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Abstract

Language models (LMs) may lead their users
to make suboptimal downstream decisions when
they confidently hallucinate. This issue can be
mitigated by having the LM verbally convey the
probability that its claims are correct, but existing
models cannot produce long-form text with cali-
brated confidence statements. Through the lens of
decision-making, we define linguistic calibration
for long-form generations: an LM is linguistically
calibrated if its generations enable its users to
make calibrated probabilistic predictions. This
definition enables a training framework where a
supervised finetuning step bootstraps an LM to
emit long-form generations with confidence state-
ments such as “I estimate a 30% chance of...” or
“I am certain that...”, followed by a reinforcement
learning step which rewards generations that en-
able a user to provide calibrated answers to related
questions. We linguistically calibrate Llama 2 7B
and find in automated and human evaluations of
long-form generations that it is significantly more
calibrated than strong finetuned factuality base-
lines with comparable accuracy. These findings
generalize under significant domain shifts to sci-
entific and biomedical questions and to an entirely
held-out person biography generation task. Our
results demonstrate that long-form generations
may be calibrated end-to-end by constructing an
objective in the space of the predictions that users
make in downstream decision-making.

1 Introduction
The claims made by language models (LMs) are increas-
ingly used to inform real-world decisions, e.g., what to order
at a restaurant, what information to provide someone else
about a topic, or which code completion to accept. However,
LMs have knowledge gaps which manifest as hallucinations
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(Ji et al., 2023; Huang et al., 2023). Currently, when an LM
lacks knowledge about a topic, it will do one of two things:
hallucinate incorrect claims with complete confidence, or,
in the case of a few strong closed-source models (OpenAI
et al., 2023; Anthropic, 2023), abstain from making claims.

Confident hallucinations are especially harmful. They de-
crease users’ trust in the errant LM and broadly make LMs
unsuitable for settings where factuality is paramount such
as medicine (Thirunavukarasu et al., 2023) and law (Dahl
et al., 2024). Perhaps most importantly, they lead the user
to confidently make poor decisions (Fig. 1). However, even
abstentions are suboptimal, because they provide the user
with no plausible claims and their likelihoods.

Linguistic calibration (Mielke et al., 2022)—conveying con-
fidence levels in natural language that equal the likelihood
that one’s claims are correct—could mitigate the harms of
hallucination. If an LM was linguistically calibrated in a
manner interpretable to its users, they could make good
decisions regardless of the LM’s underlying knowledge.

For example, suppose a clinical LM generates a patient’s
case report, providing a diagnosis. If the LM was unsure
of the correct diagnosis, it could use numerical confidence
with its corresponding claim (“I estimate that the correct
diagnosis is Condition A with 60% confidence”). Then,
when the doctor faces a decision—deciding the patient’s
treatment—they have access to both a salient claim and an
approximate likelihood of its correctness. The manner of
conveying confidence is limited only by the use of language:
e.g., the LM could provide linguistic confidence statements
(“I am fairly sure that the correct diagnosis is A”) or many
mutually exclusive claims (“I estimate that the correct di-
agnosis is A with 60% confidence, though B or C are also
possibilities.”). However, both classic calibration methods
like temperature scaling (Guo et al., 2017) and methods for
LMs (Kadavath et al., 2022; Tian et al., 2023; Kuhn et al.,
2023; Mielke et al., 2022; Lin et al., 2022; Jiang et al., 2021)
are restricted to classification or short outputs and hence
cannot calibrate the many claims made in each long-form
LM generation (cf. §5 for related work).

We make progress on this challenge by leveraging the con-
nection between calibration and decision theory (Zhao et al.,
2021; Zhao & Ermon, 2021). LMs fit cleanly within the
framework of decision-making. Users query LMs, learn
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… I believe the patient’s symptoms and medical 
history indicate deconditioning with a 75% 

likelihood and asthma with a 25% likelihood…

… and make decisions using 
those predictions.

… The patient’s symptoms and medical history are 
consistent with deconditioning, the decline in 

physical function as a result of inactivity…

Standard LM
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Figure 1: Illustrative example of linguistic calibration. We define linguistic calibration of long-form generations (LC) as
calibrating an LM’s generations in a way that leads to calibrated downstream user forecasts. We apply LC to train an LM that
emits calibrated statements of confidence in natural language, enabling better downstream decisions. Left: users read long-
form generations (e.g., a doctor reading an LM-generated clinical note). Middle: to decide the patient’s treatment, the doctor
first forecasts the patient’s underlying condition. Upper Right: when standard LMs lack knowledge, they hallucinate con-
fidently, leading to a suboptimal decision (treating the wrong condition). Lower Right: even if the base LM cannot be confi-
dently correct, linguistic calibration encourages the LM to spread probability over plausible claims, enabling a better decision.

from their generations, and later encounter decision-making
tasks with associated questions (“What is the patient’s condi-
tion?”). They forecast an answer based on what they learned,
and finally make a decision (which treatment to provide)
using their forecast for which they receive some reward.

Because linguistic calibration improves downstream user
decisions, we might hope to calibrate an LM by directly op-
timizing real-world downstream rewards. While intuitively
appealing, this process is challenging; it entails tracing the
knowledge learnt by users through to their decisions, and
further propagating the associated rewards back to the LM.

Our contributions. We propose a definition of linguistic
calibration for long-form generations (LC) which sidesteps
the difficulty of tracing real-world rewards and enables train-
ing an LM to emit calibrated confidence statements in long-
form generations. Our contributions are as follows:

• We define an LM emitting long-form generations to be
linguistically calibrated if it enables users to produce
calibrated forecasts relevant to their decision-making
tasks, which in turn enable optimal decision-making.

• We instantiate this definition in a training objective
and framework that calibrates long-form generations
through a decision-theoretic lens. Our training frame-
work first bootstraps an LM to express confidence state-
ments with supervised finetuning. Then, it optimizes our
objective using reinforcement learning (RL), rewarding
the LM policy for generating text that enables calibrated
forecasts on related questions.

• We linguistically calibrate Llama 2 7B using our train-
ing framework and find it significantly improves cali-
bration versus strong baselines finetuned for factuality
while matching their accuracy, in human and API-based

LLM evaluation of long-form generations. We also show
that linguistic calibration has zero-shot transfer beyond
the training task. Specifically, an LM calibrated using
a single question-answering dataset is also calibrated
on out-of-domain scientific question-answering datasets,
and on an entirely held-out task of biography generation.

Instead of working in the space of text, our decision-based
approach constructs an objective in the space of the pre-
dictions that users make in the process of decision-making.
This makes the standard calibration machinery of proper
scoring rules (Gneiting & Raftery, 2007) tractable as an ob-
jective for end-to-end calibration of long-form generations.

2 Setup
Our goal is to formulate a tractable objective that enables the
end-to-end linguistic calibration of long-form LM genera-
tions. To begin, we define what it means for an LM emitting
long-form generations to be linguistically calibrated.

2.1 Linguistic Calibration of Long-Form Generations

Our definition is motivated by the process of users learning
from LM generations and later using their knowledge to an-
swer questions. This LM-assisted user forecasting allows
us to turn the problem of calibrating long-form text into the
problem of calibrating probabilistic forecasts.

LM-assisted user forecasting. First, the user prompts
an LM π with an open-ended query q (e.g., “Generate a
clinical note for this patient...”). Next, the LM π generates a
long-form context z ∼ π(z | q), e.g., the clinical note.

At some point in the future, the user encounters a question
x associated with the query q, such as x = “What is the
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correct diagnosis of the patient?” Let y ∈ Y be the answer
to the question x, and p(y | x) be the ground-truth condi-
tional distribution over answers. We note that given x, the
answer y depends on neither the query q nor the generation
z, i.e., we have Y ⊥ (Q,Z) | X . Altogether, we have joint
distribution p(q, x, y, z) := p(q, x, y)π(z | q).

Since p(y | x) is unknown to the user, they form a probabilis-
tic forecast over possible answers y as a distribution in ∆|Y|.
In our example, the doctor can better forecast diagnoses by
first reading the clinical note. In other words, the long-form
generation z is salient to the question x, so the user con-
ditions on it to make their forecast; they apply their reader
function f :X×Z→∆|Y| to form a forecast f(x, z)∈∆|Y|.
For example, we might have f(x, z) = [0.2, 0.8]⊤ placing
20% mass on Condition A and 80% on B. We denote the
forecasted probability of answer y as f(x, z)y .

Defining linguistic calibration for long-form generations.
LM-assisted user forecasting motivates a definition of lin-
guistic calibration in terms of the calibration of a down-
stream reader; an LM is linguistically calibrated with re-
spect to a user if its long-form generations z enable that user
to make calibrated forecasts on question-answer pairs (x, y)
using their reader function f . This notion of linguistic cali-
bration is a property of an LM, and is defined with respect
to a particular user and notion of classifier calibration.

Definition 2.1 (Linguistic Calibration of Long-Form Gen-
erations). An LM π emitting long-form generations z ∼
π(z|q) is linguistically ϕ-calibrated (for ϕ∈{distribution,
classwise, confidence}) with respect to a reader f : X ×
Z → ∆|Y| if and only if f is ϕ-calibrated on the joint
distribution p(x, y, z).

Prior work established linguistic calibration for single-claim
utterances (Mielke et al., 2022). Our definition generalizes
linguistic calibration to long-form generations, which we
will show has both theoretical and empirical benefits. Our
focus is on calibrating long-form text, so future references to
linguistic calibration, linguistically calibrated, etc. refer
to Defn. 2.1. §5 discusses related work.

Defn. 2.1 reduces the problem of calibrating long-form text
to calibrating over a smaller answer space Y . Each notion of
linguistic ϕ-calibration is equivalent to a traditional notion
of classifier calibration ϕ applied to the reader f . We next
provide examples in our notation. Readers familiar with
classifier calibration could skip to §2.2.

Examples of linguistic ϕ-calibration. Distribution cali-
bration is one such notion of classifier calibration (Bröcker,
2009; Kull & Flach, 2015). Intuitively, a classifier g : X ′ →
∆|Y| is distribution calibrated if its forecast g(x′) ∈ ∆|Y| is
faithful to the predictive uncertainty (Minderer et al., 2021):
among all inputs x′ ∈ X ′ for which the forecasted probabil-
ity of class y is 0.4 (i.e., g(x′)y = 0.4), 40% of those inputs
should have label y. Taking 1y ∈ {0, 1}|Y| as the one-

hot vector for y, g is distribution calibrated if ∀p ∈ ∆|Y|,
E [1y | g(x′) = p ] = p. Now taking our reader f := g as
the classifier and both the question and LM generation as the
input (x, z) := x′, we say that an LM π is linguistically dis-
tribution calibrated with respect to a reader f if ∀p ∈ ∆|Y|,
E [1y | f(x, z) = p ] = p. Table 4 (Appendix C) provides
more examples of this correspondence. These include the
weaker notion of confidence calibration (Guo et al., 2017):
among the examples with top forecasted probability equal
to β, the accuracy over those examples is also β.

2.2 From Calibration to Optimal Decisions

LM-assisted user forecasting models how users learn about
topics by reading LM generations and forecast answers to
related questions. We now describe how they use their fore-
casts to inform downstream decisions. This decision-based
perspective leads to our objective for linguistic calibration.

LM-assisted user decision-making. The user will make
a decision by selecting an action a ∈ A (which treatment
to provide the patient) according to their forecast f(x, z) ∈
∆|Y| and loss function L : A× Y → R. For example, the
user may make a Bayes-optimal decision by choosing the
action minimizing their loss under the forecast distribution:
a∗ = argmina Eŷ∼f(x,z)[L(a, ŷ)]. Based on the realized
answer y ∼ p(y | x), the user suffers a loss of L(a∗, y).

Ideally, one would follow this LM-assisted user decision-
making process and directly train an LM to emit genera-
tions z which minimize the user’s downstream loss L(a∗, y).
However, it is difficult to obtain real-world rewards, and
moreover to obtain a real-world distribution over LM queries
and related question-answer pairs p(q, x, y). We overcome
these challenges by optimizing for linguistic calibration
over a representative surrogate distribution. In other words,
we encourage the LM to emit generations z that enable the
user to provide calibrated answers to questions x.

