative denoising

Denoising UNet
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Figure 4: The denoising UNet architecture typically used in text-to-image diffusion models. The model
iteratively predicts a denoised version of the noisy input image. The image is processed through a number
of encoding layers and the same number of decoding layers that are linked through residual connections.
Each layer consists of ResNet blocks implementing convolutions, as well as Vision Transformer self-attention
and cross-attention blocks. Self-attention shares information across image patches, while cross-attention
conditions the denoising process on text prompts.
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et all 2017). Therefore, it similarly combines multi-head attention layers, normalization layers, residual
connections, as well as a linear projection layer to transform a vector of input tokens into a vector of output
tokens. In the image case, the input tokens are obtained by dividing the input image into regular patches and
using an image encoder to compute for each patch a patch embedding, supplemented with learnable position
embeddings. Within the attention layer, the patch embeddings are projected through trainable projection
matrices, producing so called Query, Key and Value matrices. The first two matrices are used to compute

a learnable affinity matrix A between different image token positions, which is calculated according to the

scaled dot-product attention formula: A(Q, K) = softmax(Q—\/%T). Here, Q and K are d x dy dimensional

and refer to the query and key matrix, d is the number of input tokens, di the dimensionalities of the d
query and key vectors making up the rows of K and @, and the matrix Z of output embeddings is obtained
as Z = AV, i.e. the attention-weighted superposition of the rows of the value matrix V' (with one row for
each input token embedding). In the simplest case, there is a single (d x d dimensional) affinity matrix,
resulting from a single set of projection matrices. In multi-head attention, a stack of such projections with
separate query, key, and value matrices is used. Their outputs are concatenated and transformed through a
linear output layer to form a single set of d new patch embeddings. The attention heads can be computed
in parallel and allow the model to focus on multiple aspects of the image. Depending on the task, ViTs can
output an image embedding or be equipped with a classification head.

In diffusion models, ViT blocks serve two purposes: On the one hand, they implement spatial self-attention
where @, K, and V refer to image patches. This allows information to be shared across the whole image,
or even an entire video sequence. On the other hand, they are used for cross-attention that conditions the
denoising process on additional guiding information such as text prompts. Here, @ is an image patch and
K and V are based on text tokens that have been encoded into an image-like representation using a CLIP
encoder (Radford et al., [2021)).

Purely Vision Transformer-based diffusion models have been proposed as an alternative to the standard
UNet (Peebles & Xiel 2022 [Lu et all, 2023b; Ma et al., [2024; |Chen et al., 2023cib; |Gupta et al., |2023)).
Rather than utilizing convolutions, the whole model consists of a series of transformer blocks only. This
approach has distinct advantages, such as flexibility in regard to the length of the generated videos. While
UNet-based models typically generate output sequences of a fixed length, transformer models can auto-
regressively predict tokens in sequences of relatively arbitrary length.

4.3 Cascaded Diffusion Models

Cascaded Diffusion Models (CDM, |Ho et al.|2022b]) consist of multiple UNet models that operate at increasing
image resolutions. By upsampling the low-resolution output image of one model and passing it as input to
the next model, a high-fidelity version of the image can be generated. At training time, various forms of
data augmentation are applied to the outputs of one denoising UNet model before it is passed as input to the
next model in the cascade. These include Gaussian blurring, as well as premature stopping of the denoising
process (Ho et al.l |2022b). The use of CDMs has largely vanished after the adaptation of Latent Diffusion
Models (Rombach et al., |2022)) that allow for native generation of high-fidelity images with lower resources.

4.4 Latent Diffusion Models

Latent Diffusion Models (LDM, [Rombach et al| (2022)) have been an important development of the base
UNet architecture that now forms the de-facto standard for image and video generation tasks. Instead of
operating in RGB space, the input image is first encoded into a latent representation with lower spatial
resolution and more feature channels using a pre-trained vector-quantized variational auto-encoder (VQ-
VAE, [Van Den Oord et al.| (2017)). This low-resolution representation is then passed to the UNet where the
whole diffusion and denoising process takes place in the latent space of the VQ-VAE encoder. The denoised
latent is then decoded back to the original pixel space using the decoder part of the VQ-VAE. By operating
in a lower-dimensional latent space, LDMs can save significant computational resources, thus allowing them
to generate higher-resolution images compared to previous diffusion models. Stable Diffusion |!|is a canonical

Hhttps://github.com/Stability-Al/stablediffusion
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open source implementation of the LDM architecture. Further improvements of the LDM architecture have
been introduced by Chen et al.| (2020), who addressed specific concerns about how to adjust the architecture
for high-resolution images, and [Podell et al.| (2023), who used a second refiner network for improving the
sample quality of generated images.

5 Temporal Dynamics

In diffusion-based video generation, the UNet/ViT models described in Sec. |4 are used as denoising models
(ep in Eq. @[) to predict the noise added to the input video clip. Unlike image diffusion models that generate
each image separately, video diffusion models often perform denoising over a set of frames simultaneously.
In other words, the input z; to the video diffusion model represents an n-frame video clip (e.g. n = 16).
Formally, given a noisy video clip (or video latent if using latent diffusion models) z; at time step ¢, the
UNet/ViT model predicts the noise € added to the video clip/latent, which is then used to derive a less
noisy version of the video z;_;. This denoising process can be repeated until the clean video clip/latent z
is obtained.

Text-to-image models such as Stable Diffusion can produce realistic images, but extending them for video
generation tasks is not trivial . If we try to naively generate individual video frames from a
text prompt, the resulting sequence has no spatial or temporal coherence (see Figure [5a). For video editing
tasks, we can extract spatial cues from the original video sequence and use them to condition the diffusion
process. In this way, we can produce fluid motion of objects, but temporal coherence still suffers due to
changes in the finer texture of objects (see Figure pb). In order to achieve spatio-temporal consistency, video
diffusion models need to share information across video frames. The most obvious way to achieve this is to
add a third temporal dimension to the denoising model. ResNet blocks then implement 3D convolutions,
while self-attention blocks are turned into full cross-frame attention blocks. This type of full 3D architecture
is however associated with very high computational costs.

“Michael Jordan running”

txt2vid

vid2vid

Time

Figure 5: Limitations of text-to-video diffusion models for generating consistent videos. (Top) When using
only a text prompt (“Michael Jordan running”), both the appearance and position of objects change wildly
between video frames. (Bottom) Conditioning on spatial information from a reference video can produce
consistent movement, but the appearance of objects and the background still fluctuate between video frames.
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To lower the computational demands of video UNet models, different approaches have been proposed (see
Figure |6/ and Figure|[7)): 3D convolution and attention blocks can be factorized into spatial 2D and temporal
1D blocks. The temporal 1D modules are often inserted into a pre-trained text-to-image model. Additionally,
temporal upsampling techniques are often used to increase motion consistency. In video-to-video tasks, pre-
processed video features such as depth estimates are often used to guide the denoising process. Finally, the
type of training data and training strategy has a profound impact on a model’s ability to generate consistent
motion.

5.1 Spatio-Temporal Attention Mechanisms

In order to achieve spatial and temporal consistency across video frames, most video diffusion models modify
the self-attention layers in the UNet model. These layers consist of a vision transformer that computes the
affinity between a query patch of an image and all other patches in that same image. This basic mechanism
can be extended in several ways (see [Wang et al. [2023b| for a discussion): In temporal attention (Hong
et al., [2022; [Singer et al., [2022), the query patch attends to patches at the same location in other video
frames. In full spatio-temporal attention (Zhang & Agrawala, 2023} [Bar-Tal et al.l [2024), it attends to all
patches in all video frames. In causal attention, it only attends to patches in all previous video frames. In
sparse causal attention (Wu et al.| [2022b]), it only attends to patches in a limited number of previous frames,
typically the first and immediately preceding one. The different forms of spatio-temporal attention differ in
how computationally demanding they are and how well they can capture motion. Additionally, the quality
of the produced motion greatly depends on the used training strategy and data set.

5.2 Temporal Upsampling

Generating long video sequences in a single batch often exceeds the capacity of current hardware. While
different techniques have been explored to reduce the computational burden (such as sparse causal attention,
Wu et al.[2022b)), most models are still limited to generating video sequences that are no longer than a few
seconds even on high-end GPUs. To get around this limitation, many works have adapted a hierarchical
upsampling technique whereby they first generate spaced-out key frames. The intermediate frames can then
be filled in by either interpolating between neighboring key frames, or using additional passes of the diffusion
model conditioned on two key frames each.

As an alternative to temporal upsampling, the generated video sequence can also be extended in an auto-
regressive manner (Blattmann et al.| 2023b). Hereby, the last generated video frame(s) of the previous batch
are used as conditioning for the first frame(s) of the next batch. While it is in principle possible to arbitrarily
extend a video in this way, the results often suffer from repetition and quality degradation over time.

6 ResNet \ 3D ResNet \

latent 1 Y
latent 2 l
| B <J9~')D» “FHFFO-
Image latent e 3D latent
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N Jael =

Figure 6: Three-dimensional extension of the UNet convolution layers for video generation. The convolution
kernels are expanded into 3D kernels to adapt to the extra temporal dimension in video generation.
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Figure 7: Attention mechanisms used to model temporal dynamics are illustrated here. The color red
represents the Query, and green indicates the Key. This diagram identifies which patches in the 3D video
sequences receive attention.

5.3 Structure Preservation

Video-to-video translation tasks typically strive for two opposing objectives: Maintaining the coarse structure
of the source video on the one hand, while introducing desired changes on the other hand. Adhering to the
source video too much can hamper a model’s ability to perform edits, while strolling too far away from
the layout of the source video allows for more creative results but negatively impacts spatial and temporal
coherence.

A common approach for preserving the coarse structure of the input video is to replace the initial noise in
the denoising model with (a latent representation of) the input video frames (Wu et al.; 2022b). By varying
the amount of noise added to each input frame, the user can control how closely the output video should
resemble the input, or how much freedom should be granted while editing it. In practice, this method in
itself is not sufficient for preserving the more fine-grained structure of the input video and is therefore usually
augmented with other techniques. For one, the outlines of objects are not sufficiently preserved when adding
higher amounts of noise. This can lead to unwanted object warping across the video. Furthermore, finer
details can shift over time if information is not shared across frames during the denoising process.

