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Abstract—For subjects affected with type-1 diabetes mellitus,
accurately predicting future blood glucose values helps regulate
insulin delivery. This paper introduces a dual Q-network-based
neural architecture search approach to develop and train per-
sonalized BG prediction models for individuals affected with
type-1 diabetes mellitus. Utilizing historical blood glucose data
collected via body sensor networks, the proposed model forecasts
future blood glucose levels. When evaluated on the OhioT1DM
dataset, the proposed approach shows significant improvements
over the state-of-the-art, achieving a 46.78% reduction in root
mean square error and a 56.05% reduction in mean absolute
error while predicting blood glucose values 5 minutes into the
future.

Index Terms—Neural architecture search, Diabetes, Blood
glucose

I. INTRODUCTION

Type-1 Diabetes Mellitus (TIDM) is a pancreas-specific
medical condition wherein the [ cells lose the ability of
insulin production, which is essential for regulating Blood
Glucose (BG) in humans. Uncontrolled BG, in the absence
of medical treatment, leads to complications such as diabetic
retinopathy, and affects functionalities of other organs in
the human body [1]. International Diabetes Federation (IDF)
estimates that in 2022, about 8.75 million people were affected
with T1DM, and is expected to rise in the future [2].

Given the historical BG values measured using body sensor-
based glucose monitoring devices, this paper proposes a dual
Q-network Neural Architecture Search (NAS) approach to de-
sign personalized BG prediction models for predicting future
BG values in individuals affected by TIDM. The dual Q-
network NAS model consists of a target Q-network and a
parent Q-network. The parent Q-network randomly samples
architectures for BG prediction model from the search space,
or uses a prediction based on experience replay. The target
Q-network is responsible for enabling a well-informed guided
architecture selection for the BG prediction model based on
the performance of the architectures sampled in prior. The
model performance on the validation set is used as a reward
signal to update the Q-network weights.

The paper evaluates the performance of the proposed dual
Q-network NAS model over the OhioT1DM [3] dataset. The
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Continuous Glucose Monitoring (CGM) values for all 12 sub-
jects in the dataset are recorded at 5-minute intervals. Based
on historical BG values, this paper predicts future BG values
at a Prediction Horizon (PH) of 5-minute. The proposed short-
term BG prediction method demonstrates superior analytical
performance, as evidenced by lower Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) in the PH, as well as
superior clinical performance in regards to Surveillance Error
Grid [4], in comparison to the state-of-the-art [5].

The rest of the paper is organized as follows: Section II
focuses on the methodology, followed by the experimental
setup in Section III. Section IV delves into the evaluation
results, while Section V concludes the paper.

II. METHODOLOGY

The proposed algorithm builds upon the framework of
Chauhan et. al. [6] to sample neural networks from a defined
search space, with further improvements. In traditional Q-
networks [7], models often overestimate action rewards due
to Q-value divergence. To address this, this paper employs a
dual Q-network architecture consisting of a parent controller
Q-network and a separate target Q-network. The target Q-
network is responsible for enabling well-informed guided
architecture selection, based on the performance of the ar-
chitectures sampled in prior. Infrequently updating the target
controller Q-network stabilizes the training process by main-
taining stable Q-network weights for n consecutive epochs,
wherein the target Q-network is updated every n epochs.
On the other hand, the parent controller Q-network randomly
samples architectures from the search space, while updating its
network weights based on the reward signal in each epoch, or
it uses its network weights to predict the next action (the next
personalized BG prediction model architecture). This choice
of architecture generation is based on the e-greedy strategy.
Every generated architecture, either randomly sampled via the
parent Q-network, or sampled in a well-informed fashion from
the search space, is trained on the BG prediction dataset. The
model performance on the validation set is used as a reward
signal to update the Q-networks.