In the rest of this section, we will introduce our objective for
linguistic calibration and demonstrate its optimality proper-
ties. We discuss our surrogate distribution in §3.1.

Linguistic calibration implies informed decision-making.
Why is optimizing for linguistic calibration a reasonable
proxy for directly optimizing downstream losses L(a∗, y)?
Zhao et al. (2021) prove that calibrated forecasts f(x, z)
enable a user to make informed decisions. Specifically, a
calibrated forecast enables the user to estimate the expected
loss of a decision-making strategy as if they had access
to the ground-truth distribution p(y | x). This accurate
loss estimation implies that Bayes-optimal decision-making
outperforms other strategies. Altogether, because linguistic
calibration implies calibrated forecasts (cf. Defn. 2.1), it
will provide optimal decision-making guarantees.

Guarantees for weaker notions of calibration. Each
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notion of linguistic ϕ-calibration (cf. Table 4) in fact corre-
sponds to a different decision-making guarantee. Even if our
optimization process cannot achieve linguistic distribution
calibration, achieving linguistic ϕ-calibration with respect
to a weaker notion ϕ such as confidence calibration will
provide a (weaker) decision-making guarantee. Appendix
C provides a proof of this correspondence (Theorem C.4).

Lastly, we note the connection between linguistic calibra-
tion and optimal decision-making motivates our evaluation
metric of reader expected calibration error (cf. §4.1).

2.3 Training Objective for Linguistic Calibration

Because linguistic calibration is equivalent to calibration of
downstream probabilistic forecasts, we can optimize for it
with the standard calibration machinery of scoring rules.
We use a strictly proper scoring rule as our objective,
with the guarantee that it is maximized if and only if user
forecasts f(x, z) equal the ground-truth distribution p(y|x).
Proper scoring rules. Scoring rules (Gneiting & Raftery,
2007; Savage, 1971) measure a forecast’s quality. Specif-
ically, a scoring rule R scores a forecast p̂ ∈ ∆|Y| and
outcome y ∈ Y , i.e., R : ∆|Y| × Y → R. Proper scoring
rules have the desirable property that the true distribution
of y, denoted by p, is a maximizer. Formally, R is proper
if ∀p, p̂ ∈ ∆|Y|, Ey∼p[R(p, y)] ≥ Ey∼p[R(p̂, y)]. R is
strictly proper if the unique maximizer is the true probabil-
ity p. Strictly proper scoring rules are ubiquitous in ML, e.g.,
the (negative) log loss or Brier score (Brier, 1950), and are
natural objectives for calibration methods such as temper-
ature (Guo et al., 2017) or Platt scaling (Platt et al., 1999).

Objective. We choose the negative log loss as our strictly
proper scoring rule RLC(p, y) := log py, and therefore our
objective function is RLC(f(x, z), y) := log f(x, z)y. By
strict propriety, if our objective is maximized, then the user’s
forecast f(x, z) equals the ground-truth conditional p(y | x)
and we obtain linguistic distribution calibration.

Proper scoring rules do not guarantee that weaker notions
of calibration hold near their optima. However, it is well-
established empirically that recalibrating classifiers by opti-
mizing proper scoring rules approximately obtains weaker
notions of calibration such as confidence calibration (Guo
et al., 2017; Ovadia et al., 2019; Minderer et al., 2021).

3 Method
In this section, we describe our training framework for lin-
guistically calibrating an LM. We first construct a surro-
gate distribution to approximate the distribution of question-
answer pairs that users encounter during real-world decision-
making. Then, we apply a two-step training framework
(Fig. 2). First, we obtain an LM with some ability to ex-
press confidences in a long-form generation. Second, we

use it as an RL policy and optimize our proper scoring rule
end-to-end, with supervision from the surrogate distribution.

3.1 Synthetic Supervision for Long-Form Calibration

In our setup (§2.1), LM-assisted user forecasting involves
a tuple (q, z, x, y), where q are user-written queries to the
LM, z ∼ π(z|q) are long-form generations sampled from
the LM, and (x, y) is a related question-answer pair.

Our training framework will closely follow this process and
therefore requires access to a dataset of tuples (q, z, x, y).
We can synthetically generate this dataset in a manner agnos-
tic to the downstream task, using arbitrary question-answer
pairs (x, y). In this work, we make a particular choice to use
(x, y) pairs from off-the-shelf question-answering datasets.

Specifically, we first sample a question-answer pair (x, y) ∼
p(x, y) from a question-answering dataset, which is im-
plicitly associated with some actual decision-making tasks.
Next, we need an LM query q such that z ∼ π(z | q) is
a long-form generation salient to (x, y). We obtain one
by converting the question x into an open-ended query
(q := “Write a paragraph about {x}”) using an API-based
LLM. Altogether, this gives us a tuple (q, z, x, y) where
(q, x, y) ∼ p(q, x, y) and z ∼ π(z | q).

Next, we describe our two-step training framework.

3.2 Summary Distillation

Summary distillation (Fig. 2 Upper) bootstraps a base LM
πBase to have some ability to express its confidence in long-
form natural language generations. We follow a simple
approach inspired by Self-Consistency (Wang et al., 2023),
which obtains calibrated LM confidences for short answer
questions by computing a statistic of many output samples.
Summary distillation generalizes this idea to longer genera-
tions, and then finetunes on our equivalent of the statistics.

First, we provide the base LM with an open-ended query q
and sample many long-form responses: {zi}Mi=1 ∼ πBase(z |
q). To obtain statements of confidence that are faithful to the
base model’s internal confidence levels, we prompt an API-
based LLM to summarize these samples into a single con-
sensus paragraph s with statements of confidence based on
the frequency of claims: s ∼ Summarize(s | z1, . . . , zM ).
For example, we would expect the summary shown in Fig. 2
(Upper) if 90% of the M samples answer the question with
Alt-J and 5% with Blur. We perform frequency-based sum-
marization at the claim level, meaning that each summary
paragraph s contains multiple claims with various confi-
dence levels and styles (e.g., numerical and linguistic).

Finally, to distill these extracted confidences back into the
base model, we finetune πBase on the dataset of open-ended
query and summary pairs {(q(i), s(i))}Ni=1 to obtain the su-
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Figure 2: Our training framework for linguistic calibration of long-form generations (LC) calibrates the long-form generations
of an LM by calibrating downstream user forecasts. It involves two steps: summary distillation (Upper) and decision-based
RL (Lower). Datasets are in white, LMs in blue, and steps involving user or surrogate forecasts are in green.

pervised finetuned (SFT) model πSFT. πSFT serves as a
strong initial policy for the second RL-based step.

3.3 Decision-Based RL

Decision-based RL (Fig. 2 Lower) linguistically calibrates
a policy πRL (initialized at πSFT) by finetuning it to emit
long-form generations z that improve the calibration of the
user forecast f(x, z).
RL objective. We use our log likelihood proper scoring
rule RLC (cf. §2.3) as our reward function. Our RL objective
optimizes RLC over our semi-synthetic distribution:

max
πRL

E
(q,x,y)∼p(q,x,y), z∼πRL(z|q)

[RLC (f(x, z), y)] . (1)

3.4 Implementation

We next describe our instantiation of decision-based RL,
which we used in our experiments. However, we note that
the notion of linguistic calibration defined in §2 is agnostic
to these design decisions. See Appendix D for further im-
plementation details, including pseudocode (Algorithm 1).
Surrogate reader. For our training framework to be as
scalable as possible, we would ideally avoid using a human
or LLM-simulated reader f in the RL loop. We find that we
can train a neural net surrogate reader f̃ : X × Z → ∆|Y|

which produces reasonable forecasts, because “reading” is
not a fundamentally hard task. For example, if z provides a
clear list of possible answers to the question x and associated
percentage likelihoods, reading is a simple extractive task.

Using the surrogate, we optimize approximate reward
RLC(f̃(x, z), y) ≈ RLC(f(x, z), y). In our evaluation, we

will test if our LM calibrated on this approximate reward
generalizes to produce long-form generations z which im-
prove simulated LLM and human forecasts f(x, z).

We cannot simply train a neural net to directly predict a
softmax output f̃(x, z) ∈ ∆|Y|, because Y is the vast space
of all answers expressible in a finite-length string. Instead,
we decompose forecasting into two operations:

1. ExtractAnswers: (x, z) 7→ ExtractAnswers(x, z) ⊂
Y extracts all possible answers to the question x from
the paragraph z. We implement this by finetuning a
pretrained LM (RedPajama 3B, together.ai (2023)).

2. ForecastProbs: (x, z, y′) 7→ [0, 1] assigns a probability
to an answer y′ to question x based on the paragraph z.
We finetune πSFT with a cross-entropy loss.

We define the surrogate reader’s forecast f̃(x, z) as a cate-
gorical distribution with probability ForecastProbs(x, z, y′)
on each answer y′ ∈ ExtractAnswers(x, z), and probability
0 on all others. In this particular construction, we are not
guaranteed that the surrogate forecast f̃(x, z) will be nor-
malized, but in practice we find that adding a regularization
term is sufficient to enforce normalization:

RLC(f̃(x, z), y) = log f̃(x, z)y−λ
∣∣∣1−∑y′∈Y f̃(x, z)y′

∣∣∣ ,
where λ > 1 restores strict propriety (cf. D.2 for proof).
Lastly, we use a standard KL penalty from πSFT to mitigate
over-optimization of the surrogate reader (Ouyang et al.,
2022), giving us the objective (with KL coefficient β)

max
πRL

E
(q,x,y)∼p(q,x,y),

z∼πRL(z|q)

[
RLC(f̃(x, z), y)−β log

πRL(z|q)
πSFT(z|q)

]
.
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4 Experiments
This section empirically validates our training and evalua-
tion framework for linguistic calibration1, demonstrating
that it fulfills the following three goals:

(1) LC provides better calibration with comparable or
better accuracy. We show that our linguistically calibrated
LM πLC emits long-form generations z which improve the
calibration of user forecasts with accuracy comparable to or
better than strong baselines finetuned for factuality with RL.

(2) LC is computationally tractable. We show that πLC—
which avoids obtaining many costly human forecasts by
training with cheap surrogates—improves the calibration of
human forecasts at test time. We also develop an automated
framework to evaluate linguistic calibration with simulated
forecasts and validate its agreement with crowdworkers.

(3) LC generalizes well out-of-distribution. We demon-
strate that the improvement in forecast calibration due to
adopting LM πLC generalizes under significant domain shift
to scientific question-answer distributions pOOD(x, y). We
also evaluate πLC on an entirely held-out task of person bi-
ography generation without any re-training, finding that πLC
produces calibrated claims throughout the long-form gener-
ation z according to a fine-grained simulated evaluation.

4.1 Setup

We use our training framework to linguistically calibrate
Llama 2 7B, sourcing question-answer (QA) pairs (x, y) (cf.
§3.1) from TriviaQA (Joshi et al., 2017). We emphasize that
our LMs produce long-form generations z on the question’s
topic, unlike prior works which calibrate models that predict
a class distribution or short answer (cf. §5). Further details
on the training framework can be found in Appendix D.

Question-answering evaluation framework. Following
our generative process during training (§3.1), we use off-
the-shelf QA datasets as a proxy for questions encountered
during real-world decision-making, and evaluate the linguis-
tic calibration of generations z through the performance of
downstream forecasts. Specifically, for a held-out QA pair
(x, y), we convert x into an open-ended query q, sample a
long-form generation z ∼ π(z | q) from various LMs π, and
evaluate the calibration and accuracy of forecast f(x, z).

Naturally, this framework depends on which users are pro-
viding forecasts and how, i.e., the choice of reader f . We
are interested in the case where users strongly rely on the
knowledge of the LM. Therefore, we include instructions
to the user (either simulated or human) to ignore their back-
ground knowledge about the correct answer when providing
a forecast (cf. Appendix E for further evaluation details).