These shortcomings can be mitigated to some degree by conditioning the denoising process on additional
spatial cues extracted from the original video. For instance, specialized diffusion models have been trained
to take into account depth estimates®l ControlNet (Zhang & Agrawalal, [2023)) is a more general extension for
Stable Diffusion that enables conditioning on various kinds of information, such as depth maps, OpenPose
skeletons, or lineart. A ControlNet model is a fine-tuned copy of the encoder portion of the Stable Diffusion
denoising UNet that can be interfaced with a pre-trained Stable Diffusion model. Image features are ex-
tracted using a preprocessor, encoded through a specialized encoder, passed through the ControlNet model,
and concatenated with the image latents to condition the denoising process. Multiple ControlNets can be
combined in an arbitrary fashion. Several video diffusion models have also implemented video editing that
is conditioned on extracted frame features such as depth (Ceylan et al.|[2023} |[Esser et al.[[2023} |Xing et al.
2023al, see Sec. |10.2) or pose estimates (Ma et al.|[2023; [Zhao et al.[2023, see Sec. |10.3]).

6 Training & Evaluation

Video diffusion models can differ greatly in regards to how they are trained. Some models are trained from
scratch (e.g. [Ho et al|[2022¢| [Singer et al.|[2022, [Ho et al.|[2022a)), while others are built on top of a pre-

Zhttps://huggingface.co/stabilityai/stable-diffusion-2-depth
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Figure 8: Training approaches for video diffusion models: a) Training on videos. b) Simultaneous training
on images and videos. c¢) Pre-training on images and fine-tuning on videos.

Table 2: Commonly used video data sets for diffusion model training.

Data Set Resolution | Source Labels # Clips | Clip Length | Total Length (h.)
WebVid-10M (2021) - Web Alt-Text 10.7 mio. 18 sec. 52k
HD-Vila-100M (2022) 1280%x720 | Youtube | Transcription (auto.) | 100 mio. 13.4 sec. 371k
Kinetics-600 (]2018} - Youtube Action Class 500,000 10 sec. 1.4k
UCF101 q2012} 320240 Youtube Action Class 13k 7 sec. 27
MSR-VTT (2016) - Web | Annotation (human) 10k 10-30 sec. 41.2

Sky Time-lapse (]2018} 640x 360 Youtube - 35k 32 frames 10
Tai-Chi-HD (]2019p 256256 Youtube - 3k 128-1024 frames -

TikTok (2022 640x1080 TikTok Depth 340 10-15 sec. 0.86

trained image model (e.g. |Zhou et al.|[2022} [Khachatryan et al.|[2023} Blattmann et al.|2023Db). It is possible
to train a model completely on labeled video data, whereby it learns associations between text prompts and
video contents as well as temporal correspondence across video frames (e.g. . However,
large data sets of labeled videos (e.g. [Bain et al]2021] Xue et al.|[2022] see Section tend to be smaller
than pure image data sets and may include only a limited range of content. Additionally, a single text label
per video may fail to describe the changing image content across all frames. At a minimum, automatically
collected videos need to be divided into chunks of suitable length that can be described with a single text
annotation and that are free of unwanted scene transitions, thereby posing higher barriers for uncurated
or weakly curated data collection. For that reason, training is often augmented with readily available data
sets of labeled images (e.g. [Russakovsky et al[2015 [Schuhmann et al|[2022, see Section [6.2). This allows a
given model to learn a broader number of relationships between text and visual concepts. Meanwhile, the
spatial and temporal coherence across frames can be trained independently on video data that can even be
unlabeled (Zhou et al., 2022]).

In contrast to models that are trained from scratch (e.g. [Ho et al.|[2022¢| [Singer et al.|[2022] [Ho et al.[2022a)),
recent video diffusion approaches (e.g. Zhou et al.|2022, Khachatryan et al. 2023, Blattmann et al.[2023b)
often rely on a pre-trained image generation model such as Stable Diffusion (Rombach et al.[2022). These
models show impressive results in the text-to-image (Rombach et al.,|2022; |Ramesh et al., 2022) and image
editing domains (Brooks et al.| 2023} |Zhang & Agrawalal [2023), but are not built with video generation in
mind. For this reason, they have to be adjusted in order to yield results that are spatially and temporally
coherent. One possibility to achieve this is to add new attention blocks or to tweak existing ones so that
they model the spatio-temporal correspondence across frames. Depending on the implementation, these
attention blocks either re-use parameters from the pre-trained model, are fine-tuned on a training data set
consisting of many videos, or only on a single input video in the case of video-to-video translation tasks.
During fine-tuning, the rest of the pre-trained model’s parameters are usually frozen in place. The different
training methods are shown in Figure
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6.1 Video Data Sets

Table [2| offers an overview of commonly used video data sets for training and evaluation of video diffusion
models.

WebVid-10M (Bain et all [2021)) is a large data set of text-video pairs scraped from the internet that
covers a wide range of content. It consists of 10.7 million video clips with a total length of about 52,000
hours. It is an expanded version of the WebVid-2M data set, which includes 2.5 million videos with an
average length of 18 seconds and a total play time of 13,000 hours. Each video is annotated with an HTML
Alt-text which normally serves the purpose of making it accessible to vision-impaired users. The videos
and their Alt-texts have been selected based on a filtering pipeline similar to that proposed in [Sharma et al.
(2018). This ensures that the videos have sufficiently high resolution, normal aspect ratio, and lack profanity.
Additionally, only well-formed Alt-text that is aligned with the video content is selected (as judged by a
classifier). WebVid-10M is only distributed in the form of links to the original video sources, therefore it is
possible that individual videos that have been taken down by their owners are no longer accessible.

HD-Villa-100M (Xue et al, |2022)) contains over 100 million short video clips extracted from about 3.3
million videos found on YouTube. The average length of a clip is 13.4 seconds with a total run time of about
371.5 thousand hours. All videos have a high-definition resolution of 1280 x 720 pixels and are paired with
automatic text transcriptions. Along with WebVid-10M, HD-Villa-100M is one of the most popular training
data sets for generative video models.

Kinetics-600 (Carreira et al., 2018) contains short YouTube videos of 600 distinct human actions with
their associated class labels. Each action class is represented by more than 600 video clips that last around
10 seconds. In total, the data set contains around 500,000 clips. The data set expands upon the previous
Kinetics-400 (Kay et all, 2017) data set.

UCF101 (Soomro et al. 2012)) is a data set of videos showing human actions. It contains over 13,000
YouTube video clips with a total duration of about 27 hours and an average length of 7 seconds. It expands
upon the previous UCF50 (Reddy & Shahl 2013) data set, which includes only roughly half as many video
clips and action classes. The clips have a resolution of 320 x 240 pixels. Each video has been annotated with
a class label that identifies it as showing one of 101 possible actions. The 101 action classes are more broadly
categorized into 5 action types: Human-Object Interaction, Body-Motion Only, Human-Human Interaction,
Playing Musical Instruments, and Sports. While UCF101 was mainly intended for training and evaluating
action classifiers, it has also been adopted as a benchmark for generative models. For this, the class labels
are often used as text prompts. The generated videos are then usually evaluated using IS, FID, and FVD
metrics.

MSR-VTT (Xu et al., 2016]) includes about 10,000 short video clips from over 7,000 videos with a total
run time of about 41 hours. The videos were retrieved based on popular video search queries and filtered
according to quality criteria such as resolution and length. Each clip was annotated by 20 different humans
with a short text description, yielding 200,000 video-text pairs. The data set was originally intended as a
benchmark for automatic video annotation but has been used for evaluating text-to-video models as well.
For this, CLIP text-similarity, FID, and FVD scores are usually reported.

Sky Time-lapse (Xiong et al., 2018)) is a collection of unlabeled short clips that contain time-lapse shots
of the sky. The videos have been taken from YouTube and divided into smaller non-overlapping segments.
Each clip consists of 32 frames of continuous video at a resolution of 640 x 360 pixels. The clips show the sky
at different times of day, under different weather conditions, and with different scenery in the background.
The data set can serve as a benchmark for unconditional video generation or video prediction. In particular,
it allows one to assess how well a given generative video model is able to replicate complex motion patterns
of clouds and stars.

Tai-Chi-HD (Siarohin et al. [2019)) contains over 3,000 unlabeled clips from 280 tai chi Youtube videos.
The videos have been split into smaller chunks that range from 128 to 1024 frames and have a resolution of
256 x 256 pixels. Similar to Sky Time-lapse, Tai-Chi-HD can be used for training and evaluating unconditional
generation or video prediction.
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TikTok Dataset (Jafarian & Park],[2022) is recognized as a popular benchmark for the generation of human
dancing videos. It comprises approximately 350 dance videos, each lasting between 10 and 15 seconds. The
curated videos in the dataset capture a single individual performing dance moves from monthly TikTok dance
challenge compilations. These selected videos showcase moderate movements without significant motion blur.
For each video, RGB images are extracted at a rate of 30 frames per second, resulting in a total of more
than 100,000 images. Human poses, depth maps, segmentation masks, and UV coordinates of each video
are also provided.

6.2 Image Data Sets

Video models are sometimes jointly trained on image and video data. Alternatively, they may extend a pre-
trained image generation model with temporal components that are fine-tuned on videos. Table |3| provides
a brief overview over commonly used labeled image data sets.

ImageNet (Russakovsky et al.l 2015) is a data set developed for the ImageNet Large Scale Visual Recog-
nition Challenge that was held annually between 2010 and 2017. Since 2012, the same data set has been
used for the main image classification task. ImageNet-21k is a large collection of over 14 million images that
have been annotated by humans with one object category label. Overall, there are 20,000 different object
classes present in the data set that are hierarchically organized according to the WordNet (Fellbaum) {1998)
structure. A subset of this dataset used for the ImageNet competition itself is often called ImageNet-1k. It
contains over 1 million images that each have been annotated by humans with one object category label and
a corresponding bounding box. There are only 1,000 object categories in this data set.

MS-COCO (Lin et al}|2014)) has originally been developed as a benchmark data set for object localization
models. It contains over 300,000 images containing 91 different categories of everyday objects. Every instance
of an object is labeled with a segmentation mask and a corresponding class label. Overall, there are about
2.5 million instances of objects in this data set.