Within the NAS framework, the parent Q-network randomly
samples architectures from the search space, illustrating an
exploration strategy. On the other hand, the target Q-network
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is responsible for a well-informed guided architecture selection
from the search space, based on the performance of the
architectures sampled in prior, elucidating an exploitation
strategy. To strike a balance between the exploration and
exploitation, this paper uses an e-greedy strategy. Through an
exponential decay of e, selection of architectures from a well-
trained parent Q-network is gradually prioritized over random
selection of architectures by the parent Q-network, once the
target Q-network’s stability enables the parent Q-network to
effectively estimate state-action pairs. This dual Q-network
strategy effectively acts as a single agent, optimizing the search
to generate neural networks with a superior performance.

III. EXPERIMENTAL SETUP

A. Dataset

This study utilizes the OhioT1DM dataset [3], a well-studied
resource in the field of BG value prediction research. This
dataset comprises information from 12 individuals diagnosed
with TIDM. Over eight weeks, the dataset captures CGM
data, insulin doses (both bolus and basal), heart rate, galvanic
skin response, skin temperature, air temperature, step count,
self-reported meal times with carbohydrate estimates, and
self-reported occurrences of exercise, sleep, work, stress, and
illness for each of the 12 participants. Throughout the data
collection phase, participants used either Medtronic 530G
or 630G insulin pumps and utilized Medtronic Enlite CGM
sensors. The dataset ensures patient anonymity by employing
randomized identifiers. It encompasses 19 distinct features,
with a particular emphasis on CGM blood glucose levels
recorded at five-minute intervals. Notably, the dataset includes
data from seven male and five female participants, spanning
ages from 20 to 80 years. To remain consistent with the state-
of-the-art [5], this work considers only historical BG values
to predict future BG values.

B. Preprocessing

The pre-processing step involves z-score normalization for
each subject in the OhioT1DM dataset [3] for the BG values.
To prevent data leakage, the z-score normalization score
obtained for the BG values in the train set, was used over
the test set, in a patient-specific manner. Equation 1 highlights
the z-score normalization, wherein distribution mean p, and
standard deviation o, for BG values in the train set, are at a
patient-specific level.

x/:x_ﬂr (1)

Oz

Clinically, disparities in HbA1C and mean BG levels have
been observed across various racial groups, with notable vari-
ations within racial groups [8]. This normalization approach
emphasizes the detection of potentially concerning fluctuations
in BG values, while overlooking statistical elements in the data
that lack meaningful relevance for CGM prediction.

C. Neural Architecture

This paper proposes personalized BG prediction models for
every subject of the OhioT1DM [3] dataset. At every epoch,
the architecture randomly sampled by the parent Q-network
from the search space, or a well-informed guided architecture
selection from the search space by the target Q-network, is
trained for an individual subject of the OhioT1DM dataset.
The validation error is used as a reward signal to update the
parent Q-network weights and target Q-network weights at
every epoch and at every 3 epochs, respectively. The batch size
was set at one-sixth of the training set size. The total number
of layers in the BG prediction model was set as 5, with 32
LSTM-layer units. The training for personalized BG prediction
networks was set to 370 epochs with an early stopping callback
to prevent over-fitting on the training set. Table I illustrates the
search space. Table II imposes constraints to determine the
validity of the randomly sampled architecture from the search
space by the parent Q-network, or the well-informed guided
architecture selection from the search space by the target Q-
network. The implementations are publicly available!.

TABLE I: Neural Architecture Search Space.

Parameter Values

Layer Types {convolutional, LSTM, pooling,

flatten, dense}

LSTM-layer
Activation Function
LSTM-layer Dropout

{sigmoid, hyperbolic tangent,
ReLU, ELU, SELU, swish}
{0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9}
{16, 32, 64, 96, 128,
160, 192, 224, 256}

Convolutional Filters

Convolutional Filter Size {2,3,4,5}
Pooling Size {2,3,4,5}
Convolutional Stride {1, 2, 3}
Pooling Stride {1, 2,3, 4,5}

Learning Rate {0.05, 0.07, 0.09, 0.105, 0.12, 0.135}

TABLE II: Constraints for Valid BG Prediction Model Archi-
tecture.