1We release code at github.com/tatsu-lab/linguistic calibration.

Reader expected calibration error. We measure the cali-
bration of the reader f over the joint distribution p(x, y, z)
with the standard expected calibration error (ECE) met-
ric (Guo et al., 2017). Intuitively, reader ECE is a proxy
for decision-making performance through the equivalence
of confidence calibration and optimal decision-making (cf.
Theorem C.4 in Appendix C). For a formal statement of
reader ECE and implementation details, see Appendix E.

Baselines. In our main evaluations, we compare LC RL
(πLC) with both non-confidence and confidence baselines, all
derived from Llama 2 7B. We provide a strong data-matched
comparison to LC by finetuning directly for factuality using
RL. This baseline is similar to Tian et al. (2024), but instead
of using self-supervised or automated factuality scores as
the RL reward, we use correctness determined with ground-
truth question-answer pairs from TriviaQA. In-context learn-
ing (ICL) baselines use TriviaQA examples from a prompt
development split, and SFT/RL baselines use the same splits
as πSFT and πLC. Each example is a (q, x, y) tuple, where q
is an open-ended query obtained from question x (cf. §3.1).

We include the following non-confidence baselines:

• ICL. We randomly sample 8 open-ended queries, gener-
ate long-form responses with GPT-4, manually fact-check
those responses using Wikipedia, and use fact-checked
(query, response) pairs as Llama 2 7B ICL examples.

• Claude Distill. We generate long-form responses with
Claude 2 over all queries in the SFT split, and finetune
Llama 2 7B on these (query, response) pairs.

• Factuality SFT. We use the above ICL baseline to gener-
ate long-form responses over all queries in the SFT split,
and finetune Llama 2 7B on these (query, response) pairs.
We found Factuality SFT to outperform Claude Distill on
a TriviaQA validation split, so we use it as the starting
point for the following baseline, Factuality RL.

• Factuality RL. To provide a strong RL baseline, we train
a reward model to score the correctness of long-form
outputs. Our approach to obtain this baseline is analogous
to the decision-based RL algorithm (Algorithm 1), except
instead of training a surrogate reader, we train a single
reward model that, given a generation z and QA pair
(x, y), predicts a binary indicator whether z provides the
correct answer to x. This serves as the RL reward. We
use Factuality SFT as the initial policy for PPO.

When training our confidence methods, we use the ICL base-
line above to generate the responses which are summarized
in summary distillation. Our confidence baselines include
the LC SFT model (πSFT) and the following baseline:

• Summary ICL. We use the summary distillation algo-
rithm (§3.2) on 8 queries sampled from the prompt devel-
opment split to produce 8 Claude 2 summaries {s(i)}8i=1,
which we use in (query, summary) ICL examples.
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Other baselines including GPT-4. Appendix B includes
results for several other methods: Llama 2 Chat (which
underperformed Factuality SFT), the oracle baseline of di-
rectly evaluating summaries s, and GPT-4–based methods
including 0-Shot, ICL 8-Shot, asking for confidence state-
ments 0-shot, and Summary ICL 8-Shot. Unsurprisingly,
GPT-4–based methods are far more factual than all Llama
2 7B–based methods. However, we find that LC RL has
reader ECE comparable to GPT-4 baselines (cf. Figs. 7,
9, 11, 13, 15), despite significantly worse factuality. This
demonstrates that even small LLMs with relatively weak
factuality can be well-calibrated with the right objective.

4.2 Linguistic Calibration using QA Datasets

To begin, we evaluate our methods using held-out (x, y)
pairs from the TriviaQA, Jeopardy (Kaggle, 2020), SciQ
(Welbl et al., 2017), and BioASQ Task B (Krithara et al.,
2023) question-answering datasets. The latter two datasets
are a significant domain shift; SciQ consists of crowd-
sourced physics, chemistry, and biology exam questions,
and BioASQ Task B consists of biomedical questions anno-
tated by experts (cf. Appendix E for dataset details).

These QA evaluations validate two of our three goals: we
find that LC improves calibration with comparable or better
accuracy, and that our training and evaluation framework are
computationally tractable. Our strong results on the Jeop-
ardy, SciQ, and BioASQ datasets also partially validate our
final goal of strong out-of-distribution generalization. We
report TriviaQA and SciQ results here, and refer the reader
to Appendix B for results with all datasets and baselines.

Better ECE with comparable or better accuracy in long–
form generation. Our main result in Fig. 3 is that LC
RL has significantly better ECE than non-confidence base-
lines, including Factuality RL, while matching or exceeding
their accuracy. This result holds in-distribution on TriviaQA
with both simulated (Fig. 3a) and human (Fig. 3b) readers,
and out-of-distribution (OOD) on SciQ (Fig. 3c), Jeopardy
(Fig. 9), and BioASQ (Fig. 13) with a simulated reader,
demonstrating that LC generalizes under domain shift.

Our results also support the effectiveness of decision-based
RL. LC RL significantly improves over LC SFT in both
ECE and accuracy, with a greater absolute improvement in
ECE/accuracy than Factuality SFT to Factuality RL. This
supports our claim that optimizing proper scoring rules of
downstream forecasts is an effective way to induce calibra-
tion in long-form generations.

Reliability diagrams demonstrate meaningful confi-
dences. A natural question is whether the confidences
learned by LC models are meaningful. For example, if all
of a model’s confidences collapsed to its average accuracy,
it would obtain perfect ECE despite having confidences
that are useless for tasks such as conveying the likelihood

of hallucination. For a more fine-grained assessment of
our model’s calibration, we use reliability diagrams (DeG-
root & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005),
which visualize the average confidence and accuracy of each
ECE bin. The plot of the pathological model above would be
a single point. A perfectly calibrated model with meaningful
confidences would have an identity plot y = x. In Fig. 4,
we observe that LC model confidences are both meaningful,
covering a wide range of confidence values, and consistently
close to the identity across confidence values. This validates
that LC is effective in linguistically conveying the likelihood
of hallucination in a long-form generation.

4.3 Zero-Shot Transfer to Biography Generation

The QA evaluation validated two of our three goals: (1) LC
RL pareto-dominates baselines on the accuracy-ECE fron-
tier. Its significant improvement over LC SFT validates the
effectiveness of decision-based RL. (2) We demonstrated
the computational efficiency of our training and evaluation
framework, because LC RL is trained with cheap surrogates
but performs well in evaluations with human readers, and
our simulated readers have high agreement with human read-
ers (see Appendix E.3 for full forecast agreement statistics).
Lastly, the QA evaluation partially validates (3) OOD gener-
alization: LC RL performs well on the Jeopardy, SciQ, and
BioASQ datasets with simulated readers.

To conclusively validate this final goal, we evaluate LC on a
significant distribution shift in the task. Our models were
trained to perform long-form generation about trivia-style
questions, and we now test their ability to write factual
biographies on people sampled from Wikipedia. Specifi-
cally, we source 500 people from the unlabeled split of
FactScore (Min et al., 2023) and use prompt “Write a para-
graph bio about {person}”. We emphasize that our models
were not trained on biography generation.
FactScore-based metric. We also use a more fine-grained
simulated evaluation than the QA tasks, testing the accuracy
and calibration of generated biographies z at the per-claim
level. Specifically, we split generations into a list of claims,
filter out subjective claims, and then compute accuracy and
ECE over all claims pooled across biographies, following
FactScore (Min et al., 2023). We use Claude 2 for splitting
and filtering, and an identical fact checking pipeline to Min
et al. other than using Claude 2 instead of ChatGPT for
fact-checking conditioned on retrieved Wikipedia context
paragraphs. To compute ECE, we need to assign confidence
values to each claim. For numerical uncertainties such as
percentages, this is a simple extractive task which API-based
LLMs perform well. For linguistic uncertainties, we provide
Claude 2 with a short list of mappings between linguistic
phrases and consensus probabilities collected in a human
study (Wallsten, 1990), and allow the LLM to generalize
from this to assign probabilities for other linguistic phrases
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Our Method
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(a) TriviaQA (sim, in-distribution).
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Figure 3: Accuracy-ECE Frontier for Question-Answering (upper left is better), simulated (sim) and human readers. LC
RL pareto-dominates Factuality RL and SFT, with significantly better ECE while matching or exceeding their accuracy.
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(a) LC SFT, human
readers. ECE: 0.163
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(b) LC RL, human
readers. ECE: 0.116
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(c) LC SFT, simulated
reader. ECE: 0.166
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(d) LC RL, simulated
reader. ECE: 0.108

Figure 4: TriviaQA Reliability Diagrams. LC models dis-
play a wide range of confidences and good calibration in
their long-form generations, with LC RL improving calibra-
tion further. Human and simulated results closely match.

not present in the mapping (cf. Appendix E.2 for details).
LC generalizes to biography generation and claim-level
evaluation. Both LC methods demonstrate significant
ECE and accuracy gains compared to non-confidence base-
lines, generalizing well to an entirely held-out task (Fig. 5).
Because we here compute ECE at the claim level and the LC
methods obtain reasonable ECEs and reliability diagrams
(Fig. 6), we confirm that they incorporate calibrated confi-
dence statements throughout their long-form generations.
Additionally, decision-based RL significantly improves ac-
curacy and ECE over LC SFT even under significant task
shift, further validating our linguistic calibration objective.

Lastly, we note the surprising finding that LC SFT improves
in accuracy compared to Factuality RL. We attribute this to
the tendency of LC models to generate a higher proportion
of less “precise” claims which are still objective and correct

Our Method
LC RL ( LC)

Confidence Baseline
LC SFT ( SFT)

Non-Confidence Baselines
Factuality RL Factuality SFT Claude Distill Llama 2 Chat 7B
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Figure 5: Accuracy-ECE Frontier for Person Biography
Generation, simulated reader (upper left is better). Ac-
curacy and ECE are computed at the claim level, using
a finetuned retrieval model and API-based LLM for fact
checking, following Min et al. (2023). LC RL significantly
outperforms non-confidence methods in accuracy and ECE.

and therefore count towards the accuracy metric. Qualitative
examples on all datasets are provided in Appendix B.13.

Altogether, our strong results in a challenging distribution
shift setting validate our final goal.

5 Related Work
Calibration. The calibration of probabilistic forecasts is
an extensively studied topic (Brier, 1950; Savage, 1971;
Murphy, 1973; Dawid, 1984; Zadrozny & Elkan, 2001;
Hebert-Johnson et al., 2018; Kull & Flach, 2015). In partic-
ular, isotonic regression (Niculescu-Mizil & Caruana, 2005),
Platt scaling (Platt et al., 1999), temperature scaling (Guo
et al., 2017), and histogram binning (Kumar et al., 2019)
are effective approaches for improving the calibration of
probability estimates. Other methods improve calibration
through ensembling (Lakshminarayanan et al., 2017) and
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(a) LC SFT. ECE: 0.301
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(b) LC RL. ECE: 0.266

Figure 6: Person Biography Generation Reliability Di-
agrams for LC SFT (Left) and LC RL (Right), simulated
reader. LC methods demonstrate non-trivial calibration in
an entirely out-of-distribution task which requires calibrated
statements of confidence throughout the paragraph.

Bayesian model averaging using an approximate model pos-
terior (Blundell et al., 2015; Band et al., 2021; Malinin et al.,
2021; Nado et al., 2022; Tran et al., 2022).

Recent works studied the probabilistic calibration of LMs,
showing that LMs can be well-calibrated (Kadavath et al.,
2022). LMs that went through RL from human feed-
back (RLHF) tend to be ill-calibrated on multiple-choice
questions (OpenAI et al., 2023), but temperature scaling
fixes the issue. Chain-of-thought prompting leads to ill-
calibration (Bai et al., 2022). The present focus is the lin-
guistic calibration of LMs that produce long-form text, a
setting to which established recalibration methods do not
apply. This is because long-form generations may contain
many claims, each with confidence expressed in language.