LATION-5B (Schuhmann et al. 2022)) is a very large public collection of 5.58 billion text-image pairs that
can be found on the internet. Access is provided in the form of a list of links. To ensure a minimal level
of correspondence between the images and their associated alt-texts, the pairs have been filtered by the
following method: Images and texts have both been encoded through a pre-trained CLIP (Radford et al.,
2021) model and pairs with a low cosine CLIP similarity have been excluded. To train image or video models,
often only the subset of LAION-5B that contains English captions is used. It contains 2.32 billion text-image
pairs and is referred to as LAION-2B. Additionally, labels for not safe for work (NSFW), watermarked, or
toxic content are provided based on automated classification. The LAION-5B data set offers are relatively
low level of curation, but its sheer size has proven very valuable for training large image and video models.

6.3 Evaluation Metrics

Human ratings are the most important evaluation method for video models since the ultimate goal is to
produce results that appeal to our aesthetic standards. To demonstrate the quality of a new model, subjects
usually rate its output in comparison to an existing baseline. Subjects are usually presented with pairs of
generated clips from two different video models. They are then asked to indicate which of the two examples
they prefer in regard to a specific evaluation criterion. Depending on the study, the ratings can either
purely reflect the subject’s personal preference, or they can refer to specific aspects of the video such as
temporal consistency and adherence to the prompt. Humans are very good at judging what “looks natural”

Table 3: Commonly used image data sets that are used for video diffusion model training.

Data Set # Images | Annotation | Labels | # Classes
ImageNet-21k (2015) 14 mio. Human Class 20,000
ImageNet-1k (2015) 1.28 mio. Human Class 1,000
MS-COCO (2014) 328k Human Class 91
LAION-5B (2022) 5.58 mio. Automated Text -
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and identifying small temporal inconsistencies. The downsides of human ratings include the effort and time
needed to collect large enough samples, as well as the limited comparability across studies. For this reason,
it is desirable to also report automated evaluation metrics. Human studies can also be used to measure how
well the automated metrics align with human preferences, checking if human judgments agree with metric
results or differ when assessing similar videos (Unterthiner et al., 2018; [Huang et al., 2024; [Liu et al., 2024).

Common automated evaluation metrics can be categorized into two types: 1) set-to-set comparison metrics,
and 2) unary metrics, as shown in Figure(9. The first category measures the difference between the generated
set of data and the reference dataset, typically using statistical measures such as Fréchet distance (Dowson
& Landau, 1982)). The second category, unary metrics, does not require a reference set. This makes them
suitable for applications like video generation in the wild or video editing, where a gold-standard reference
is absent.

6.3.1 Set-to-set Comparison Metrics

Fréchet Inception Distance (FID, Heusel et al|2017) measures the similarity between the output distri-
bution of a generative image model and its training data. Rather than comparing the images directly, they
are first encoded by a pre-trained inception network (Szegedy et al., |2016]). The FID score is calculated as
the squared Wasserstein distance between the image embeddings in the real and synthetic data. FID can be
applied to individual frames in a video sequence to study the image quality of generative video models, but
it fails to properly measure temporal coherence.

Fréchet Video Distance (FVD, [Unterthiner et al.|[2018) has been proposed as an extension of FID for
the video domain. Its inception net is comprised of a 3D Convnet pre-trained on action recognition tasks
in YouTube videos (I3D, |Carreira & Zisserman|[2017). The authors demonstrate that the FVD measure is
not only sensitive to spatial degradation (different kinds of noise), but also to temporal aberrations such
as swapping of video frames. FVD is a commonly used metric for assessing the quality of unconditional or
text-conditioned video generation.

Kernel Video Distance (KVD, Unterthiner et al.|2018)) is an alternative to FVD. It is computed in an
analogous manner, except that a polynomial kernel is applied to the features of the inception net. The
authors found that FVD aligns better with human judgments than KVD. Nevertheless, both are commonly
reported as benchmark metrics for unconditional video generation.

Fréchet Video Motion Distance (FVMD, |Liu et al.|2024)) is a metric focused on temporal consistency,
measuring the similarity between motion features of generated and reference videos using Fréchet Distance.
It begins by tracking keypoints using the pre-trained PIPs++ model (Zheng et al., 2023)), then calculates
the velocity and acceleration fields for each frame. The metric aggregates these features into statistical
histograms and measures their differences using the Fréchet Distance. FVMD assesses motion consistency
by analyzing speed and acceleration patterns, assuming smooth motions should follow physical laws and
avoid abrupt changes.

In addition to video-based metrics, the Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index Measure (SSIM) (Wang et al., 2004) are commonly used image-level metrics for video quality
assessment. Specifically, SSIM characterizes the brightness, contrast, and structural attributes of the refer-
ence and generated videos, while PSNR quantifies the ratio of the peak signal to the Mean Squared Error

Set-to-set comparison metrics Unary metrics
Image-level metrics: CLIP-sim
Video-level metrics: FVD, KVD, FVMD Image-level metrics: FID, PSNR, SSIM Video-level metrics: IS, VBench . --------------_ ... .
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Figure 9: Commonly used algorithmic video evaluation metrics.
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(MSE). Originally proposed for imaging tasks such as super-resolution and in-painting, these metrics are
nonetheless repurposed for video evaluation. Unlike the aforementioned methods, PSNR and SSIM do not
need pre-trained models.

(@

|FVD: 405.26
|FID: 73.20
tVBench: 0.7430
FVMD: 7765.91

(b)
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|FID: 79.35
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|FVMD: 3178.80
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Figure 10: Limitations of Automated Evaluation Metrics: We evaluate various video generative models
trained on the TikTok dataset (Jafarian & Parkl [2022)) to compare their sample quality. Specifically, we gen-
erate about 50 videos for each model checkpoint and measure their performance using the FVD
, FID (Heusel et al., 2017, VBench (Huang et al., 2024), and FVMD metrics.
We present visualizations of five video samples from the same scene, ranked by human assessors from worst
to best, to highlight the limitations of algorithmic evaluation methods. The video samples are reproduced

from the following models: (a) is from Magic Animate (Xu et al., [2023); (b), (c), and (e) are from Animate
Anyone (Hu et al., [2023b)), each with different training hyperparameters; and (d) is from DisCo (Wang et al.

2023a)). For instance, video sample (a), which is of the poorest quality, cannot be effectively distinguished
from samples (b), (c), and (d) based on the FID or VBench metrics. In contrast, the FVMD metric aligns
better with the assessed video quality and motion consistency.

6.3.2 Unary Metrics

Inception Score (IS, [Salimans et al.||2016) is applicable to generative models trained on data sets with
categorical labels. An Inception Net (Szegedy et al. [2016) classifier pre-trained on the ImageNet data
set (Deng et all [2009) is used to predict the class labels of each generated image. The IS score is then
expressed by the Kullback-Leibler distance between the conditional class probability distribution p(y|G(z))
and the marginal class distribution p(y) of the generated samples. While IS aligns well with human ratings

and possesses good discriminative power (Borji, [2019)), it is susceptible to noise, as shown by [Heusel et al.
(2017)). It should be noted that IS only assesses the quality of individual images. When applied to video data,
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it can therefore not take into account aspects such as temporal coherence between video frames. [Saito et al.
(2020) generalizes the IS to the video domain, specifically for the UCF101 dataset (Soomro et al., [2012)),
where a pre-trained action recognition classifier (C3D, [Tran et al.|[2015) is used for score computation.
However, this metric is generally highly specific to the UCF101 dataset and is hardly applicable to videos in
the wild due to classification difficulty.

CLIP cosine similarity is often used to measure text prompt and frame consistency, where a reference
video dataset is not needed. CLIP (Radford et al.,|2021)) is a family of vision transformer auto-encoder models
that can project image and text data into a shared embedding space. During training, the distance between
embedded images and their associated text labels is minimized. Thereby, visual concepts are represented
close to words that describe them. The similarity between CLIP embeddings is typically measured through
their cosine distance. A value of 1 describes identical concepts, while a value of 0 implies completely unrelated
concepts. In order to determine how well a video sequence adheres to the text prompt used to generate or edit
it, the average similarity between each video frame and the text prompt is calculated (prompt consistency,
Esser et al.|2023)). In a similar fashion, it is also possible to get a rough measure of temporal coherence by
computing the mean CLIP similarity between adjacent video frames in a sequence (frame consistency, [Esser
et al.[2023)). In video editing tasks, the percentage of frames with a higher prompt consistency score in the
edited over the original video is also sometimes reported (frame accuracy, Qi et al.|[2023]).

VBench (Huang et all [2024) proposes a comprehensive set of fine-grained video evaluation metrics to
assess temporal and frame-wise video quality, as well as video-text consistency in terms of semantics and
style. They employ a number of pre-trained models, e.g., RAFT (Teed & Deng), |2020) for dynamic degree,
and MUSIQ (Ke et al., 2021)) for imaging quality, along with heuristics-inspired algorithms, e.g., visual
smoothness and temporal flickering, based on inter-frame interpolation and reconstruction error. The overall
score is determined by a weighted sum of a number of fine-grained metrics, and the authors also conduct
human studies to validate the effectiveness of these metrics.

6.4 Benchmarks

Some authors train their video models on specific datasets for evaluation purposes. This allows them to
directly compare them with earlier models that have been trained on the same data. In this way, certain
datasets can also be seen as quality benchmarks for new video diffusion models. Commonly used evaluation
datasets for video generation include UCF-101 (Soomro et al., [2012)), MSR-VTT (Xu et all 2016, Tai-
Chi-HD (Siarohin et al.l |2019), and Sky Time-Lapse (Radford et al., 2021). Models trained on all four of
these datasets can be evaluated using samples that have been generated in an unconditional manner. For
UCF-101, a second benchmark is sometimes reported on conditional generation where the 101 class labels
are used for guiding the generative process. In this case, IS can be used as an evaluation metric. For
MSR-VTT, conditional generation using the 200,000 human video annotations as text prompts can also be
evaluated. Here, CLIP text-similarity is often reported as a measure of text-video alignment. Most often,
the benchmarked models are either directly trained on the train split of the evaluation data set, or they are
pre-trained on a separate large video data set (such as WebVid-10M or HD-Villa-100M) and later fine-tuned
on the evaluation data set. However, some papers evaluate their model in a zero-shot setting, where the
model has not been trained on the evaluation data set at all. These discrepancies between evaluation setups
mean that a direct comparison of benchmark results across studies should be taken with a grain of salt.
More complex benchmarking suites include Ego-Exo04D (Grauman et all |2024) which is a multimodal and
multiview video dataset of skilled human activities.