Parameter Values
First Layer {convolutional, separable convolutional,
depthwise convolutional, convolutional transpose }
{convolutional, separable convolutional,
Second and depthwise convolutional, convolutional transpose,
Third Layer max pooling, average pooling, global max pooling,
global average pooling, LSTM}
Two Fully Connected {flatten followed by dense}
Output Layers

D. Evaluation metrics

Analytical accuracy: The performance of the BG predic-
tion model generated by the proposed algorithm is evaluated
analytically through RMSE and MAE metrics. Over the entire
test set (¢), the model predicts BG value, y at every 5-min PH,
denoted by <. RMSE and MAE is calculated at every such PH
in comparison to the ground truth, denoted by y;, in Equation
(2) and (3) respectively.

Uhttps://github.com/AnthonyLia/dqnas-for-ohiot1dm
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Clinical accuracy: The clinical risk of the BG prediction
model generated by the proposed algorithm is evaluated via
the Surveillance Error Grid [4]. The error grid displays risk
zones with clinical impact scores ranging from O (none) to 4
(extreme). Fig. 1 illustrates a simplified SEG with limits from
0 to 600 mg/dl and risk zones in 120 mg/dl intervals. The
colors indicate the average risk rating, reflecting the consensus
of expert opinions [4].
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Fig. 1: Visualization of SEG risk zones.

IV. EVALUATION RESULTS

Single-Step Prediction for 5 minutes: The proposed Deep
RL with NAS method predicts BG levels for one step in
the future (corresponding to the next 5 minutes). Individual
prediction models are trained and tested for all 12 patients
in the OhioT1DM dataset [3]. The model’s analytical perfor-
mance is assessed using RMSE and MAE. As highlighted in
Table III, the average RMSE and MAE across all 12 subjects
are 5.266 and 3.331 respectively. In comparison to the state-
of-the-art [5], the model achieves an average improvement in
RMSE and MAE of 46.782% and 56.049%, respectively, for
all 12 subjects of the OhioT1DM dataset [3]. With regards to
RMSE and MAE, the proposed method has the best perfor-
mance (corresponding to the lowest RMSE and MAE among
the 12 subjects) on Patient ID 552, the worst performance
(corresponding to the highest RMSE and MAE among the
12 subjects) on Patient ID 584, as inferred from Table III.
Considering the two extreme cases, we provide visualizations

of the predicted BG values against the ground truth on the
test data for patient ID 552 (best-case) and patient ID 584
(worst-case), in Fig. 2.

Surveillance Error Grid for Single-Step Prediction: The
clinical accuracy of the proposed method is assessed using
the SEG. The SEG values for all the 12 subjects of the
OhioT1DM [3] dataset is presented in Table IV. On average
for all the 12 subjects of the OhioT1DM [3] dataset, 97.654%,
2.323%, 0.023%, 0.000%, and 0.000% of the predicted BG
values fall within the no risk, slight risk, moderate risk, great
risk, and extreme risk zone respectively when compared to
the ground truth. Negligible predictions in the moderate risk
zone, and no predictions in the great or extreme risk illustrate
the efficacy of the proposed method. Due to the absence of
a baseline for SEG in the 5-minute prediction horizon, the
authors refrain from presenting any baseline comparisons. Fig.
3 shows our predictions overlaid on a continuously color-
coded error grid.
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Fig. 2: Blood glucose ground truth in comparison to the
prediction for a representative sample of the testing dataset
of 50 hours for patient ID 552 (best-case) (a) and patient ID

584 (worst-case) (b)
V. CONCLUSION

This paper presents a dual Q-network based NAS to design
and train personalized BG prediction models for subjects
affected with TIDM. The models are evaluated analytically
and clinically on the OhioTIDM dataset. For a prediction
horizon of 5-minute, the predicted models generated through
the proposed NAS approach demonstrates significant improve-
ments over the state-of-the-art. In future work, the authors aim
to validate the NAS strategy for longer prediction horizons of
30 and 45-minute, while also evaluating on additional T1DM
datasets.
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TABLE III: Single-Step Prediction Results (PH=5 mins)

Patient Root Mean Square Error Mean Absolute Error

ID Our Proposed | Baseline [5] | % Improvement | Our Proposed | Baseline [5] | % Improvement
Method Deep RL Over Baseline Method Deep RL Over Baseline