LMs producing uncertainty. The literature has studied
methods to let LMs produce confidence scores. Works have
evaluated LM uncertainty estimation on multiple choice (Ye
et al., 2024) and studied how sampling variance can estimate
uncertainty (Malinin & Gales, 2021; Kuhn et al., 2023;
Wang et al., 2022). Our sampling-based Summary ICL
and Direct Summary Eval baselines (Appendix B) avoid
logit access, extending the black-box confidence elicitation
framework in Xiong et al. (2024) to long-form text.

Other works analyze how LMs express linguistic uncer-
tainty (Mielke et al., 2022; Zhou et al., 2023). Considering
single-claim utterances, Mielke et al. (2022) define an LM to
be linguistically calibrated if it emits a verbalized confidence
statement matching the likelihood of its response’s correct-
ness. However, the long-form, multi-claim generations that
users encounter in practice have neither a single closed-form
confidence nor a correctness; each generation contains infor-
mation that answers many possible downstream questions.
Defn. 2.1 recovers the notion of linguistic calibration in
Mielke et al. when specialized to single-claim outputs z.2

2Let q := x, and suppose the LM generates a single-claim ut-
terance z ∼ π(z | q) with a confidence statement and answer from
Y , e.g., z = “I’m not sure, but my guess is Los Angeles.” Then
Mielke et al. (2022) considers linguistic confidence calibration.

A related line of work enables LMs to directly express un-
certainty, focusing on short utterances (Mielke et al., 2022;
Xiong et al., 2024), arithmetic problems (Lin et al., 2022),
and QA (Jiang et al., 2021; Tian et al., 2023; Shrivastava
et al., 2023). All these prior works consider settings where
the set of responses is a small closed set and the notion of
calibration is well-defined. Other works finetune LMs to
abstain (Cheng et al., 2024) or output templated uncertainty
phrases (Yang et al., 2023) on QA tasks. Lastly, concurrent
work (Huang et al., 2024) evaluates methods such as self-
consistency (Wang et al., 2022) and supervised finetuning
in calibrating long-form generations. To the best of our
knowledge, our method is the first to simultaneously pro-
vide calibrated text-based statements of confidence, which
are important for interpretability (Mielke et al., 2022), while
working in the setting of long-form, multi-claim generations.
We overcome the challenge of defining calibration in this
setting by drawing connections between decision-making
and uncertainty quantification, enabling us to build a single
end-to-end objective that calibrates long-form generations.

We discuss additional related work in calibration, decision-
making, and LM finetuning in Appendix A.

6 Discussion
Limitations and future work. Our linguistically cali-
brated LM generalizes well from surrogate to human fore-
casts. However, many of the confidence statements it emits
are fairly unambiguous, e.g., percentages. Therefore, future
work could investigate how closely LM and human interpre-
tations of ambiguous linguistic confidence statements match,
which could enable training LMs with linguistic confidence
statements that are tailored to user populations. Addition-
ally, we use off-the-shelf question-answering datasets as a
proxy for questions encountered during real-world decision-
making. To improve LC’s generalization to decision-making
in-the-wild, future work could curate a more representative
QA dataset. Lastly, we work in a white-box setting where
finetuning is possible; our training framework could not
calibrate API-based LLMs with access only to completions.
Conclusions. We defined linguistic calibration of long-
form generations: calibrating the long-form generations of
an LM in a way that leads to calibrated probabilistic fore-
casts by its downstream users. By constructing an objective
in the space of these forecasts, we were able to apply the
standard calibration machinery of proper scoring rules for
end-to-end linguistic calibration. Instantiating this objective
in a training framework and linguistically calibrating Llama
2 7B enables it to emit calibrated confidence statements, sig-
nificantly improving the calibration of downstream human
and simulated forecasts while matching or exceeding strong
RL-tuned baselines in accuracy.
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A Additional Related Work
Calibration and decision-making. The particular decision-making framework we adopted was originally used to convey
the confidence of individual predictions to decision-makers (Zhao & Ermon, 2021), and later used to draw an equivalence
between different notions of calibration and optimal decision-making (Zhao et al., 2021) (cf. §2.2 and Appendix C). In
seminal work, Foster & Vohra (1998; 1999) showed that the existence of certain no regret schemes in an online decision-
making setting imply the existence of calibrated probabilistic forecasts. More recently, Cresswell et al. (2024) explore
using conformal prediction sets in classification tasks to improve human decision-making, but do not consider calibrating
long-form LM generations.

Other LM finetuning works. Improving the factuality of LMs is a complementary approach to calibration in mitigating
LM hallucinations. Previous works have improved the factuality of LMs by finetuning on self-supervised or automated
factuality scores (Tian et al., 2024; Akyürek et al., 2024). A related line of work uses supervised finetuning and RL to
improve the honesty of LLMs (Askell et al., 2021; Ouyang et al., 2022; Park et al., 2023; Evans et al., 2021; Cui et al.,
2023), hypothesizing that the pretraining objective alone is insufficient to encourage honest responses. Because improving
factuality alone can improve calibration metrics such as ECE, we include a strong baseline finetuned with RL on ground-truth
factuality labels and find that our approach to linguistic calibration significantly improves ECE beyond this baseline while
matching or exceeding its accuracy.
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B Additional Results

B.1 Codebase

For prompts, checkpoints, and implementations of methods and datasets, please refer to our codebase:

https://github.com/tatsu-lab/linguistic calibration

B.2 Additional Baselines

In addition to the baselines described in §4.1, we below provide full results including several other baselines. All references
to GPT-4 in this paper use version gpt-4-1106-preview. Unless otherwise specified, all references to Claude or
Claude 2 use version claude-2.0. Due to compute constraints, all GPT-4 baselines are evaluated on a smaller number of
question-answering test samples: 1000 samples for TriviaQA, Jeopardy, and SciQ, and the entire 1515 sample test set for
BioASQ Task B (cf. Appendix E for further dataset and evaluation details).

We include the following additional non-confidence baselines:

• Llama 2 Chat. We zero-shot prompt Llama 2 Chat to generate long-form responses to evaluation queries.

• GPT-4 0-Shot. We zero-shot prompt GPT-4 to generate long-form responses to evaluation queries.

• GPT-4 ICL 8-Shot. Analogous to the Llama 2 7B ICL baseline. We randomly sample 8 queries, generate long-form
responses with GPT-4, manually fact-check those responses using Wikipedia, and use these fact-checked (query,
response) pairs as ICL examples for GPT-4.

We also include the following additional confidence baselines:

• GPT-4 Just Ask for Uncertainty (JAFU) 0-Shot. We zero-shot prompt GPT-4 to generate long-form responses to
evaluation queries, and include an instruction in the prompt directing GPT-4 to indicate any uncertainty in its claims
using probabilities.

• GPT-4 Summary ICL 8-Shot. Analogous to the Llama 2 7B Summary ICL baseline. We sample 8 queries from the
prompt development split {q(i)}8i=1 (i.e., questions x which have been converted to open-ended queries). For each
query q(i), we generate 8 long-form responses from GPT-4: {z(i)j }8j=1 ∼ πGPT-4(z | q(i)). We then summarize these

responses into a single consensus response: s(i) ∼ Summarize(s | z(i)1 , . . . , z
(i)
8 ). Finally, we use the queries and

summaries as ICL examples {(q(i), s(i))}8i=1.

• Direct Summary Eval. For a given evaluation query q, we use the Llama 2 7B ICL baseline to generate 8 long-
form responses {zi}8i=1, and use Claude 2 to summarize these responses into a single consensus response: s ∼
Summarize(s | z1, . . . , z8). Then, we directly evaluate these summaries s. This is an oracle baseline because it
requires sampling several long-form generations from the base LM at evaluation time, followed by summarization with
an API-based LLM.
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B.3 TriviaQA: Full Accuracy-ECE Frontier

Our Method
LC RL ( LC)

Confidence Baselines
LC SFT ( SFT)
Summary ICL 8-Shot

GPT-4 JAFU 0-Shot
GPT-4 Summary ICL 8-Shot

Direct Summary Eval

Non-Confidence Baselines
Factuality RL
Factuality SFT
Claude Distill

ICL 8-Shot
Llama 2 Chat 7B

GPT-4 0-Shot
GPT-4 ICL 8-Shot

0.10 0.15 0.20 0.25 0.30 0.35 0.40
ECE

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Figure 7: Accuracy-ECE Frontier for All Methods on TriviaQA, evaluated with simulated reader (upper left is better).
GPT-4 Summary ICL works well despite its simplicity. LC RL outperforms all methods in ECE, including GPT-4 Summary
ICL and Direct Summary Eval. Llama 2 Chat 7B performs significantly worse than all other methods and is not displayed
for clarity (cf. Table 1 for numerical results).
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B.4 TriviaQA: Additional Reliability Diagrams
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(a) GPT-4 JAFU 0-Shot. ECE: 0.212
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(b) GPT-4 Summary ICL 8-Shot. ECE: 0.119
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(c) Summary ICL 8-Shot. ECE: 0.257
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(d) Direct Summary Eval. ECE: 0.112

Figure 8: TriviaQA Reliability Diagrams for additional baselines and oracle methods, simulated reader. Notably, Summary
ICL works well for both Llama 2 7B (Summary ICL 8-Shot) and GPT-4. The oracle baseline of Direct Summary Eval has
strong ECE.
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B.5 Jeopardy: Full Accuracy-ECE Frontier
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Figure 9: Accuracy-ECE Frontier for All Methods on Jeopardy, evaluated with simulated reader (upper left is better).
Results are similar to TriviaQA. GPT-4 Summary ICL works well despite its simplicity. LC RL outperforms all methods in
ECE, including GPT-4 Summary ICL and Direct Summary Eval. Llama 2 Chat 7B performs significantly worse than all
other methods and is not displayed for clarity (cf. Table 1 for numerical results).
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B.6 Jeopardy: All Reliability Diagrams
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(a) LC SFT (πSFT). ECE: 0.162
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(b) LC RL (πRL). ECE: 0.088
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(c) GPT-4 JAFU 0-Shot. ECE: 0.207
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(d) GPT-4 Summary ICL 8-Shot. ECE: 0.130
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(e) Summary ICL 8-Shot. ECE: 0.254
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(f) Direct Summary Eval. ECE: 0.104

Figure 10: Jeopardy Reliability Diagrams for all methods, simulated reader. LC RL has better ECE than all other methods
while predicting a variety of confidence levels. Notably, Summary ICL works well for both Llama 2 7B (Summary ICL
8-Shot) and GPT-4. The oracle baseline of Direct Summary Eval has strong ECE.
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B.7 SciQ: Full Accuracy-ECE Frontier
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Figure 11: Accuracy-ECE Frontier for All Methods on SciQ, evaluated with simulated reader (upper left is better). GPT-4
Summary ICL works well despite its simplicity. LC RL outperforms all methods in ECE, including GPT-4 Summary ICL
and Direct Summary Eval. Llama 2 Chat 7B performs significantly worse than all other methods and is not displayed for
clarity (cf. Table 1 for numerical results).
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B.8 SciQ: All Reliability Diagrams
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(a) LC SFT (πSFT). ECE: 0.313

0.00 0.25 0.50 0.75 1.00
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(b) LC RL (πRL). ECE: 0.213
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(c) GPT-4 JAFU 0-Shot. ECE: 0.304
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(d) GPT-4 Summary ICL 8-Shot. ECE: 0.225
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(e) Summary ICL 8-Shot. ECE: 0.324
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(f) Direct Summary Eval. ECE: 0.295

Figure 12: SciQ Reliability Diagrams for all methods, simulated reader. LC RL has better ECE than all other methods
while predicting a variety of confidence levels.
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B.9 BioASQ Task B: Full Accuracy-ECE Frontier
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Figure 13: Accuracy-ECE Frontier for All Methods on BioASQ Task B, evaluated with simulated reader (upper left is
better). Under a significant distribution shift, LC RL ECE is competitive with GPT-4–based methods and outperforms all
Llama-based baselines. BioASQ is a small expert-annotated dataset, so we report Student’s t 0.95 CIs over 10 evaluation
seeds for non-GPT-4 methods. Llama 2 Chat 7B performs significantly worse than all other methods and is not displayed for
clarity (cf. Table 1 for all numerical results).
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B.10 BioASQ Task B: All Reliability Diagrams
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(a) LC SFT (πSFT). ECE: 0.390
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(b) LC RL (πRL). ECE: 0.342
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(c) GPT-4 JAFU 0-Shot. ECE: 0.356
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(d) GPT-4 Summary ICL 8-Shot. ECE: 0.281
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(e) Summary ICL 8-Shot. ECE: 0.477
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(f) Direct Summary Eval. ECE: 0.375

