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ABSTRACT

In state-of-the-art Neural Machine Translation, an attention mechanism is used
during decoding to enhance the translation. At every step, the decoder uses this
mechanism to focus on different parts of the source sentence to gather the most
useful information before outputting its target word. Recently, the effectiveness
of the attention mechanism has also been explored for multimodal tasks, where it
becomes possible to focus both on sentence parts and image regions. Approaches
to pool two modalities usually include element-wise product, sum or concatena-
tion. In this paper, we evaluate the more advanced Multimodal Compact Bilinear
pooling method, which takes the outer product of two vectors to combine the at-
tention features for the two modalities. This has been previously investigated for
visual question answering. We try out this approach for multimodal image caption
translation and show improvements compared to basic combination methods.

1 INTRODUCTION

In machine translation, neural networks have attracted a lot of research attention. Recently, the
attention-based encoder-decoder framework (Sutskever et al., 2014; Bahdanau et al., 2014) has
been largely adopted. In this approach, Recurrent Neural Networks (RNNs) map source sequences
of words to target sequences. The attention mechanism is learned to focus on different parts of
the input sentence while decoding. Attention mechanisms have been shown to work with other
modalities too, like images, where their are able to learn to attend to salient parts of an image, for
instance when generating text captions (Xu et al., 2015). For such applications, Convolutional neural
networks (CNNs) have shown to work best to represent images (He et al., 2016).

Multimodal models of texts and images enable applications such as visual question answering or
multimodal caption translation. Also, the grounding of multiple modalities against each other may
enable the model to have a better understanding of each modality individually, such as in natural
language understanding applications.

The efficient integration of multimodal information still remains a challenging task though. For neu-
ral translation, more particularly, only few attempt has been made to our knowledge. We can cite the
work of Huang et al. (2016) and Caglayan et al. (2016) were they both propose multimodal neural
machine translation. Multimodal tasks require combining diverse modality vector representations
with each other. Bilinear pooling models Tenenbaum & Freeman (1997), which computes the outer
product of two vectors (such as the visual and textual representations), may be more expressive than
basic combination methods such as element-wise sum or product. Because of its high and intractable
dimensionality (n2), Gao et al. (2016) proposed a method that relies on Multimodal Compact Bi-
linear pooling (MCB) to efficiently compute a joint and expressive representation combining both
modalities, in a visual question answering tasks. This approach has not been investigated previously
for multimodal caption translation, which is what we focus on in this paper.

2 MODEL

We detail our model build from the attention-based encoder-decoder neural network described by
Sutskever et al. (2014) and Bahdanau et al. (2014) implemented in TensorFlow (Abadi et al., 2016).
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Algorithm 1 Multimodal CBP
1: input: v1 ∈ Rn1 , v2 ∈ Rn2

2: output: Φ(v1, v2) ∈ Rd

3: for k ← 1 . . . 2 do
4: for i← 1 . . . nk do
5: sample hk[i] from {1, . . . , d}
6: sample sk[i] from {−1, 1}
7: v′k = Ψ(vk, hk, sk, nk)
8: return Φ = FFT−1(FFT(v′1)� FFT(v′2))
9: procedure Ψ(v, h, s, n)

10: for i . . . n do
11: y[h[i]] = y[h[i]] + s[i] · v[i]
12: return y

Figure 1: Left: Tensor Sketch algorithm - Right: Compact Bilinear Pooling for two modality vectors
(top) and ”MM pre-attention” model (bottom) ; Note that the textual representation vector is tiled
(copied) to match the dimension of the image feature maps

Textual encoder Given an input sentenceX = (x1, x2, ..., xT ), xi ∈ RE where T is the sentence
length and E is the dimension of the word embedding space, a bi-directional LSTM encoder of
layer size L produces a set of textual annotation AT = {ht1, ht2, ..., htT } where hi is obtained by
concatenating the forward and backward hidden states of the encoder: hti = [

−→
hi ;
←−
hi ], h

t
i ∈ R2L.

Visual encoder An image associated to this sentence is fed to a deep residual network, computing
convolutional feature maps of dimension 14 × 14 × 1024. We obtain a set of visual annotations
AV = {hv1, hv2, ..., hv196} where hvi ∈ R1024.