The benchmark results for video generation are summarized in Table 4. Make-A-Video (Singer et al. [2022),
one of the early diffusion-based video models, still holds state-of-the-art FVD and IS scores on the UCF-101
conditional generation benchmark. It not only outperforms all GAN and auto-regressive models, but also
the newer diffusion-based models. It is pre-trained on both the WebVid-10M and HD-Villa-100M data sets,
which gives it an advantage in terms of the quantity of the training data over most other models. Make-
A-Video also holds the best CLIP-similarity and FID scores in the zero-shot text-conditioned MSR-VTT
benchmark. Make-A-Video is outperformed by Make-Your-Video (Xing et al., 2023a) when it comes to zero-
shot performance on UCF-101, although the latter uses depth maps as additional conditioning. Therefore,
both models are not directly comparable. VideoFusion (Luo et all |2023) has achieved the best FVD score
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on the unconditional Tai-Chi-HD and Sky Time-lapse benchmarks, as well as the best KVD score on Tai-
Chi-HD. It is outperformed by LVDM (He et al., |2022b) when it comes to KVD on the Sky Time-lapse
benchmark. MagicVideo (Zhou et all |2022)) has the best FID score on UCF-101 and the best FVD score on
MSR-VTT, although our comparison includes only few other datasets competing in those categories.

7 Video Generation

7.1 Unconditional Generation & Text-to-Video

Unconditional video generation and text-conditioned video generation are common benchmarks for generative
video models. Prior to diffusion models, Generative Adversarial Networks (GANs, |Goodfellow et al.|[2014,
Melnik et al.|2024)) and auto-regressive transformer models (Vaswani et al. [2017) have been popular choices
for generative video tasks. In the following, we provide a short overview over a few representative GAN
and auto-regressive transformer video models. We then introduce a selection of competing diffusion models
starting in Sec. [7.1.3|

7.1.1 GAN Video Models

TGAN (Saito et al.} 2017) employs two generator networks: The temporal generator creates latent features
that represent the motion trajectory of a video. This feature vector can be fed into an image generator
that creates a fixed number of video frames in pixel space. TGAN-v2 (Saito et al. [2020) uses a cascade
of generator modules to create videos at various temporal resolutions, making the process more efficient.
TGAN-F (Kahembwe & Ramamoorthy, [2020)) is another improved version that relies on lower-dimensional
kernels in the discriminator network.

MoCoGAN (Tulyakov et al., |2018) decomposes latent space into motion and content-specific parts by
employing two separate discriminators for individual frames and video sequences. At inference time, the
content vector is kept fixed while the next motion vector for each frame is predicted in an auto-regressive
manner using a neural network. MoCoGAN was evaluated on unconditional video generation on the UCF-101
and Tai-Chi-HD datasets and achieved higher IS scores than the preceding TGAN and VGAN models.

DVD-GAN (Clark et al.,2019) uses a similar dual discriminator setup to MoCoGAN. The main difference
is that DVD-GAN does not use auto-regressive prediction but instead generates all video frames in parallel.
It outperformed previous methods such as TGAN-v2 and MoCoGAN on the UCF-101 dataset in terms of
IS score, although DVD-GAN conditioned its generation on class labels, whereas the other approaches were
unconditional.

MoCoGAN-HD (Tian et al., [2021)) disentangles content and motion in a different way from the previous
approaches. A motion generator is trained to predict a latent motion trajectory, which can then be passed
as input to a fixed image generator. It outperformed previous approaches on unconditional generation in
the UCF-101, Tai-Chi-HD, and Sky Time-lapse benchmarks.

DIGAN (Yu et al) [2022) introduces an implicit neural representation-based video GAN architecture that
can efficiently represent long video sequences. It follows a similar content-motion split as discussed above.
The motion discriminator judges temporal dynamics based on pairs of video frames rather than the whole
sequence. These improvements enable the model to generate longer video sequences of 128 frames. DIGAN
achieved state-of-the-art results on UCF-101 in terms of IS and FVD score, as well as on Sky Time-lapse
and Tai-Chi-HD in terms of FVD and KVD scores.

7.1.2 Auto-Regressive Transformer Video Models

VideoGPT (Yan et all [2021)) uses a 3D VQ-VAE (Van Den Oord et all |2017)) to learn a compact video
representation. An auto-regressive transformer model is then trained to predict the latent code of the next
frame based on the preceding frames. While VideoGPT did not outperform the best GAN-based models at
the time, namely TGAN-v2 and DVD-GAN, it achieved a respectable IS score on the UCF-101 benchmark
considering its simple architecture.
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NUWA (Wu et al, [2022a) also uses a 3D VQ-VAE with an auto-regressive transformer generator. It is
pre-trained on a variety of data sets that enable it to perform various generation and editing tasks in the
video and image domains. Its text-conditioned video generation capability was evaluated on the MSR-VTT
data set.

TATS (Ge et al., [2022) introduces several improvements that address the issue of quality degradation that
auto-regressive transformer models face when generating long video sequences. It beat previous methods
on almost all metrics for UFC-101 (unconditional and class-conditioned), Tai-Chi-HD, and Sky Time-lapse.
Only DIGAN maintained a higher FVD score on the Sky Time-lapse benchmark.

CogVideo (Hong et all 2022) is a text-conditioned transformer model. It is based on the pre-trained
text-to-image model CogView2 (Ding et al.,[2022), which is expanded with spatio-temporal attention layers.
The GPT-like transformer generates key frames in a latent VQ-VAE space and a second upsampling model
interpolates them to a higher framerate. The model was trained on an internal data set of 5.4 mio. annotated
videos with a resolution of 160 x 160. It was then evaluated on the UCF-101 data set in a zero-shot setting
by using the 101 class labels as text prompts. It beats most other models in terms of FVD and IS score
except for TATS.

7.1.3 Diffusion Models

Producing realistic videos based on only a text prompt is one of the most challenging tasks for video diffusion
models. A key problem lies in the relative lack of suitable training data. Publicly available video data sets are
usually unlabeled, and human-annotated labels may not even accurately describe the complex relationship
between spatial and temporal information. Many authors therefore supplement training of their models
with large data sets of labeled images or build on top of a pre-trained text-to-image model. The first video
diffusion models (Ho et all, [2022¢) had very high computational demands paired with relatively low visual
fidelity. Both aspects have significantly been improved through architectural advancements, such as moving
the denoising process to the latent space of a variational auto-encoder (He et al., [2022b} |Zhou et al.l |2022;
Chen et al., |2023a; 2024} [Blattmann et al., 2023a; |Zhang et all [2023a) and using upsampling techniques
such as CDMs (Ho et al.|[2022a; [Wang et al.[2023c] see section 4.3)).

Ho et al| (2022c]) present an early diffusion-based video generation model called VDM. It builds on the
3D UNet architecture proposed by |Cicek et al.| (2016]), extending it by factorized spatio-temporal attention
blocks. This produces videos that are 16 frames long and 64 x 64 pixels large. These low-resolution videos
can then be extended to 128 x 128 pixels and 64 frames using a larger upsampling model. The models are
trained on a relatively large data set of labeled videos as well as single frames from those videos, which
enables text-guided video generation at time of inference. However, this poses a limitation of this approach
since labeled video data is relatively difficult to come by.

Singer et als (2022) Make-a-Video address this issue by combining supervised training of their model
on labeled images with unsupervised training on unlabeled videos. This allows them to access a wider and
more diverse pool of training data. They also split the convolution layers in their UNet model into 2D
spatial convolutions and 1D temporal convolutions, thereby alleviating some of the computational burden
associated with a full 3D UNet. Finally, they train a masked spatiotemporal decoder on temporal upsampling
or video prediction tasks. This enables the generation of longer videos of up to 76 frames. Make-a-Video
was evaluated on the UCF-101 and MSR-VTT benchmarks where it outperformed all previous GAN and
autoregressive transformer models.

Ho et al.| (2022a) use a cascaded diffusion process (Ho et al.[|2022b} see Figure |11) that can generate high-
resolution videos in their model called ImagenVideo. They start with a base model that synthesizes videos
with 40x24 pixels and 16 frames, and upsample it over six additional diffusion models to a final resolution
of 1280768 pixels and 128 frames. The low-resolution base model uses factorized space-time convolutions
and attention. To preserve computational resources, the upsampling models only rely on convolutions.
ImagenVideo is trained on a large proprietary data set of labeled videos and images in parallel, enabling it
to emulate a variety of visual styles. The model also demonstrates the ability to generate animations of text,
which most other models struggle with.
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|Zhou et al.[s (2022) MagicVideo adapts the Latent Diffusion Models (Rombach et al.|2022} see Figure
architecture for video generation tasks. In contrast to the previous models that operate in pixel space, their
diffusion process takes place in a low-dimensional latent embedding space defined by a pre-trained variational
auto-encoder (VAE). This significantly improves the efficiency of the video generation process. This VAE
is trained on video data and can thereby reduce motion artifacts compared to VAEs used in text-to-image
models. The authors use a pre-trained text-to-image model as the backbone of their video model with added
causal attention blocks. The model is fine-tuned on data sets of labeled and unlabeled videos. It produces
videos of 256x256 pixels and 16 frames that can be upsampled using separate spatial and temporal super-
resolution models to 1024x1024 pixels and 61 frames. In addition to text-to-video generation, the authors
also demonstrate video editing and image animation capabilities of their model.

CDM

|I|ﬁ|l|l|lﬁ1|l|l|ﬁ1|l

denoising UNet denoising UNet denoising UNet

VAE encoder denonsmg UNet VAE decoder

LDM

Figure 11: Architectural choices for increasing the output resolution of image diffusion models. a) Cascaded
Diffusion Models (CDM) chain denoising UNets of increasing resolution to generate high-fidelity images.
b) Latent Diffusion Models (LDM) use a pre-trained variational auto-encoder (VAE) to operate in lower-
dimensional space, thus preserving computational resources.