Figure 14: BioASQ Task B Reliability Diagrams for all methods, simulated reader. Under significant distribution shift,
LC RL has ECE competitive with GPT-4 methods while predicting a variety of confidence levels. BioASQ is a small
expert-annotated dataset, so for non-GPT-4 methods, we pool examples across 10 evaluation seeds when plotting the
reliability diagram (per-seed plots in gray).
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B.11 Person Biography Generation Frontier
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Figure 15: Accuracy-ECE Frontier for All Methods on Person Biography Generation, evaluated with simulated reader
(upper left is better). GPT-4 is a strong baseline, and GPT-4 Just Ask for Uncertainty (JAFU) does improve both accuracy
and ECE. Notably, LC RL has better ECE than GPT-4 0-Shot, despite being trained from a Llama 2 7B base model.
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B.12 Tabular Results

Table 1: Simulated Question-Answering Results. Accuracy and expected calibration error (ECE) of Llama 2 7B and
GPT-4–based methods on the in-distribution (ID) TriviaQA and out-of-distribution (OOD) Jeopardy, SciQ, and BioASQ
Task B question-answering datasets, with simulated reader evaluation. “API-Based LLM Methods” are those that use either
GPT-4 or Claude 2 at test time. CIs are reported as (lower, upper). For all datasets other than BioASQ, these are 95%
bootstrap CIs; for the smaller BioASQ dataset, these are Student’s t 0.95 CIs over 10 evaluation seeds. Due to compute
constraints, for GPT-4–based methods on BioASQ, we report accuracy and ECE for a single evaluation seed (cf. Appendix E
for all evaluation details).

TriviaQA (ID) Jeopardy (OOD) SciQ (OOD) BioASQ Task B (OOD)

Method Accuracy (%) ↑ ECE ↓ Accuracy (%) ↑ ECE ↓ Accuracy (%) ↑ ECE ↓ Accuracy (%) ↑ ECE ↓
Llama 2 7B–Based Methods

Llama 2 Chat 7B 52.32 (51.42, 53.27) 0.477 (0.467, 0.486) 50.86 (49.91, 51.82) 0.491 (0.482, 0.501) 51.52 (50.68, 52.34) 0.485 (0.477, 0.493) 35.31 (34.79, 35.82) 0.647 (0.642, 0.652)

Claude Distill 60.89 (59.98, 61.78) 0.391 (0.382, 0.400) 60.54 (59.64, 61.44) 0.395 (0.386, 0.404) 57.00 (56.17, 57.83) 0.430 (0.422, 0.438) 39.78 (39.30, 40.27) 0.602 (0.597, 0.607)

ICL 8-Shot 61.91 (61.02, 62.81) 0.381 (0.372, 0.390) 61.63 (60.69, 62.57) 0.384 (0.374, 0.393) 55.10 (54.27, 55.92) 0.449 (0.441, 0.457) 37.72 (37.09, 38.35) 0.623 (0.617, 0.629)

Factuality SFT 61.17 (60.26, 62.07) 0.388 (0.379, 0.397) 62.13 (61.21, 63.05) 0.379 (0.370, 0.388) 55.08 (54.26, 55.92) 0.449 (0.441, 0.457) 37.54 (37.22, 37.87) 0.625 (0.621, 0.628)

Factuality RL 63.33 (62.44, 64.21) 0.367 (0.358, 0.376) 64.05 (63.14, 64.97) 0.359 (0.350, 0.369) 56.11 (55.27, 56.94) 0.439 (0.431, 0.447) 38.04 (37.66, 38.42) 0.620 (0.616, 0.623)

Summary ICL 8-Shot 61.36 (60.47, 62.25) 0.257 (0.248, 0.267) 60.90 (59.98, 61.83) 0.254 (0.245, 0.263) 54.76 (53.91, 55.61) 0.324 (0.316, 0.333) 38.15 (37.77, 38.53) 0.476 (0.471, 0.480)

LC SFT (πSFT) 60.98 (60.10, 61.88) 0.166 (0.158, 0.176) 62.46 (61.53, 63.36) 0.162 (0.154, 0.172) 54.87 (54.04, 55.69) 0.313 (0.306, 0.323) 38.53 (38.19, 38.87) 0.389 (0.384, 0.394)

LC RL (πLC) 64.74 (63.86, 65.63) 0.108 (0.101, 0.117) 65.73 (64.83, 66.61) 0.088 (0.082, 0.098) 56.85 (56.02, 57.67) 0.213 (0.205, 0.222) 38.89 (38.39, 39.39) 0.342 (0.335, 0.350)

API-Based LLM Methods

GPT-4 0-Shot 78.00 (75.30, 80.50) 0.220 (0.195, 0.247) 77.60 (75.00, 80.10) 0.224 (0.199, 0.250) 66.20 (63.20, 69.10) 0.338 (0.309, 0.368) 62.11 0.379
GPT-4 ICL 8-Shot 80.80 (78.40, 83.20) 0.192 (0.168, 0.216) 82.30 (80.00, 84.70) 0.177 (0.153, 0.200) 71.60 (68.80, 74.50) 0.284 (0.255, 0.312) 63.43 0.366
GPT-4 JAFU 0-Shot 77.70 (75.10, 80.20) 0.212 (0.187, 0.238) 78.00 (75.40, 80.50) 0.207 (0.182, 0.234) 68.50 (65.50, 71.40) 0.304 (0.274, 0.334) 62.31 0.356
GPT-4 Summary ICL 8-Shot 80.40 (77.90, 82.80) 0.119 (0.104, 0.148) 80.30 (77.80, 82.70) 0.130 (0.111, 0.156) 70.50 (67.70, 73.30) 0.225 (0.197, 0.253) 61.39 0.281
Direct Summary Eval 63.67 (62.78, 64.55) 0.112 (0.105, 0.120) 64.50 (63.59, 65.43) 0.104 (0.098, 0.114) 57.89 (57.04, 58.73) 0.295 (0.286, 0.303) 40.42 (39.91, 40.93) 0.374 (0.367, 0.380)
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Table 2: Human Question-Answering Results on TriviaQA. Accuracy and expected calibration error (ECE) of core Llama
2 7B–based methods on the TriviaQA question-answering dataset, with human readers (cf. Appendix E for evaluation
framework details). 95% bootstrap CIs are reported as (lower, upper).

Method Accuracy (%) ↑ ECE ↓
Factuality RL 59.62 (56.65, 62.60) 0.404 (0.374, 0.434)

LC SFT (πSFT) 57.44 (54.37, 60.52) 0.163 (0.135, 0.192)

LC RL (πLC) 60.12 (57.14, 63.19) 0.116 (0.091, 0.145)

Table 3: Person Biography Generation Results. Accuracy and expected calibration error (ECE) of Llama 2 7B and
GPT-4–based methods on the Person Biography Generation dataset, using a FactScore-based automated metric (Min et al.,
2023). Metrics are computed over atomic claims pooled across all biography generations. 95% bootstrap CIs are reported as
(lower, upper).

Method Accuracy (%) ↑ ECE ↓
Llama 2 7B–Based Methods

Llama 2 Chat 7B 36.27 (35.18, 37.36) 0.637 (0.626, 0.648)

Claude Distill 39.24 (38.13, 40.34) 0.608 (0.597, 0.619)

Factuality SFT 38.07 (37.01, 39.13) 0.619 (0.609, 0.630)

Factuality RL 39.86 (38.72, 40.98) 0.601 (0.590, 0.613)

LC SFT (πSFT) 44.49 (43.42, 45.57) 0.301 (0.292, 0.314)

LC RL (πLC) 46.77 (45.50, 48.08) 0.266 (0.253, 0.280)

GPT-4–Based Methods

GPT-4 0-Shot 71.84 (70.88, 72.81) 0.282 (0.272, 0.291)

GPT-4 JAFU 0-Shot 75.95 (74.93, 76.93) 0.210 (0.200, 0.220)
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B.13 Qualitative Examples

We randomly sample two examples from each evaluation dataset and compare Factuality RL with LC RL. We manually
fact-check each generation using Wikipedia and other Google-accessible sources and highlight incorrect statements in red.
Numerical and linguistic confidence statements are highlighted in blue.

Dataset: TriviaQA
Query q: Write a paragraph about the classic book in which a boy hides in a ship’s barrel of apples.
Ground-Truth Answer y: Treasure Island

Factuality RL: The classic book in which a boy hides in a ship’s barrel of apples is ”Treasure Island,” written by Robert Louis
Stevenson. The story follows the adventures of Jim Hawkins, a young boy who lives in a inn on an island off the coast of England.
One day, a mysterious sailor named Long John Silver arrives at the inn, and Jim becomes involved in a treasure hunt for a buried
treasure on the island. Jim hides in a barrel of apples on the ship that is carrying the treasure, and he is able to escape with the
treasure when the ship is attacked by pirates. ”Treasure Island” is a classic tale of adventure and intrigue, and it has been adapted
into numerous films and stage productions.

LC RL: Based on my understanding, the classic book in which a boy hides in a ship’s barrel of apples is most likely ”Treasure
Island” by Robert Louis Stevenson. I estimate there is a 75% chance it is ”Treasure Island”, a 15% chance it is ”The Wonderful
Wizard of Oz” by L. Frank Baum, a 5% chance it is ”The Adventures of Tom Sawyer” by Mark Twain, and a 5% chance it
is another book. I believe the story involves a young boy named Jim Hawkins who hides in a barrel of apples to avoid being
discovered by pirates. Though I do not know all the details, I am confident the boy’s adventures involve searching for buried
treasure. Regardless of the specific book, I am certain this classic tale has become beloved by generations of readers.

Dataset: TriviaQA
Query q: Write a paragraph about the type of creature that a tanager is.
Ground-Truth Answer y: Bird

Factuality RL: A tanager is a type of bird that belongs to the Thraupidae family. Tanagers are known for their brightly colored
plumage, with many species featuring vibrant red, yellow, and blue feathers. They are found in a wide range of habitats, including
forests, savannas, and grasslands, and are known for their acrobatic flight patterns. Tanagers are social birds that often form
flocks, and they are known for their loud and distinctive calls.

LC RL: I believe a tanager is a type of bird that belongs to the Thraupidae family. I am confident they are found in the Americas,
though I am uncertain of their exact range. I estimate with 75% likelihood that tanagers are brightly colored birds with distinctive
plumage. I am 50% sure they are known for their songbird abilities. I am uncertain whether they are found in forests, grasslands,
or other habitats. I believe with 75% likelihood that tanagers feed on insects and fruit. While the details of their appearance and
behavior are unclear to me, I am certain that tanagers are colorful, songbirds native to the Americas.
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Dataset: SciQ
Query q: Write a paragraph about the term used to describe elements that specifically are noted to have properties of both metals and
nonmetals.
Ground-Truth Answer y: Metalloids

Factuality RL: The term used to describe elements that specifically are noted to have properties of both metals and nonmetals is
”metalloids.” Metalloids are elements that have some of the properties of metals, such as conductivity and malleability, and some
of the properties of nonmetals, such as a tendency to form covalent bonds. Examples of metalloids include silicon, germanium,
and arsenic.

LC RL: Based on my understanding, the term used to describe elements that specifically are noted to have properties of both
metals and nonmetals is either ”metalloids”, ”semimetals”, or ”semiconductors”. I estimate there is a 70% likelihood that the
term is ”metalloids”, a 20% chance it is ”semimetals”, and a 10% chance it is ”semiconductors”. I believe these elements have
properties that are somewhere between metals and nonmetals, though I do not know all the details. I am confident that they are
used in various applications like electronics, batteries, and semiconductors. However, I am uncertain about the specific elements
that fall into this category. Overall, despite my lack of complete knowledge, I am sure that there is a term used to describe
elements with properties of both metals and nonmetals.