Decoder The decoder produces an output sentence Y = (y1, y2, ..., yT ′), yi ∈ RE and is
initialized by s0 = tanh(Winith

t
T + binit) where htT is the textual encoder’s last state. The next

decoder states are obtained as follows:

st, ot = LSTM(st−1,Win[yt−1; ct−1]), yt−1 ∈ RE (1)

During training, yt−1 is the ground truth symbol in the sentence whilst ct−1 is the previous attention
vector computed by the attention model. The current attention vector ct, concatenated with the
LSTM output ot, is used to compute a new vector õt = Wproj [ot; ct] + bproj . The probability
distribution over the target vocabulary is computed by the equation :

p(yt|yt−1, st−1, ct−1, AT , AV ) = softmax(Woutõt + bout) (2)

Attention At every time-step, the attention mechanism computes two modality specific context
vectors {ctt, cvt } given the current decoder state st and the two annotation sets {AT , AV }. We use
the same attention model for both modalities described by Vinyals et al. (2015). We first compute
modality specific attention weights αmod

t = softmax(vT tanh(W1A
mod + W2st + b)). The

context vector is then obtained with the following weighted sum : cmod
t =

|Amod|∑
i=1

αmod
ti hmod

i

Both vT and W1 are considered modalities dependent and thus aren’t shared by both modalities.
The projection layer W2 is applied to the decoder state st and is thus shared (Caglayan et al., 2016).
Vectors {ctt, cvt } are then combined to produce ct with an element-wise (e-w) sum / product or
concatenation layer.

Multimodal Compact Bilinear (MCB) pooling Bilinear models (Tenenbaum & Freeman,
1997) can be applied as vectors combination. We take the outer product of our two context vectors
ct and cv ∈ R2L then learn a linear model W i.e. ct = W [ctt ⊗ ctv], where ⊗ denotes the outer
product and [ ] denotes linearizing the matrix in a vector. Bilinear pooling allows all elements
of both vectors to interact with each other in a multiplicative but leads to a high dimensional
representation and an infeasible number of parameters to learn in W . For two modality context
vectors of size 2L = 1024 and an attention size of d = 512 (ct ∈ R512), W would have ≈ 537
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million parameters. We use the compact method proposed by Gao et al. (2016), based on the tensor
sketch algorithm (see Algorithm 1), to make bilinear models feasible. This model, referred as the
”MM Attention” in the results section, is illustrated in Figure 1 (top right)

We try a second model inspired by the work of (Fukui et al., 2016). For each spatial grid location
in the visual representation, we use MCB pooling to merge the slice of the visual feature with the
language representation. As shown at the bottom right of Figure 1, after the pooling we use two
convolutional layers to predict attention weights for each grid location. We then apply softmax to
produce a new normalized soft attention map. This method can be seen as the removal of unnec-
essary information in the feature maps according to the source sentence. Note that we still use the
”MM attention” during decoding. We refer this model as the ”MM pre-attention”.

3 SETTINGS

We use the Adam optimizer (Kingma & Ba, 2014) with ε = 0.0007 and L2 regularization of
δ = 0.00001. Layer size L and word embeddings size E is 512. Embeddings are trained along
with the model. We use mini-batch size of 32 and Xavier weight initialization (Glorot & Bengio,
2010). For this experiments, we used the Multi30K dataset (Elliott et al., 2016) which is an extended
version of the Flickr30K Entities. For each image, one of the English descriptions was selected and
manually translated into German by a professional translator (Task 1). As training and development
data, 29,000 and 1,014 triples are used respectively. A test set of size 1000 is used for BLEU and
METEOR evaluation. Vocabulary sizes are 11,180 (en) and 19,154 (de). We lowercase and tokenize
all the text data with the Moses tokenizer. We extract feature maps from the images with a ResNet-50
at its res4f relu layer. We use early-stopping if no improvement is observed after 10,000 steps.

4 RESULTS

Table 1: The BLEU and METEOR results on the test split containing 1000 triples. All scores are
the average of two runs.

Method Validation Scores

BLEU METEOR
Monomodal Text 29.24 48.32
MM attention
Concatenation 26.12 44.14
Element-wise Sum 27.48 45.79
Element-wise Product 28.62 47.99
MCB 1024 28.48 47.57

MM pre-attention*
Element-wise sum 28.57 46.40
Element-wise Product 29.14 46.71
MCB 4096 29.75 48.80
*with Prod as MM att.

Compact Bilinear d BLEU

Multimodal attention
512 27.78
1024 28.48
2048 28.12

Multimodal pre-attention
1024 28.71
2048 29.19
4096 29.75
8192 29.39
16000 27.98

To our knowledge, there is currently no multimodal translation architecture that convincingly surpass
a monomodal NMT baseline. Our work nevertheless shows a small but encouraging improvement.
In the ”MM attention” model, where both attention context vectors are merged, we notice no im-
provement using MCB over an element-wise product. We suppose the reason is that the merged
attention vector ct has to be concatenated with the cell output and then gets linearly transformed
by the proj layer to a vector of size 512. This heavy dimensionality reduction undergone by the
vector may have lead to a consequent loss of information, thus the poor results. This motivated us
to implement the second attention mechanism, ”MM pre-attention”. Here, the attention model can
enjoy the full use of the combined vectors dimension, varying from 1024 to 16000. We show here an
improvement of +0.62 BLEU over e-w multiplication and +1.18 BLEU over e-w sum. We believe
a step further could be to investigate different experimental settings or layer architectures as we felt
MCB could perform much better as seen in similar previous work (Fukui et al., 2016).
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