Blattmann et al.|(2023b) present another adaptation of the Latent Diffusion Models (Rombach et al., |2022)
architecture to text-to-video generation tasks called VideoLDM. Similar to [Zhou et al| (2022), they add
temporal attention layers to a pre-trained text-to-image diffusion model and fine-tune them on labeled video
data. They demonstrate that, in addition to text-to-video synthesis, their model is capable of generating
long driving car video sequences in an auto-regressive manner, as well as of producing videos of personalized
characters using Dreambooth (Ruiz et all [2023)).

[Khachatryan et als (2023) Text2Video-Zero completely eschews the need for video training data, instead
relying only on a pre-trained text-to-image diffusion model to perform zero-shot text-to-video generation.
Specifically, to ensure the appearance consistency of the objects across different frames, they equip the
pretrained image diffusion model with cross-frame attention blocks such that each frame can attend to all
the other frames during generation. Motion is simulated by applying a warping function to latent frames,
although it has to be mentioned that the resulting movement lacks realism compared to models trained on
video data. Spatio-temporal consistency is improved by masking foreground objects with a trained object
detector network and smoothing the background across frames. Similar to [Zhou et al|(2022), the diffusion
process takes place in latent space.

|Guo et al| (2023) offer a text-to-video model developed with personalized image generation in mind. Their
AnimateDiff extends a pre-trained Stable Diffusion model with a temporal adapter module merely contain-
ing self-attention blocks. During training, only the weights in the temporal adapter modules are finetuned
on video data, and the image diffusion backbone remains untouched. In this way, simple movement can
be induced. The authors also demonstrate that after training, the same temporal adapter module can be
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Figure 12: Image conditioning methods for image-to-video generation models. a) input images can be
conditioned in the attention layers of the video generation models. b) input images can be formed as the
extra input channels to the diffusion models. ¢) input images can be jointly conditioned with other modalities,
such as optical flow.

directly applied to different image diffusion backbones, making their approach compatible with personalized
image generation techniques such as Dreambooth (Ruiz et al. |2023)) and LoRA (Hu et al., 2021).

7.2 Image-Conditioned Generation

An important limitation of text-to-video models is the lack of controllability, as the video content can only be
determined by an input text prompt. To mitigate this issue, recent research has been focusing on introducing
additional image conditional signals to the video generation process. Image conditioning can be achieved
through injecting semantic image embeddings (e.g. CLIP (Radford et alJ,2021) image embeddings) (Wang
et al., 2024a; |Zhang et al., 2023b; | Xing et al.l 2023b; |Chen et all |2023a) or image VAE latents (Ren et al.
2024} [Zhang et al., 2024) in attention layers (Figure[12a)), adding extra input channels that represent the
conditioning image (Figure 12| b)) (Girdhar et all [2023} [Chen et al., 2023¢} [Zeng et al [2023; Blattmann|
et al) [2023a)), joint conditioning Wlth other modalities such as optical flows (Figure |12| ¢))(Chen et al.,
2023d; [Shi et al.} [2024)), etc. Image-conditioned generation also enables a wide range of applications, such as
autoregressive long video generation (Zeng et all 2023 |Chen et all 2023e; [Ren et al.l [2024)), looping video
generation (Xing et al., |2023b)), generative frame interpolation (Zeng et al., |2023; Xing et al [2023b) and
visual storytelling (Zeng et al., 2023} | Xing et al. [2023b)).

|Chen et al.| (2023d)) focus on the task of animating images in accordance with motion cues. Their Motion-
Conditioned Diffusion Model (MICDIff) accepts an input image and lets the user indicate the desired motion
by drawing strokes on top of it. The model then produces a short video sequence in which objects move in
accordance with the motion cues. It can dissociate between foreground (e.g. actor movement) or background
motion (i.e. camera movement), depending on the context. The authors use an auto-regressive approach
to generate each video frame conditioned on the previous frame and predicted motion flow. For this, the
input motion strokes are decomposed into smaller segments and passed to a UNet flow completion model to
predict motion in the following frame. A denoising diffusion model receives this information and uses it to
synthesize the next frame. The flow completion model and the denoising model are first trained separately
but later fine-tuned jointly on unannotated videos.

[Chen et als (2023¢) SEINE proposes to train an image-conditioned video generation model by concate-
nating the VAE latent of the image along the channel dimension of the input noise and adding an extra
mask channel indicating which frame needs to be predicted. This enables flexible image conditioning such
that the model can generate videos providing any given frames as conditional signals. SEINE is initialized
from the text-to-video model LaVie (Wang et al., [2023¢) and trained on WebVid-10M (Bain et al., |2021)
along with internal private data. During inference, the model is able to perform autoregressive long video
generation (by reusing the last frame of a previous video clip as the first frame to predict the next video),
generating transitions between different scenes (by using two frames from different scenes as the conditioning
first frame and last frame and generate the intermediate frames) and image animation (by conditioning the
video generation process on the input first frame).
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8 Video Completion & Long Video Generation

As mentioned in Section [5, video diffusion models typically generate a fixed number of frames at a time.
Additionally, the number of frames produced in one denoising process is usually limited to a small quantity,
such as 8 or 16 frames. As a result, this limitation leads to the generation of very short videos with low
frame rates (e.g. 2 seconds, 8 fps). In order to circumvent this limitation, auto-regressive extension and
temporal upsampling methods have been proposed (see Section [5.2)) to enhance the duration and frame rate
of the generated videos. Models adopting these methods often adjust and combine them in unique ways that
benefit computational speed or consistency. A common problem with these approaches is that they tend to
generate videos that suffer from repetitive content. Some models have therefore explored ways to generate
videos with changing scenes by varying the text prompts over time.

8.1 Temporal Upsampling & Video Prediction

Yin et al.’s (2023) NUWA-XL model uses an iterative hierarchical approach to generate long video sequences
of several minutes. It first generates evenly spaced key frames from separate text prompts that form a rough
outline of the video. The frames in-between are then filled in with a local diffusion model conditioned on
two key frames. This process is applied iteratively to increase the temporal resolution with each pass. Since
this can be parallelized, the model achieves much faster computation times than auto-regressive approaches
for long video generation. The authors train the model on a new training data set consisting of annotated
Flintstones cartoons. Simple temporal convolution and attention blocks are inserted into the pre-trained
text-to-image model to learn temporal dynamics.

He et al| (2022b)) tackle the task of generating long videos with over 1,000 frames with their Long Video
Diffusion Model (LVDM). It combines auto-regressive and hierarchical approaches for first generating long
sequences of key frames and then filling in missing frames. In order to reduce quality degradation induced by
auto-regressive sampling, the authors use classifier-free guidance and conditional latent perturbation which
conditions the denoising process on noisy latents of reference frames. The model utilizes a dedicated video
encoder and combines 2D spatial with 1D temporal self-attention. It can be used for unconditional video
generation or text-to-video tasks.

Harvey et al.|(2022) similarly explore methods for generating long video sequences with video models that
have a fixed number of output frames. Their Flexible Diffusion Model (FDM) accepts an arbitrary number
of conditioning frames to synthesize new frames, thereby allowing it to either extend the video in an auto-
regressive manner or to use a hierarchical approach (similar to NUWA-XL, |Yin et al.[2023). The authors
explore variations of these sampling techniques and suggest an automated optimization routine that finds
the best one for a given training data set.

Lu et al.| (2023b]) propose Video Diffusion Transformer (VDT), a diffusion-based video model that uses a
vision transformer architecture (Peebles & Xie] 2022)). The reported advantages of this type of architecture
over the commonly used UNet include the ability to capture long-range temporal dynamics, to accept con-
ditioning inputs of varying lengths, and the scalability of the model. VDT was trained on more narrow data
sets of unlabeled videos and accomplished tasks such as video prediction, temporal interpolation, and image
animation in those restricted domains.

8.2 Alternative Approaches

Wang et al./s (2023) Gen-L-Video generates long video sequences by denoising overlapping shorter video
segments in parallel. A video diffusion model predicts the denoised latent in each video segment individually.
The noise prediction for a given frame is than aggregated through interpolation across all segments in which it
appears. This leads to greater coherence across the long video sequence. The authors apply this new method
to existing frameworks in the text-to-video (LVDM, He et al.|[2022b)), tuning-free video-to-video (Pix2Video,
Ceylan et al.|2023)), and one-shot tuning video-to-video (Tune-A-Video, Wu et al.|[2022b]) domains.

Zhu et al| (2023) follow a unique approach for generating long video sequences in their MovieFactory
model. Rather than extending a single video clip, they generate a movie-like sequence of separate related
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clips from a single text prompt. ChatGPT is used to turn the brief text prompt into ten detailed scene
descriptions. Each scene description is then passed as a prompt to the video diffusion model to generate a
segment of the video sequence. Finally, audio clips matching each video scene are retrieved from a sound
database. The pre-trained text-to-image model (Stable Diffusion 2.0) is first expanded by additional ResNet
and attention blocks that are trained in order to produce wide-screen images. In a second training step, 1D
temporal convolution and attention blocks are added to learn temporal dynamics.

Sun et al./s (2023) GLOBER is a model for generating videos of arbitrary length that does not rely on
auto-regressive or hierarchical approaches. Instead, it first uses a video KL-VAE auto-encoder to extract
global 2D features from key frames. It then provides these global features along with arbitrary frame indices
to a UNET diffusion model that can directly generate frames at those positions. To ensure the temporal
coherence and realism of the generated frames, a novel adversarial loss is introduced. During training, an
adversarial discriminator model receives pairs of video frames at random positions along with their indices
and has to predict whether the frames both originated from the input video, or whether one or both were
generated by the diffusion model. To enable inference, a generator model based on the Diffusion Transformer
architecture (Peebles & Xie} 2022) is trained to produce global features that mimic those of the video encoder
given text prompts. GLOBER surpasses several competing models in terms of FVD score, but its main
advantage is a much faster computation time compared to auto-regressive methods.

Luo et al.| (2023) improve the temporal coherence in their VideoFusion model by decomposing the noise
added during the forward diffusion process. A base noise component is shared across all frames and char-
acterizes the content of the entire video. Meanwhile, a residual component is specific to each frame and is
partially related to the motion of objects. This approach saves computational resources since a smaller resid-
ual generator denoising model can be used to estimate the residual noise for each frame, whereas the base
noise has to be estimated only once for the entire video using a pre-trained image model. The pre-trained
base generator is fine-tuned jointly with the residual generator.