Dataset: SciQ
Query q: Write a paragraph about the periods when most plants do not grow continuously.
Ground-Truth Answer y: Dormant

Factuality RL: The periods when most plants do not grow continuously are known as dormancy periods. During these periods,
plants enter a state of inactivity, where they stop growing and may even shed leaves or go into a state of hibernation. Dormancy
periods can be caused by various factors, such as cold temperatures, lack of sunlight, or insufficient water. Plants may also enter
dormancy periods to conserve energy and resources during times of stress or drought. Dormancy periods are an important part of
the plant’s life cycle, allowing them to adapt to changing environmental conditions and survive through challenging times.

LC RL: Based on my understanding, the periods when most plants do not grow continuously are known as dormant periods. I
am confident that dormancy occurs in response to environmental factors like cold temperatures, lack of sunlight, or limited water
availability. However, I am uncertain about the exact duration of dormancy for different plant species. I estimate there is a 50%
chance that dormancy lasts for several months, and a 50% chance it lasts for several years. I believe dormancy allows plants to
conserve energy and resources, though I do not know all the details. While dormancy may seem like a state of inactivity, I am
certain it is an important adaptive strategy for plants to survive harsh conditions. Overall, despite my lack of complete knowledge,
I am confident that dormancy is a natural part of plant growth cycles.
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Dataset: BioASQ Task B
Query q: Write a paragraph about the gene that is most commonly mutated in Tay-Sachs disease.
Ground-Truth Answer y: HEXA

Factuality RL: The gene that is most commonly mutated in Tay-Sachs disease is the HEXA gene, which encodes the alpha
subunit of the hexosaminidase A enzyme. This enzyme is responsible for breaking down the sugar hexosamine, which is found in
the membranes of cells. When the HEXA gene is mutated, the alpha subunit of the hexosaminidase A enzyme is not produced,
leading to a buildup of hexosamine in the cells. This buildup can cause neurological damage and eventually lead to death.
Tay-Sachs disease is a rare genetic disorder that primarily affects Ashkenazi Jews and is caused by a mutation in the HEXA gene.

LC RL: Based on my understanding, the gene that is most commonly mutated in Tay-Sachs disease is either the HEXA gene or
the GAA gene. I estimate there is a 70% likelihood that the HEXA gene is mutated, and a 30% chance that the GAA gene is
mutated. I believe the HEXA gene encodes an enzyme called beta-hexosaminidase A, while the GAA gene encodes an enzyme
called beta-glucuronidase. I am confident that mutations in these genes lead to a deficiency of these enzymes, which causes
accumulation of toxic substances in the nervous system and other tissues. This results in neurological symptoms like abnormal
eye movements, seizures, and mental decline. While I do not know all the details, I believe Tay-Sachs disease is a rare genetic
disorder that primarily affects Ashkenazi Jews.

Dataset: BioASQ Task B
Query q: Write a paragraph about the type of GTPases that are required for amino acid-dependent activation of mTORC1.
Ground-Truth Answer y: Heterodimeric Rag GTPases

Factuality RL: The type of GTPases that are required for amino acid-dependent activation of mTORC1 are rapamycin-sensitive
GTPases. These GTPases are involved in the regulation of cell growth and proliferation, and are activated by amino acids, such
as leucine, isoleucine, and valine. The activation of these GTPases leads to the phosphorylation of the mTORC1 complex, which
in turn activates downstream signaling pathways that regulate cell growth and proliferation. The activation of mTORC1 by amino
acids is a crucial step in the regulation of cell growth and proliferation, and is a key target for the development of therapeutics for
various diseases, including cancer and diabetes.

LC RL: Based on my understanding, the type of GTPases required for amino acid-dependent activation of mTORC1 are either
mTORC1 itself, Rheb, or Rag GTPases. I estimate there is a 70% likelihood that mTORC1 itself is the GTPase required, a 20%
chance that Rheb is the GTPase required, and a 10% chance that Rag GTPases are the GTPases required. I believe the activation
of mTORC1 by amino acids involves the binding of amino acids to Rag GTPases, which then activates mTORC1. However, I am
uncertain about the exact details of how this process works. Regardless of the specific GTPase involved, I am confident that
amino acid activation of mTORC1 plays a crucial role in regulating cell growth, metabolism, and protein synthesis.
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Dataset: Jeopardy
Query q: Write a paragraph about what Hiram Percy Maxim invented for guns, in addition to inventing the muffler for cars.
Ground-Truth Answer y: A silencer

Factuality RL: Hiram Percy Maxim, an American inventor and entrepreneur, is best known for his contributions to the firearms
industry. In addition to inventing the muffler for cars, Maxim also invented the Maxim machine gun, a rapid-fire weapon that
revolutionized warfare in the early 20th century. The Maxim machine gun was the first fully automatic weapon to be widely used
in combat, and it played a significant role in the Allied victory in World War I. Maxim’s invention of the Maxim machine gun
earned him the nickname ”the father of the machine gun.”

LC RL: I believe that Hiram Percy Maxim, an American inventor, invented at least one significant invention related to guns in
addition to inventing the muffler for cars. Based on my understanding, I estimate there is a 50% chance he invented the Maxim
gun, a 25% chance he invented the silencer, and a 25% chance he invented the machine gun. I am confident that regardless of the
specific invention, Maxim’s work revolutionized the firearms industry and had a significant impact on warfare. Though I do not
know all the details, I believe his inventions were known for their efficiency, accuracy, and durability. While the specifics are
unclear to me, I am certain that Hiram Percy Maxim was an influential American inventor who made important contributions to
the development of firearms technology.

Dataset: Jeopardy
Query q: Write a paragraph about the planet that a probe from the Galileo spacecraft plunged into the atmosphere of on December 7,
1995.
Ground-Truth Answer y: Jupiter

Factuality RL: The planet that a probe from the Galileo spacecraft plunged into the atmosphere of on December 7, 1995, was
Jupiter. The Galileo probe was launched by NASA in 1989 and arrived at Jupiter in 1995, where it conducted numerous scientific
studies of the planet and its moons. On December 7, 1995, the probe was intentionally crashed into Jupiter’s atmosphere, where
it collected data on the planet’s atmosphere and magnetic field. The Galileo probe’s mission was a significant achievement in the
study of Jupiter and the solar system, and its impact on the field of planetary science is still felt today.

LC RL: I am certain that on December 7, 1995, a probe from the Galileo spacecraft plunged into the atmosphere of Jupiter. I
believe this was a major milestone in space exploration, as it was the first time a spacecraft had been intentionally sent to study
Jupiter up close. I estimate with 90% confidence that the probe was named Galileo after the Italian astronomer Galileo Galilei. I
am fairly confident that the probe carried instruments to study Jupiter’s atmosphere, magnetic field, and moons. Though I do
not know all the details, I believe the data collected by the probe helped advance our understanding of Jupiter and its moons.
While the specifics are unclear to me, I am certain that the Galileo probe’s plunge into Jupiter’s atmosphere marked an important
achievement in space exploration.
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Dataset: Person Biography Generation
Query q: Write a paragraph bio about Rory Byrne.

Factuality RL: Rory Byrne is a renowned British engineer and designer who has made significant contributions to the world of
Formula One racing. Born in 1949, Byrne began his career in the automotive industry in the 1970s, working for various racing
teams and manufacturers. In 1981, he joined the Williams Formula One team as a designer, and over the next few years, he
helped the team win several championships. In 1994, Byrne left Williams to join Ferrari, where he served as the team’s technical
director for several years. During his time at Ferrari, Byrne helped the team win several championships, including the 1999
constructor’s championship. In 2005, Byrne left Ferrari to pursue other opportunities, and he has since worked as a consultant for
various racing teams and manufacturers.

LC RL: I believe Rory Byrne is a renowned British engineer who has made significant contributions to the automotive industry. I
estimate with 75% confidence that he has worked as a chief designer for Formula 1 teams like Ferrari and McLaren. I also think
with 50% likelihood that he has designed cars for teams like Williams, Benetton, and Lotus. I am uncertain whether he was
born in Ireland or Scotland. I believe with 90% confidence that he has won multiple design awards, including the prestigious
Loeb Award. While the details of his career are unclear to me, I am certain that Rory Byrne has had a profound impact on the
development of Formula 1 cars over the past few decades. His innovative designs have helped teams achieve success on the track.

Dataset: Person Biography Generation
Query q: Write a paragraph bio about Griselda Blanco.

Factuality RL: Griselda Blanco, also known as ”The Black Widow,” was a Colombian drug lord and crime boss who operated
in the 1970s and 80s. She was known for her ruthlessness and her involvement in the cocaine trade, which made her one of the
most powerful drug lords in the world. Blanco was responsible for the murder of numerous rivals and enemies, and her criminal
activities led to her being listed as one of the FBI’s Ten Most Wanted Fugitives in 1985. Despite her criminal activities, Blanco
was also known for her philanthropy, and she was involved in various charitable organizations in Colombia.

LC RL: I believe Griselda Blanco was a Colombian drug lord who operated in the 1970s and 1980s. I estimate with 75%
confidence that she was known as the ”Black Widow” due to her ruthlessness and alleged involvement in numerous murders. I
am fairly certain she was involved in cocaine trafficking and organized crime, though I am uncertain about the specifics of her
operations. I believe with 50% likelihood that she was born in 1943 in Colombia. I am confident she was arrested multiple times
and imprisoned, though I do not know the details. While the specifics are unclear to me, I am certain that Griselda Blanco was a
notorious drug lord who left a lasting legacy of violence and crime in Colombia and the United States.
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Dataset: Person Biography Generation
Query q: Write a paragraph bio about Uee.

Factuality RL: Uee, also known as Lee Hye-young, is a South Korean singer and actress. She is best known for her work in
the K-pop girl group After School, where she served as the main vocalist and lead dancer. Uee has also appeared in several
television dramas, including ”The Greatest Love,” ”The Greatest Love,” and ”The Greatest Love.” In addition to her musical and
acting career, Uee is also known for her philanthropic work, including her participation in the ”2014 Samsung Hope for Children”
charity event.

LC RL: I am confident that Uee is a South Korean actress and singer. I estimate with 75% likelihood that she was born in 1988 in
Seoul, South Korea. I believe with 50% probability that she made her acting debut in 2007 in the television drama ”Love Needs a
Miracle.” I am uncertain whether she has appeared in films like ”The Concubine” or ”The King’s Case Note.” I am confident that
she has been a member of the girl groups After School and Orange Caramel. I believe with 75% likelihood that she has won
awards for her acting and singing, though I do not know the specifics. Overall, despite my lack of knowledge on some details, I
am certain that Uee is a talented South Korean actress and singer who has had a successful career in the entertainment industry.
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Table 4: Each notion of linguistic ϕ-calibration corresponds to a traditional notion of classifier calibration ϕ applied to the
reader f : X × Z → ∆|Y|.

Notion of Classifier Calibration ϕ Condition for Linguistic ϕ-Calibration

Distribution Calibration (Kull & Flach, 2015) E [1y | f(x, z) = p] = p, ∀p ∈ ∆|Y|.

Classwise Calibration (Kull et al., 2019) Pr
(
Y = y

∣∣∣ f(x, z)y = β
)
= β, ∀y ∈ Y, β ∈ [0, 1].

Confidence Calibration (Guo et al., 2017) Pr
(
Y = argmaxy f(x, z)y

∣∣∣ maxy f(x, z)y = β
)
= β, ∀β ∈ [0, 1].