540 4.923 12.270 59.877 3.383 9.441 64.167
544 4.021 8.806 54.337 3.044 7.087 57.048
552 3.435 8.336 58.793 2.962 6.573 54.936
559 6.114 10.920 44.011 3.264 8.293 60.642
563 5.620 9.017 37.673 3.281 6.907 52.497
567 7.166 9.309 23.021 3.599 7.293 50.651
570 4.066 10.940 62.834 2913 8.626 66.230
575 5.804 11.640 50.137 3.038 8.914 65.919
584 7.769 11.630 33.199 3.876 8.745 55.677
588 4.202 8.542 50.807 3.504 6.894 49.173
591 5.170 9.840 47.459 3.905 7.225 45.952
596 4.903 8.070 39.244 3.199 6.360 49.701

Average 5.266 9.433 46.782 3.331 7.696 56.049
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TABLE IV: SEG in Single-Step Prediction Results (PH=5 mins)
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Fig. 3: SEG for Blood glucose predictions in comparison to

the prediction for a representative sample of the testing dataset
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of 50 hours for patient ID 552 (best-case) (a) and patient ID

584 (worst-case) (b)

Patient ID | None (0) | Slight (1) | Moderate (2) | Great (3) | Extreme (4)
540 97.163 2.837 0.000 0.000 0.000
544 98.192 1.808 0.000 0.000 0.000
552 97.583 2417 0.000 0.000 0.000
559 98.485 1.435 0.080 0.000 0.000
563 96.841 3.159 0.000 0.000 0.000
567 97.608 2.350 0.042 0.000 0.000
570 98.576 1.314 0.110 0.000 0.000
575 97.755 2.245 0.000 0.000 0.000
584 97.367 2.595 0.038 0.000 0.000
588 97.558 2.442 0.000 0.000 0.000
591 96.986 3.014 0.000 0.000 0.000
596 97.735 2.265 0.000 0.000 0.000

Average 97.654 2.323 0.023 0.000 0.000
REFERENCES

P. Domanski, A. Ray, K. Lafata, F. Firouzi, K. Chakrabarty,
and D. Pfliger, “Advancing blood glucose prediction with neural
architecture search and deep reinforcement learning for type 1 diabetics,”
Biocybernetics and Biomedical Engineering, vol. 44, no. 3, pp. 481-500,
2024.

H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B. B.
Duncan, C. Stein, A. Basit, J. C. Chan, J. C. Mbanya et al., “Idf diabetes
atlas: Global, regional and country-level diabetes prevalence estimates for
2021 and projections for 2045,” Diabetes research and clinical practice,
2022.

C. Marling and R. Bunescu, “The ohiotldm dataset for blood glucose
level prediction: Update 2020,” in CEUR workshop proceedings. NIH
Public Access, 2020.

D. C. Klonoff, C. Lias, R. Vigersky, W. Clarke, J. L. Parkes, D. B. Sacks,
M. S. Kirkman, B. Kovatchev, and E. G. Panel, “The surveillance error
grid,” Journal of diabetes science and technology, 2014.

P. Domanski, A. Ray, F. Firouzi, K. Lafata, K. Chakrabarty, and
D. Pfliiger, “Blood glucose prediction for type-1 diabetics using deep
reinforcement learning,” in 2023 IEEE International Conference on
Digital Health (ICDH), 2023.

A. Chauhan, S. Bhattacharyya, and S. Vadivel, “Dgnas: Neural
architecture search using reinforcement learning,” arXiv preprint
arXiv:2301.06687, 2023.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proceedings of the AAAI conference on
artificial intelligence, 2016.

R. M. Bergenstal, R. L. Gal, C. G. Connor, R. Gubitosi-Klug, D. Kruger,
B. A. Olson, S. M. Willi, G. Aleppo, R. S. Weinstock, J. Wood et al.,
“Racial differences in the relationship of glucose concentrations and
hemoglobin alc levels,” Annals of internal medicine, 2017.

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:03:47 UTC from IEEE Xplore. Restrictions apply.