Hu et al.[s (2023a) GAIA-1 is a hybrid transformer-diffusion model that can generate driving car videos
conditioned on images, text, or action tokens that represent speed and movement trajectories. During
training, it first uses a VQ-GAN to transform input video frames into discrete tokens. An auto-regressive
transformer world model is used to predict the next token in the sequence based on all preceding tokens
using causal masking. A diffusion-based video decoder then translates the tokens back to pixel space by
denoising random noise patterns conditioned on the generated token sequence. The decoder is trained to
enable flexible applications such as auto-regressive video generation and frame interpolation.

9 Audio-conditioned Synthesis

Multimodal synthesis might be the most challenging task for video diffusion models. A key problem lies in
how associations between different modalities can be learned. Similar to how CLIP models (Radford et al.
2021) encode text and images in a shared embedding space, many models learn a shared semantic space for
audio, text, and / or video through techniques such as contrastive learning (Chen et al., 2020).

9.1 Audio-conditioned Generation & Editing

Lee et al./s (2023a) Soundini model enables local editing of scenic videos based on sound clips. A binary mask
can be specified to indicate a video region that is intended to be made visually consistent with the auditory
contents of the sound clip. To this end, a sliding window selection of the sound clip’s mel spectrogram is
encoded into a shared audio-image semantic space. During training, two loss functions are minimized to
condition the denoising process on the embedded sound clips: The cosine similarity between the encoded
audio clip and the image latent influences the generated video content, whereas the cosine similarity between
the image and audio gradients is responsible for synchronizing the video with the audio signal. In contrast
to other models, Soundini does not extend its denoising UNet to the video domain, only generating single
frames in isolation. To improve temporal consistency, bidirectional optical flow guidance is used to warp
neighboring frames towards each other.
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Table 4: Video generation benchmarks.

UCF-101 MSR-VTT Tai-Chi-HD Sky Time-lapse

Model Resolution | Zero-Shot | Conditioning Training FID, | FVD/ | ISt || CLIP-Simt | FID| | FVD| || FVDJ | KVD| || FVD| | KVD/
GAN Models
MoCoGAN (2018] 64x64 No - - 26998 - 12.42 - -
TGAN-v2 (2020 64x64 No - - 3431 - 26.6 - -
TGAN-v2 (2020 128x128 No - - 3497 - 28.87 - -
TGAN-F (2020} 64x64 No - - 8942 - 13.62 - - - - - -
TGAN-F (2020] 128x128 No - - 7817 - 2291 - - - - - -
DVD-GAN (2019) 128x128 No Class - - - 32.97 - - - - - -
MoCoGAN-HD (2021} 256 %256 No - UCF-101: test split incl. - 700 34 - - - 144.7 25.4 183.6 13.9
DIGAN (2022 128x128 No - - - 655 29.7 - - - 128.1 20.6 114.6 6.8
DIGAN (2022 128x128 No - UCF-101: test split incl. - 577 32.7 - - - 128.1 20.6 114.6 6.8
Transformer Models
VideoGPT (2021] 128x128 No - - - - - -
NUWA (2022a) 128x 128 No - VATEX - - 0.2439 47.7 - - - - -
TATS-base (2022) 128 x128 No - - - 420 - - - 94.6 8.8 132.6 5.7
TATS-b: 2022) 128x128 No - - 332 - - - - - - -
CogVideo (Chinese) (2022] 480x480 Yes internal data 185 751.3 0.2614 24.8 - - - -
CogVideo (English) (2022} 480x480 Yes internal data 179 701.6 0.2631 23.6 - - - -
CogVideo (English) (2022 160X 160 Yes internal data - 626 B 19 1294 B B B
Diffusion Models
VDM (2022c 64x64 No - - 295 - 57 - - - - - -

deo (2022) 256x256 Yes Text WebVid10M, HD-VILA-10M - 367.2 33 0.3049 13.2 - - - -

deo (2022) 256 %256 No Text WebVid10M, HD-VILA-10M - 81.3 82.6 - - - - - -

agicVideo (2022 256 %256 Yes Text ‘WebVid10M, HD-VILA-100M 145 665 - - 36.5 998 - - - -

LVDM (2022b 256 %256 No - UCF-101: test split incl. - 372 - - - - 99 15.3 95.2 3.9
VideoLDM (SD 1.4) (2023b] 12802048 Yes Text ‘WebVid-10M - 656.5 29.5 0.2848 - - - -
VideoLDM (SD 2.1) {2023b 1280x2048 Yes Text ‘WebVid-10M - 550.6 33.5 0.2929 - - - - -
PYoCo (2023 1024 %1024 Yes Text internal data - 22.14 - - - -
Make-Your-Video (2023a) 256x256 Yes Text + Depth WebVid-10M - - -
VDT (2023b} 64x64 No - - - - - -
VideoFusion (2023} 128x128 No - - - - - - 56.4 6.9 47 5.3
VideoFusion (2023} 128x128 No Text - - 173 80 - - - - - - -
GLOBER (2023 128x128 No - - - 239.5 - - - - 124.2 - -
GLOBER (2023 128x128 No Text - - 151.5 - - -
GLOBER (2023 256x256 No - - - 252.7 - - - - - - 78.1
GLOBER (2023 256 %256 No Text - - 168.9 - - - - - - -
LaVie (2023c) 512x320 Yes Text Vimeo25M - 526.3 - 0.2949 - - - - -

Lee et al.[(2023D]) generate scenic videos from text prompts and audio clips with their Audio-Aligned Diffusion
Framework (AADIiff). An audio clip is used to identify a target token from provided text tokens, based
on the highest similarity of the audio clip embedding with one of the text token embeddings. For instance,
a crackling sound might select the word “burning”. While generating video frames, the influence of the
selected target token on the output frame is modulated through attention map control (similar to Prompt-
to-Prompt, Hertz et al.|2022)) in proportion to the sound magnitude. This leads to changes in relevant video
elements that are synchronized with the sound clip. The authors also demonstrate that their model can be
used to animate a single image and that several sound clips can be inserted in parallel. The model uses a
pre-trained text-to-image model to generate each video frame without additional fine-tuning on videos or
explicit modeling of temporal dynamics.

Liu et al./s (2023d) Generative Disco provides an interactive interface to support the creation of music
visualizations. They are implemented as visual transitions between image pairs created with a diffusion
model from user-specified text prompts. The interval in-between the two images is filled according to the
beat of the music, using a form of interpolation that employs design patterns to cause shifts in color, subject,
or style, or set a transient video focus on subjects. A large language model can further assist the user with
choosing suitable prompts. While the model is restricted to simple image transitions and is therefore not
able to produce realistic movement, it highlights the creative potential of video diffusion models for music
visualization.

Tang et al.| (2023)) present a model called Composable Diffusion that can generate any combination of
output modalities based on any combination of input modalities. This includes text, images, videos, and
sound. Encoders for the different modalities are aligned in a shared embedding space through contrastive
learning. The diffusion process can then be flexibly conditioned on any combination of input modalities by
linearly interpolating between their embeddings. A separate denoising diffusion model is trained for each
of the output modalities and information between the modality-specific models is shared through cross-
attention blocks. The video model uses simple temporal attention as well as the temporal shift method from
An et al|(2023) to ensure consistency between frames.
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9.2 Talking Head Generation

Styputkowski et al.| (2023) have developed the first diffusion model for generating videos of talking heads.
Their model Diffused Heads takes a reference image of the intended speaker as well as a speech audio clip
as input. The audio clip is divided into short chunks that are individually embedded through a pre-trained
audio encoder. During inference, the reference image as well as the last two generated video frames are
concatenated with the noisy version of the current video frame and passed through a 2D UNet. Additionally,
the denoising process is conditioned on a sliding window selection of the audio embeddings. The generated
talking faces move their lips in sync with the audio and display realistic facial expressions.

Zhua et al.| (2023)) follow a similar approach, but instead of using a reference image, their model accepts a
reference video that is transformed to align with the desired audio clip. Face landmarks are first extracted
from the video, and then encoded into eye blink embeddings and mouth movement embeddings. The mouth
movements are aligned with the audio clip using contrastive learning. Head positions and eye blinks are
encoded with a VAE, concatenated together with the synchronized mouth movement embeddings, and passed
as conditioning information to the denoising UNet.

Casademunt et al| (2023) focus on the unique task of laughing head generation. Similar to Diffused
Heads (Styputkowski et all [2023), the model takes a reference image and an audio clip of laughter to
generate a matching video sequence. The model combines 2D spatial convolutions and attention blocks with
1D temporal convolutions and attention. This saves computational resources over a fully 3D architecture
and allows it to process 16 video frames in parallel. Longer videos can be generated in an auto-regressive
manner. The authors demonstrate the importance of using a specialized audio-encoder for embedding the
laughter clips in order to generate realistic results.

10 Video Editing

Editing can mean a potentially wide range of operations such as adjusting the lighting, style, or background,
changing, replacing, re-arranging, or removing objects or persons, modifying movements or entire actions,
and more. To avoid having to make cumbersome specifications for possibly a large number of video frames,
a convenient interface is required. To achieve this, most approaches rely on textual prompts that offer a
flexible way to specify desired edit operations at a convenient level of abstraction and generality. However,
completely unconstrained edit requests may be in conflict with desirable temporal properties of a video,
leading to a major challenge of how to balance temporal consistency and editability (see Section [5.3). To
this end, many authors have experimented with conditioning the denoising process based on preprocessed
features of the input video. One-shot tuning methods first fine-tune their parameters on the ground truth
video. This ensures that the video content and structure can be reconstructed with good quality. On the
other hand, tuning-free methods are not fine-tuned on the ground truth video, which makes the editing
computationally more efficient.