C Benefits of Linguistic Calibration for Decision-making
In §2, we describe the connection between calibration and decision-making (Zhao & Ermon, 2021; Zhao et al., 2021) and
how it motivates our objective for linguistic calibration: namely, that maximizing our objective implies zero expected regret
for a downstream Bayes-optimal decision-maker. Here, we expand on this guarantee and provide additional ones using
the results of Zhao et al. (2021), which apply even if we cannot perfectly maximize the linguistic calibration objective. In
particular, we will see that forecasts fulfilling weaker notions of calibration still guarantee that decisions are optimal in a
weaker sense.

Following the generative process described in §2.1, we assume that the linguistic calibration objective is optimized over
the real-world distribution of LM queries and related question-answer pairs p(q, x, y). In practice, we found that using
off-the-shelf question-answering datasets to generate a surrogate distribution (cf. §3.1) robustly improves an LM’s ability
to express confidence levels in text, including under distribution shift. Therefore, the generalization properties of LC
may justify this assumption. Moreover, we believe an exciting avenue for future work is to curate a more representative
question-answer distribution (cf. §6). Lastly, recall that our generative process makes the following technical conditional
independence assumption:

Assumption C.1. Under the ground-truth distribution, the answer Y is independent of the open-ended LM query and LM
response (Q,Z), given the question X: Y ⊥ (Q,Z) | X .

C.1 Review of Linguistic Calibration

Recall that each notion of linguistic ϕ-calibration (Defn. 2.1) is equivalent to a traditional notion of classifier calibration ϕ
applied to the reader f . We provide examples of this correspondence in Table 4.

C.2 Review of the LC Objective

Our decision-based RL algorithm optimizes a strictly proper scoring rule RLC of user forecasts f(x, z) ∈ ∆|Y| with respect
to an LM πRL producing long-form generations z ∼ πRL(z | q) (restatement of Eq. 1 for convenience):

max
πRL

E
(q,x,y)∼p(q,x,y), z∼πRL(z|q)

[RLC (f(x, z), y)] . (C.1)

Because RLC is strictly proper (cf. §2.3) and assuming a sufficiently flexible LM πRL and reader function f : X ×Z → ∆|Y|,
our training procedure maximizes Eq. C.1 if and only if the user’s forecast exactly equals the ground-truth conditional
distribution: f(x, z) = p(y | x). Then, intuitively, making Bayes-optimal decisions according to the user forecast should be
optimal in some sense. Zhao et al. (2021) make this notion of optimal decision-making concrete as decision calibration. To
be self-contained, we will provide the definition of decision calibration from Zhao et al. (2021) below, and then use it to
precisely describe the guarantees that linguistic calibration provides for decision-making.

C.3 Decision Calibration

Setup and notation. To define decision calibration, we first introduce some notation closely following Zhao et al. (2021),
§2. In the process of decision-making based on probabilistic forecasts (ignoring LMs and their generations z for now), users
receive a question x′ ∈ X ′, forecast a possible answer to the question with a probabilistic forecaster f : X ′ → ∆|Y|, and
finally choose from a set of available actionsA based on their loss function L : A×Y → R and their forecast f(x′) ∈ ∆|Y|.
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The process of choosing an action can be described by a decision rule which maps forecasts to actions δ : ∆|Y| → A,
where ∆all is the set of all decision rules. Additionally, define the set of all loss functions as Lall = {L : A× Y → R}.

We are interested in Bayes decision rules, i.e., the set of rules that are optimal for some loss function. More specifically,
consider some particular loss function L ∈ Lall. Then its corresponding Bayes decision rule is

δL(f(x
′)) = argmin

a∈A
Eŷ∼f(x′)[L(a, ŷ)]. (C.2)

For some subset L ⊂ Lall, we denote the corresponding Bayes decision rules as ∆L := {δL | L ∈ L}.

Decision calibration. Zhao et al. (2021) defines decision calibration to formalize the following intuition: ideally, a
decision-maker with loss function L should be able to consider an arbitrary decision rule δ ∈ ∆all and compute the expected
loss of using δ in decision-making, given a probabilistic forecaster f .

Definition C.2 (Decision Calibration, Definition 2 in Zhao et al. (2021)). For any set of loss functions L ⊂ Lall, we say that
a forecaster f is L-decision calibrated (with respect to the ground-truth conditional distribution p(y | ·)) if for each L ∈ L
and δ ∈ ∆L,

Ex′∼p(x′)Eŷ∼f(x′)

[
L
(
δ(f(x′)), ŷ

)]
= Ex′∼p(x′)Ey∼p(y|x′)

[
L
(
δ(f(x′)), y

)]
. (C.3)

Following the analysis of Zhao et al. (2021) (§3.1), the left-hand side of Eq. C.3 simulates the loss of taking decisions
according to the loss L and rule δ using data drawn from the forecast ŷ ∼ f(x′). This simulated loss can be computed by a
user without observing any ground-truth outcome y ∼ p(y | x′). The right-hand side is the true loss for using decision rule
δ with loss L. Therefore, decision calibration means that a forecaster f can be used to accurately estimate the expected loss
of a decision rule under the true data distribution.

Decision calibration with LM assistance. With a few particular choices, we can apply this general definition to the
setting of LM-assisted decision-making. In our context, the relevant variables are the open-ended query to the LM q, the
LM response z, and the related question-answer pair (x, y). These variables are distributed by the joint p(q, x, y, z) :=
p(q, x, y)πRL(z | q). Write the marginal over questions and related LM responses as p(x, z) =

∑
q′,y′ p(q′, x, y′, z). In the

notation of Definition C.2, we define the input x′ := (x, z).

To be concrete, we reiterate decision calibration in our context, where users also condition their forecasts on LM outputs.

Definition C.3 (Decision Calibration with LM Assistance). For any set of loss functions L ⊂ Lall, we say that a reader
function f : X ×Z → ∆|Y| is L-decision calibrated (with respect to the ground-truth conditional distribution p(y | ·)) if
for each L ∈ L and δ ∈ ∆L,

E(x,z)∼p(x,z)Eŷ∼f(x,z)

[
L
(
δ(f(x, z)), ŷ

)]
= E(x,z)∼p(x,z)Ey∼p(y|x)

[
L
(
δ(f(x, z)), y

)]
.

Zhao et al. (2021) proves that if a forecaster f is decision calibrated, it provides the downstream decision-maker with two
key guarantees. First, a decision-maker with loss L is assured that the Bayes decision rule δL outperforms alternative
decision rules. Second, the decision-maker is able to accurately estimate the loss that they will incur by using the Bayes
decision rule δL, despite not having access to ground-truth outcomes y ∼ p(y | x′). In particular, we will show that decision
calibration provides the following guarantees in our setting.

Lemma 1 (instantiation of Proposition 1 in Zhao et al. (2021)). If a reader f : X × Z → ∆|Y| is L-decision calibrated,
then it satisfies:

1. No regret: for each δ′ ∈ ∆L,

E(x,z)∼p(x,z)Ey∼p(y|x)

[
L
(
δL(f(x, z)), y

)]
≤ E(x,z)∼p(x,z)Ey∼p(y|x)

[
L
(
δ′(f(x, z)), y

)]
.

2. Accurate loss estimation:

E(x,z)∼p(x,z)Eŷ∼f(x,z)

[
L
(
δL(f(x, z)), ŷ

)]
= E(x,z)∼p(x,z)Ey∼p(y|x)

[
L
(
δL(f(x, z)), y

)]
.
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To summarize, no regret means that the Bayes decision rule δL performs no worse than any other decision rule δ′ ∈ ∆L.
Accurate loss estimation means that the decision-maker can determine before observing any ground-truth outcomes what
their expected loss will be, allowing them to prepare for the future.

C.4 Linguistic Calibration and Optimal Decision-making

Now we can show that linguistic calibration implies the decision-making guarantees of Lemma 1. We do so using a key
result from Zhao et al. (2021) (Theorem 1): standard notions of classifier calibration are equivalent to L-decision calibration
for particular choices of the loss family L. We highlight two examples of this equivalence here and direct the interested
reader to Zhao et al. (2021) for others.

Example 1: linguistic distribution calibration implies Lall-decision calibration. Recall distribution calibration (cf. §2.1
for definition), the strongest standard notion of classifier calibration (Bröcker, 2009). Zhao et al. (2021) (Theorem 1) proves
that distribution calibration is equivalent to Lall-decision calibration. Suppose that we optimize the linguistic calibration
objective RLC in Eq. C.1 and obtain linguistic distribution calibration (for example, by maximizing RLC). By definition,
linguistic distribution calibration means that the reader f is distribution calibrated over p(x, y, z). Then, applying Zhao et al.
(2021) (Theorem 1), the reader is Lall-decision calibrated, and therefore a Bayes-optimal decision-maker is guaranteed to
perform no worse than any decision rule δ′ ∈ ∆all.

Unsurprisingly, this is very difficult to achieve in practice. However, even if linguistic calibration only manages to calibrate
the reader in a weaker sense, we still have L-decision calibration with respect to a smaller family of losses L.

Example 2: linguistic confidence calibration implies Lr-decision calibration. To illustrate this decision-making
guarantee for weaker notions of calibration, recall confidence calibration (cf. §2.1, Table 4). Confidence calibration is a
relaxation of the distribution calibration condition, only requiring it to hold for the most likely label. Zhao et al. (2021)
(Theorem 1) demonstrates that confidence calibration is equivalent to Lr-decision calibration, where

Lr :=
{
L(a, y) = 1[y ̸= a ∩ a ̸=⊥] + β · 1[a =⊥]

∣∣ a ∈ Y ∪ {⊥},∀β ∈ [0, 1]
}
. (C.4)

Lr is the class of loss functions for the refrained prediction task, where the decision-maker can either take an action
corresponding to an answer y ∈ Y or report “I don’t know” with the action ⊥. Then, the decision-maker incurs a loss of
0 for correctly predicting the ground-truth answer y, a loss of 1 for predicting an incorrect answer, or a loss of β < 1 for
reporting ⊥. Similarly, Zhao et al. (2021) (Theorem 1) proves that classwise calibration (cf. §2.1) corresponds to another
notion of L-decision calibration.

Linguistic calibration implies no regret and accurate loss estimation guarantees. We conclude this section by applying
the correspondence between classifier calibration and L-decision calibration to prove decision-making guarantees for
linguistic calibration. For each notion of classifier calibration ϕ ∈ {distribution, classwise, confidence}, identify the
corresponding class of decision calibration loss functions as Lϕ (e.g., distribution induces Lall, and confidence induces Lr).
Then we have the following result:

Theorem C.4 (Linguistic ϕ-calibration implies no regret and accurate loss estimation guarantees). Suppose that

• An LM πRL is linguistically ϕ-calibrated with respect to a user with reader function f : X × Z → ∆|Y|, where
ϕ ∈ {distribution, classwise, confidence} (cf. Definition 2.1).

• The user’s loss function L : A× Y → R is in the set of losses Lϕ induced by ϕ.

• The conditional independence assumption C.1 holds.

Then f is Lϕ-decision calibrated, and moreover, Lemma 1 (no regret and accurate loss estimation guarantees) holds for the
user’s decision-making.

Proof. Linguistic ϕ-calibration is equivalent to ϕ-calibration of the reader f (cf. Definition 2.1). Recall that p(x, z) =∑
q′,y′ p(q′, x, y′, z) is the marginal over questions and related LM responses, and let x′ := (x, z) and p(x′) := p(x, z).
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Applying Theorem 1 from Zhao et al. (2021) (equivalence of ϕ-calibration and Lϕ-decision calibration), we observe that the
reader f is Lϕ-decision calibrated according to Definition C.2, Eq. C.3, and therefore the assumption of Lemma 1 holds.

We conclude by proving Lemma 1. Because the reader f is Lϕ-decision calibrated, we may apply Proposition 1 from Zhao
et al. (2021), which provides the no regret and accurate loss estimation guarantees of decision calibration. Lastly, we invoke
the conditional independence statement p(Y | X,Z) = p(Y | X) (Assumption C.1) to simplify these guarantees, obtaining
the guarantees in Lemma 1.