10.1 One-Shot Tuning Methods

Molad et al. (2023)) present a diffusion video editing model called Dreamix based on the ImagenVideo (Ho
et al [2022a)) architecture. It first downsamples an input video, adds Gaussian noise to the low resolution
version, then applies a denoising process conditioned on a text prompt. The model is finetuned on each
input video and follows the joint training objective of preserving the appearance of both the entire video and
individual frames. The authors demonstrate that the model can edit the appearance of objects as well as
their actions. It is also able to take either a single input image or a collection of images depicting the same
object and animate it. Like ImagenVideo (Ho et al., |2022a)), Dreamix operates in pixel space rather than
latent space. Together with the need to finetune the model on each video, this makes it computationally
expensive.

Wu et al.| (2022b]) base their Tune-A-Video on a pre-trained text-to-image diffusion model. Rather than
fine-tuning the entire model on video data, only the projection matrices in the attention layers are trained
on a given input video. The spatial self-attention layer is replaced with a spatio-temporal layer attending to
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previous video frames, while a new 1D temporal attention layer is also added. The structure of the original
frames is roughly preserved by using latents obtained with DDIM inversion as the input for the generation
process. The advantages of this approach are that fine-tuning the model on individual videos is relatively
quick and that extensions developed for text-to-image tasks such as ControlNet (Zhang & Agrawalal [2023)
or Dreambooth (Ruiz et all 2023) can be utilized. Several models have subsequently built upon the Tune-
A-Video approach and improved it in different ways:

Qi et al.| (2023)) employ an attention blending method inspired by Prompt-to-Prompt (Hertz et al.| [2022)) in
their FateZero model. They first obtain a synthetic text description of the middle frame from the original
video through BLIP (Li et all [2022) that can be edited by the user. While generating a new image from
the latent obtained through DDIM inversion, they blend self- and cross-attention masks of unedited words
with the original ones obtained during the inversion phase. In addition to this, they employ a masking
operation that limits the edits to regions affected by the edited words in the prompt. This method improves
the consistency of generated videos while allowing for greater editability compared to Tune-A-Video.

Liu et al.| (2023b) also base their Video-P2P model on Tune-A-Video and similar to FateZero, they incor-
porate an attention-tuning method inspired by Prompt-to-Prompt. Additionally, they augment the DDIM
inversion of the original video by using Null-text inversion (Mokady et al., [2023), thereby improving its
reconstruction ability.

10.2 Depth-conditioned Editing

Ceylan et al[s (2023) Pix2Video continues the trend of using a pre-trained text-to-image model as the
backbone for video editing tasks. In contrast to the previous approaches, it however eliminates the need for
fine-tuning the model on each individual video. In order to preserve the coarse spatial structure of the input,
the authors use DDIM inversion and condition the denoising process on depth maps extracted from the
original video. Temporal consistency is ensured by injecting latent features from previous frames into self-
attention blocks in the decoder portion of the UNet. The projection matrices from the stock text-to-image
model are not altered. Despite using a comparatively lightweight architecture, the authors demonstrate good
editability and consistency in their results.

Esser et al./s (2023) Runway Gen-1 enables video style editing while preserving the content and structure
of the original video. This is achieved on the one hand by conditioning the diffusion process on CLIP
embeddings extracted from a reference video frame (in addition to the editing text prompt), and on the
other hand by concatenating extracted depth estimates to the latent video input. The model uses 2D spatial
and 1D temporal convolutions as well as 2D + 1D attention blocks. It is trained on video and image data in
parallel. Predictions of both modes are combined in a way inspired by classifier-free guidance (Ho & Salimans,
2022), allowing for fine-grained control over the tradeoff between temporal consistency and editability. The
successor model Runway Gen-2 (unpublished) also adds image-to-video and text-to-video capabilities.

Xing et al| (2023a)) extend a pre-trained text-to-image model conditioned on depth maps to video editing
tasks in their Make-Your-Video model, similar to Pix2Video (Ceylan et al., |2023)). They add 2D spatial
convolution and 1D temporal convolution layers, as well as cross-frame attention layers to their UNet. A
causal attention mask limits the number of reference frames to the four immediately preceding ones, as the
authors note that this offers the best trade-off between image quality and coherence. The temporal modules
are trained on a large unlabeled video data set (WebVid-10M, Bain et al.[2021)).

10.3 Pose-conditioned Editing

Ma et alfs (2023) Follow Your Pose conditions the denoising process in Tune-A-Video on pose features
extracted from an input video. The pose features are encoded and downsampled using convolutional layers
and passed to the denoising UNet through residual connections. The pose encoder is trained on image data,
whereas the spatio-temporal attention layers (same as in Tune-A-Video) are trained on video data. The
model generates output that is less bound by the source video while retaining relatively natural movement
of subjects.
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Zhao et al[s (2023) Make-A-Protagonist combines several expert models to perform subject replacement
and style editing tasks. Their pipeline is able to detect and isolate the main subject (i.e. the “protagonist”)
of a video through a combination of Blip-2 (Li et al. [2023b) interrogation, Grounding DINO (Liu et al.,
2023c) object detection, Segment Anything (Kirillov et al., [2023) object segmentation, and XMem (Cheng
& Schwing, 2022) mask tracking across the video. The subject can then be replaced with that from a
reference image through Stable Diffusion inpainting with ControlNet depth map guidance. Additionally,
the background can be changed based on a text prompt. The pre-trained Stable Diffusion UNet model is
extended by cross-frame attention and fine-tuned on frames from the input video.

10.4 Leveraging Pre-trained Video Generation Model for Video Editing

Instead of adapting a pre-trained image generation model for video editing, [Bai et al.s (2024) UniEdit
investigates the approach of leveraging a pre-trained text-to-video generation model for zero-shot video
editing. Specifically, they propose to use the LaVie (Wang et al.| [2023c) T2V model and employ feature
injection mechanisms to condition the T2V generation process on the input video. This is achieved by
introducing the auxiliary reconstruction branch and motion-reference branch during video denoising. The
video features from these auxiliary branches are extracted and injected into the spatial and temporal self-
attention layers of the main editing path to ensure the output video contains the same spatial structure and
motion as the source video.

A concurrent approach of UniEdit is [Ku et al.’s (2024) Any V2V, which employs pre-trained image-to-video
(I2V) generation models for zero-shot video editing tasks. AnyV2V breaks video editing into two stages. In
the first stage, an image editing method is used to modify the first frame of the video into an edited frame.
In the second stage, the edited frame and the DDIM inverted latent of the source video are passed into the
12V generation model to render the edited video. AnyV2V also adopts feature injection mechanisms similar
to PnP (Tumanyan et all |2023) to preserve the structure and motion of the source video. Because of the
proposed two-stage editing strategy, AnyV2V is compatible with any off-the-shelf image editing models and
can be employed in a broad spectrum of video editing tasks, such as prompt-based video editing, reference-
based style transfer, identity manipulation and subject-driven video editing. The framework also supports
different 12V models, such as 12VGen-XL (Zhang et al., [2023b|), ConsistI2V (Ren et all 2024) and SEINE
(Chen et al., 2023€]).

10.5 Multi-conditional Editing

Zhang et al.[s (2023c) ControlVideo model extends ControlNet (Zhang & Agrawalal |2023) to video genera-
tion tasks. ControlNet encodes preprocessed image features using an auto-encoder and passes them through
a fine-tuned copy of the first half of the Stable Diffusion UNet. The resulting latents at each layer are then
concatenated with the corresponding latents from the original Stable Diffusion model during the decoder
portion of the UNet to control the structure of the generated images. In order to improve the spatio-temporal
coherence between video frames, ControlVideo adds full cross-frame attention to the self-attention blocks of
the denoising UNet. Furthermore, it mitigates flickering of small details by interpolating between alternating
frames. Longer videos can be synthesized by first generating a sequence of key frames and then generating
the missing frames in several batches conditioned on two key frames each. In contrast to other video-to-video
models that rely on a specific kind of preprocessed feature, ControlVideo is compatible with all ControlNet
models, such as Canny or OpenPose. The pre-trained Stable Diffusion and ControlNet models also do not
require any fine-tuning.

10.6 Other Approaches

Wang et al.| (2023b) also adapt a pre-trained text-to-image model to video editing tasks without fine-tuning.
Similar to Tune-A-Video and Pix2Video, their vid2vid-zero model replaces self-attention blocks with cross-
frame attention without changing the transformation matrices. While the cross-frame attention in those
previous models is limited to the first and immediately preceding frame, Wang et al. extend attention to the
entire video sequence. Vid2vid-zero is not conditioned on structural depth maps, instead using a traditional
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DDIM inversion approach. To achieve better alignment between the input video and user-provided prompt,
it optimizes the null-text embedding used for classifier-free guidance.

Huang et al.| (2023|) present Style-A-Video, a model aimed at editing the style of a video based on a
text prompt while preserving its content. It utilizes a form of classifier-free guidance that balances three
separate guidance conditions: CLIP embeddings of the original frame preserve semantic information, CLIP
embeddings of the text prompt introduce stylistic changes, while CLIP embeddings of thresholded affinity
matrices from self-attention layers in the denoising UNet encode the spatial structure of the image. Flickering
is reduced through a flow-based regularization network. The model operates on each individual frame without
any form of cross-frame attention or fine-tuning of the text-to-image backbone. This makes it one of the
lightest models in this comparison.

Yang et al| (2023b) also use ControlNet for spatial guidance in their Rerender A Video model. Similar
to previous models, sparse causal cross-frame attention blocks are used to attend to an anchor frame and
the immediately preceding frame during each denoising step. During early denoising steps, frame latents
are additionally interpolated with those from the the anchor frame for rough shape guidance. Furthermore,
the anchor frame and previous frame are warped in pixel space to align with the current frame, encoded,
and then interpolated in latent space. To reduce artifacts associated with repeated encoding, the authors
estimate the encoding loss and shift the encoded latent along the negative gradient of the loss function to
counteract the degradation. A form of color correction is finally applied to ensure color coherence across
frames. This pipeline is used to generate key frames that are then filled in using patch-based propagation.
The model produces videos that look fairly consistent when showing slow moving scenes but struggles with
faster movements due to the various interpolation methods used.

10.7 Video Restoration

Liu et al.| (2023al) present ColorDiffuser, a model specialized on colorization of grayscale video footage. It
utilizes a pre-trained text-to-image model and specifically trained adapter modules to colorize short video
sequences in accordance with a text prompt. Color Propagation Attention computes affinities between the
current grayscale frame as Query, the reference grayscale frame as Key, and the (noisy) colorized reference
frame latent as Value. The resulting frame is concatenated with the current grayscale frame and fed into a
Coordinator Module that follows the same architecture as the Stable Diffusion UNet. Feature maps from
the Coordinator module are then injected into the corresponding layers of the denoising UNet to guide the
diffusion process (similar to ControlNet). During inference, an alternating sampling strategy is employed,
whereby the previous and following frame are in turn used as reference. In this way, color information can
propagate through the video in both temporal directions. Temporal consistency and color accuracy is further
improved by using a specifically trained vector-quantized variational auto-encoder (VQVAE) that decodes
the entire denoised latent video sequence.

11 Video Diffusion Models for Intelligent Decision Making

Capable generative models are beginning to see widespread usage in control and intelligent decision-
making (Yang et al., 2023a; |Collaboration et al., 2024), including for downstream representation learning,
world modeling, and generative data augmentation. So far, use cases have primarily focused on image-based
and low-dimensional diffusion models, but we elucidate where these may naturally be extended to video.

11.1 Representation Learning

Representation learning (Bengio et al., 2013)) is a popular way to transfer useful features learned from large-
scale training to downstream tasks. These features usually take the form of a low-dimensional vector which
can then be simply adapted to another task with a small number of linear layers. Recent work has shown
that diffusion models are an effective way to do so, particularly for image and video-based tasks. A large
family of methods has considered extracting representations from text-to-image diffusion models like Stable
Diffusion (Rombach et al.,|2022)). For example, Yang & Wang| (2023); |Gupta et al.| (2024)) propose to extract
representations from the diffusion model from intermediate layers of the network to be used for classification
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Figure 13: Depiction of how vision-language representations can be extracted from pre-trained diffusion
UNets. Given an image-text prompt, one may encode and noise the image and feed it into the UNet together
with the language prompt. Features may then be aggregated from multiple levels of the downsampling
process. Similar techniques may be extended to video diffusion UNets. Reproduced with permission from
|Gupta et al.| (2024).

or robotic control tasks. This process is depicted in Figure where a real image is partially noised to
a low noise level to be compatible with the denoising network and then the representation is extracted by
aggregating intermediate outputs from the middle of the UNet. In a similar vein, [Tian et al. (2023); [Wang]
extract segmentation masks for computer vision based on intermediate attention maps from
the UNet. We would expect diffusion models to be suited to this task since they have already internalized
the concept of objects. These vision-language representations often significantly outperform related methods
such as CLIP. Due to the similarity in architecture for image and video UNets, these methods could readily

be adapted to the video domain.

On the other hand, |Sariyildiz et al| (2023) pre-train a visual representation learner directly with synthetic
diffusion data targeted to ImageNet classification labels. Another way pre-trained diffusion models can be
used for downstream classification tasks is through likelihood-based methods. Diffusion Classifier
20234)) exploits the fact that diffusion models can act as conditional density models, and classify images by
adding noise to them and then selecting the class label that best predicts the added noise.

11.2 World Models

An exciting application of more realistic video diffusion models is the ability to accurately simulate the real
world. As posited by , learning an accurate world model is a crucial step in the path towards
autonomous intelligence, enabling an agent to robustly plan and reason about the outcome of their actions.
Diffusion models have already been used as trajectory world models (Janner et al., 2022; Ajay et al., |2023)
in receding horizon control style setups for low-dimensional environments. In these settings, trajectories of
any arbitrary quality can be biased towards high return through classifier-guided or classifier-free guidance.

Further advances in video world modelling (Yang et al., [2024; [Wang et al., 2024b; [Hu et al.,2023a) could lead
to similar techniques being scaled towards real-world settings. A notable example of this is GENIE (Bruce
, a video world model (albeit not diffusion-based) trained from YouTube videos that learns to
plan under latent actions. Crucially, this enables agents to be trained from synthetic environments based
on the vast amounts of unlabeled video on the internet. The remaining challenges with current methods
include improving the frame-by-frame consistency of generated trajectories as control policies often are very
sensitive to the quality of observations, and speed of generation so that such models are useable in real-time.
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11.3 Synthetic Training Data

Finally, as we begin to exhaust the available supply of real labeled images and video, synthetic generative data
has emerged as a powerful method to augment existing training datasets for downstream tasks. In supervised
learning, diffusion models have been used to generate additional class-conditional data for classification (He
et al., [2022a} |Azizi et al| [2023) resulting in significant boosts in performance. This enables the distillation of
internet-scale knowledge into these models. With more realistic video generation, we could similarly generate
data for video classification or captioning tasks.

In control, there is often a lack of readily available robotics data, and as such diffusion models are a par-
ticularly powerful method to generate policy training data for reinforcement learning agents. This could be
done by simply naively upsampling existing datasets (Lu et al., 2023a)) or in a guided fashion (Jackson et al.,
2024) which generates training data that is on-policy with the current agent being optimized. These methods
vastly improve the sample efficiency of trained agents. In the visual setting, ROSIE (Yu et all 2023) and
GenAug (Chen et al.l |2023f) have considered using image diffusion models to synthesize datapoints with
novel backgrounds and items in order to boost the generalization performance of learned policies. Video
diffusion models represent a significant improvement to single-timestep data augmentation and would enable
an agent to fully simulate the outcome of a long sequence of actions.

12 Ethical Considerations for Video Diffusion Models

Generative Al and Al-generated content (AIGC) have transformative potential in the realm of video diffusion
models, but they also pose significant risks when misused. The ability to fabricate highly realistic videos
could lead to an alarming rise in disinformation and deepfakes, where fabricated media is crafted to depict
individuals saying or doing things they never actually did. Such synthetic content can manipulate public
perception, distort historical events, or even tarnish reputations through malicious impersonation.

While there has been extensive research related to responsible and trustworthy AI in the field of text
generation (e.g. LLaMA Guard (Inan et all |2023)) for the LLaMA (Touvron et al. 2023) language model
series) and image generation (e.g. Safety checker in Stable Diffusion (Rombach et al., [2022))), the field of
video generation has not yet reached the same level of scrutiny and rigor in terms of safeguarding against
misuse. Current explorations include AnimateDiff (Guo et al. 2023), where a safety checker similar to
that in Stable Diffusion (Rombach et all [2022)) is applied to filter NSFW contents. Wang & Yang (2024)
collected VidProM, a million-scale dataset containing real prompt-video pairs generated from various Text-
to-Video diffusion models. They employ the state-of-the-art NSEFW model Detoxify (Wang et al.l 2022) to
assign NSFW probabilities to each prompt based on different aspects including toxicity, obscenity, identity
attack, insult, threat, and sexual explicitness. VidProM enables potential research directions such as training
specialized models to distinguish between generated and real videos, which could be beneficial for advancing
safe and responsible video generation.

13 Outlook and Challenges

Video diffusion models have already demonstrated impressive results in a variety of use cases. However,
there are still several challenges that need to be overcome before we arrive at models capable of producing
longer video sequences with good temporal consistency.

One issue is the relative lack of suitable training data. While there are large data sets of labeled images
that have been scraped from the internet (Sec. |6.2), the available labeled video data are much smaller in
size (Sec. [6.1). Many authors have therefore reverted to training their models jointly on labeled images
and unlabeled videos or fine-tuning a pre-trained text-to-image model on unlabeled video data. While this
compromise allows for the learning of diverse visual concepts, it may not be ideal for capturing object-specific
motion. One possible solution is to manually annotate video sequences (Yin et al., [2023), although it seems
unlikely that this can be done on the scale required for training generalized video models. It is to be hoped
that in the future automated annotation methods will develop that allow for the generation of accurate video
descriptions (Zare & Yazdi, [2022).
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An even more fundamental problem is that simple text labels are often inadequate for describing the tempo-
rally evolving content of videos. This hampers the ability of current video models to generate more complex
sequences of events. For this reason, it might be beneficial to examine alternative ways to describe video
content that represent different aspects more explicitly, such as the actors, their actions, the setting, camera
angle, lighting, scene transitions, and so on.

A different challenge lies in the modeling of (long-term) temporal dependencies. Due to the memory limita-
tions of current graphics cards, video models can typically only process a fixed number of video frames at a
time. To generate longer video sequences, the model is extended either in an autoregressive or hierarchical
fashion, but this usually introduces artifacts or leads to degraded image quality over time. Possible improve-
ments could be made on an architectural level. Most video diffusion models build on the standard UNet
architecture of text-to-image models. To capture temporal dynamics, the model is extended by introducing
cross-frame convolutions and/or attention. Using full 3D spatio-temporal convolutions and attention blocks
is however prohibitively expensive. Many models therefore have adopted a factorized pseudo-3D architecture,
whereby a 2D spatial block is followed by a 1D temporal block. While this compromise seems necessary in
the face of current hardware limitations, it stands to reason that full 3D architectures might be better able
to capture complex spatio-temporal dynamics once the hardware allows it. In the meantime, other methods
for reducing the computational burden of video generation will hopefully be explored. This could also enable
new applications of video diffusion, such as real-time video-to-video translation.

Finally, flow matching (Lipman et al., [2022} |Liu et al., 2022; |Albergo et al., 2023) has recently emerged as a
new family of generative models, successfully applied to large-scale image (Lipman et al.| [2022; Esser et al.,
2024)), language (Gat et al.|2024) and video (Polyak et al.,[2024) data. These models can be viewed as a more
general form of generative modeling that encompasses DDPM and score-based models, offering smoother
dynamics in the denoising process. Inspired by the optimal transport principle (Tong et al., 2023} |Pooladian,
et al.,|2023)) and enhanced by advanced ODE sampling techniques (Shaul et al., [2024]), flow matching models
have demonstrated improvements in both performance and efficiency, outperforming diffusion-based models
in many tasks. An intriguing future direction would be to extend these models to video generation.

14 Conclusion

This survey has provided an overview of the evolving field of video diffusion models, examining their potential
for content creation and manipulation across various domains. We have explored the field systematically, cat-
egorizing applications by input modalities, discussing architectural choices and temporal dynamics modeling,
and summarizing key developments. While progress has been made in generating, editing, and transforming
video content, significant work remains to be done. As research continues, video diffusion models may influ-
ence how we create and interact with visual media, potentially opening up new applications in entertainment,
education, and scientific visualization.
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