As an example of this result, consider ϕ = confidence calibration. Suppose that our optimization of RLC leads to linguistic
confidence calibration, i.e., a confidence calibrated reader f . Because of the equivalence of confidence calibration and
Lr-decision calibration, f is Lr-decision calibrated and we obtain the corresponding guarantees for decision-making. For
example, the no regret guarantee states that the Bayes decision rule δL outperforms decision rules δ′ ∈ ∆Lr , where ∆Lr is a
set of Bayes decision rules induced by Lr. Intuitively, because confidence calibration is weaker than distribution calibration,
∆Lr is a more restricted set than ∆all.

Summary: linguistic calibration provides optimal decision-making guarantees. If we maximize the linguistic cali-
bration objective, our forecasts are distribution calibrated and therefore we obtain Lall-decision calibration, i.e., the Bayes
optimal decision rule outperforms all other decision rules. Even if our optimization only achieves a weaker notion of
calibration such as confidence calibration, we still obtain decision calibration over a more restricted class of loss functions.
This fact also motivates our use of reader ECE as an evaluation metric, because it estimates confidence calibration and can
therefore be thought of as a proxy for the quality of downstream user decision-making. For further discussion, we direct the
reader to Zhao et al. (2021) and Zhao & Ermon (2021).
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D Training Framework
Linguistic calibration is a general-purpose definition (Definition 2.1) that is agnostic to the particular design decisions
we made in our proof-of-concept training framework. Nevertheless, this section details the design choices we made,
including the algorithm and regularized objective function we used to train our neural net–based surrogate reader, and our
implementation of PPO (Schulman et al., 2017).

D.1 Decision-Based RL Pseudocode

Algorithm 1: Decision-Based RL with a Surrogate Reader

Given: SFT LM πSFT, LLM simulated reader fLLM : X × Z → ∆|Y|, joint distribution over open-ended queries and
question-answer pairs p(q, x, y).

Result: linguistically calibrated LM πLC.
/* Construct datasets for training surrogate reader functions: ExtractAnswers (EA) and ForecastProbs (FP). */
DEA ← {},DFP ← {}.
for i = 1, . . . , N do

/* LM-assisted user forecasting (§2.1). */
Sample open-ended query and question-answer pair (q, x, y) ∼ p(q, x, y).
Sample long-form generation z ∼ πSFT(z | q).
Apply LLM reader to obtain forecast fLLM(x, z) ∈ ∆|Y|.
/* Add ExtractAnswers example. */

DEA ← DEA ∪
(
x, z,Support(fLLM(x, z))

)
.

/* Add ForecastProbs example for ground-truth answer. */

DFP ← DFP ∪
(
x, z, y, fLLM(x, z)y

)
.

/* Add ForecastProbs example for all extracted answers. */
for extracted answer y′ ∈ Support(fLLM(x, z)) do
DFP ← DFP ∪

(
x, z, y′, fLLM(x, z)y′

)
.

end
end
/* Finetune surrogate LMs. */

Finetune ExtractAnswers on DEA and ForecastProbs on DFP.
/* Optimize RL objective. */

πLC ← PPO on πRL initialized at parameters πSFT, using surrogate reader f̃ in KL-regularized objective

max
πRL

E
(q,x,y)∼p(q,x,y), z∼πRL(z|q)

[
RLC(f̃(x, z), y)−β log

πRL(z|q)
πSFT(z|q)

]
.

return πLC

D.2 Regularized Linguistic Calibration Objective

Objective regularized to encourage normalized surrogate forecasts. In our instantiation of linguistic calibration, we
use a surrogate forecast f̃(x, z) which is not guaranteed to be normalized: we may have f̃(x, z) ∈ [0, 1]|Y| \∆|Y|. We
remedy this by adding a regularization term in the reward function which encourages f̃(x, z) to be normalized, restoring
strict propriety (cf. §2.3) even with forecasts in [0, 1]|Y|. We indeed find in practice that training with this objective results
in normalized forecasts.

Our regularized reward function RLC : [0, 1]|Y| × Y → R is written as:

RLC(f̃(x, z), y) = log f̃(x, z)y − λ

∣∣∣∣∣∣1−
∑
y′∈Y

f̃(x, z)y′

∣∣∣∣∣∣+ C, (D.5)
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where λ > 0, C > 0 are hyperparameters. C is a small positive constant which we find to reduce reward hacking during
PPO.

Below, we prove that with λ > 1, we indeed have a strictly proper objective.

D.3 Proof: Regularized Objective is Strictly Proper

Setup. In decision-based RL, we wish to optimize an objective that encourages the surrogate forecast f̃(x, z) to exactly
match the ground-truth distribution p(y | x), which is supported over all possible answers Y . f̃(x, z) is not necessarily
in ∆|Y| because it is obtained by several independent neural network predictions falling in the range [0, 1], i.e., f̃(x, z) ∈
[0, 1]|Y|. Therefore, in addition to a log loss term, we also add a regularizer which encourages f̃(x, z) to fall in the simplex,
i.e., be normalized.

We would like our reward function to be strictly proper—its unique maximizer should be the ground-truth answer distribution.
We will prove that our reward function is indeed strictly proper below. First, we define (strictly) proper scoring rules in
our setting, which is slightly more general than the standard definition (e.g., in Gneiting & Raftery (2007)) in that the first
argument need not be a probability distribution: it may fall in [0, 1]|Y| \∆|Y|. As shorthand throughout this proof, we will
refer to the ground-truth answer distribution as p∗ := p(y | x) and the forecast as p̃ := f̃(x, z), because this proof is done
pointwise for a given (question, LM generation) tuple (x, z).

Definition D.1 (based on Gneiting & Raftery (2007)). Let R̄ be the extended real line [−∞,∞]. A scoring rule R :
[0, 1]|Y| × Y → R̄ is proper if

EY∼p∗ [R(p∗, Y )] ≥ EY∼p∗ [R(p̃, Y )], ∀p∗ ∈ ∆|Y|, p̃ ∈ [0, 1]|Y|. (D.6)

It is strictly proper if Eq. D.6 holds with equality if and only if p∗ = p̃.

Equivalently, we may express the strictly proper condition as

EY∼p∗ [R(p∗, Y )] > EY∼p∗ [R(p̃, Y )], ∀p∗ ∈ ∆|Y|, p̃ ∈ [0, 1]|Y|, p̃ ̸= p∗. (D.7)

In proving that RLC is strictly proper, we will also make use of the following standard result:

Lemma 2 (e.g., Gneiting & Raftery (2007)). The logarithmic scoring rule Rlog : ∆|Y|×Y → {−∞}∪R is strictly proper.

Lastly, we will also use the log-sum inequality:

Lemma 3 (e.g., p. 29, Cover & Thomas (1991)). Let a1, . . . , an and b1, . . . , bn be nonnegative numbers. Denote
a :=

∑n
i=1 ai and b :=

∑n
i=1 bi. Then

n∑
i=1

ai log
ai
bi
≥ a log

a

b
.

We will now prove that our regularized training framework objective RLC is a strictly proper scoring rule using the condition
for strict propriety in Eq. D.7.

Theorem D.2. For any C ∈ R and with λ > 1, the reward function RLC(p̃, y) from Eq. D.5 is strictly proper.

Proof. Take an arbitrary p∗ ∈ ∆|Y| and p̃ ∈ [0, 1]|Y| such that p̃ ̸= p∗. We need to show that

EY∼p∗ [RLC(p
∗, Y )]− EY∼p∗ [RLC(p̃, Y )] > 0. (D.8)

All expectations for the rest of the proof are taken with respect to p∗, so we omit the subscript Y ∼ p∗. As in the main text,
we identify the space of answers Y with the index set [|Y|], and therefore use notation py to refer to the y-th index of the
vector p. Lastly, we write

∑
y′∈Y p̃y′ as 1⊤p̃ for brevity.

Plugging in with our reward function, Inequality D.8 is equivalent to

E
[
log p∗Y − λ|1− 1⊤p∗|+ C

]
− E

[
log p̃Y − λ|1− 1⊤p̃|+ C

]
> 0.
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We can simplify the LHS by applying linearity of expectation and simplifying expectations of constants:

LHS = E [log p∗Y ]− λ|1− 1⊤p∗| − E [log p̃Y ] + λ|1− 1⊤p̃|.

Note that we assume p∗ ∈ ∆|Y| so 1⊤p∗ = 1, and we can simplify further to

LHS = E [log p∗Y ]− E [log p̃Y ] + λ|1− 1⊤p̃|. (D.9)

Now we proceed by cases on whether or not p̃ ∈ ∆|Y|. Suppose that indeed p̃ ∈ ∆|Y|. Then its normalization term
λ|1− 1⊤p̃| is also 0, and therefore this inequality condition is precisely the strict propriety condition for the logarithmic
scoring rule (including the assumption that both p∗ and p̃ are in the simplex):

E [log p∗Y ]− E [log p̃Y ] > 0,

which is true according to Lemma 2, and therefore this case is done.

So now assume that p̃ ∈ [0, 1]|Y| \∆|Y|. This implies that its normalization term is greater than 0, i.e., |1− 1⊤p̃| > 0. In
this case, we can prove using the properties of log and the log-sum inequality that the LHS expression in Eq. D.9 is greater
than 0, in order to complete the proof.

First, we use the properties of log to rewrite the expectations in Eq. D.9 into the entropy of p∗ plus a relative entropy between
p∗ and p̃:

LHS = E [log p∗Y ]− E [log p̃Y ] + λ|1− 1⊤p̃|
= −H[p∗]− E [log p̃Y ] + λ|1− 1⊤p̃| (definition of entropy functional H[·])

= −H[p∗] + H[p∗] +
∑
y∈Y

p∗y log
p∗y
p̃y

+ λ|1− 1⊤p̃| (decomposition of cross-entropy)

=
∑
y∈Y

p∗y log
p∗y
p̃y

+ λ|1− 1⊤p̃|,

where the penultimate step used the decomposition of cross-entropy = entropy + relative entropy.

We cannot immediately apply the information inequality to show that the relative entropy is nonnegative, because p̃ is not a
probability distribution (and therefore the KL Divergence and relative entropy are not the same; see, e.g., p. 90 in Boyd &
Vandenberghe (2004)). However, we may use the log-sum inequality to finish the proof. Applying Lemma 3 using the fact
that all elements of p∗ and p̃ are nonnegative, we can lower bound the relative entropy term as∑

y∈Y
p∗y log

p∗y
p̃y
≥ 1⊤p∗ log

1⊤p∗

1⊤p̃
= log

1

1⊤p̃
.

Altogether, substituting normalizer Z := 1⊤p̃, we currently have a lower bound of the LHS in Eq. D.9 of

LHS ≥ log
1

Z
+ λ|1−Z|. (D.10)

Inspecting this function for λ > 1, we can see that it is positive for all values of Z other than Z = 1. To be rigorous,
we complete the proof with cases on the values of Z . Because p̃ ∈ [0, 1]|Y|, Z is nonnegative, and recall that we already
covered the case when Z = 1⊤p̃ = 1 by reduction to strict propriety of the logarithmic scoring rule (Lemma 2).

When Z ∈ [0, 1), we immediately see that log 1
Z > 0 and λ|1− Z| > 0 (since λ > 1 by assumption), implying that the

lower bound in Eq. D.10 is positive as we needed to show.

Lastly, suppose that Z ∈ [1,∞). In that case, λ|1−Z| = λ(Z − 1). Now, note that the derivative of the lower bound in
Eq. D.10 is positive for all Z ≥ 1 (recalling that λ > 1):

d

dZ

[
log

1

Z
+ λ(Z − 1)

]
= − 1

Z
+ λ > − 1

Z
+ 1,

e.g., at Z = 1, we have that the derivative is greater than − 1
1 + 1 = 0. And further, at precisely Z = 1, the lower bound

equals log 1
1 + λ|1− 1| = 0. This proves that the lower bound is positive for all Z ∈ (1,∞), which implies that the LHS is

also positive for Z ∈ (1,∞). We have covered all values of Z , concluding that when λ > 1, the reward function in Eq. D.5
is strictly proper.
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D.4 Additional Details on Training Framework

We provide additional details on the training framework below. For other details, we direct the reader to the codebase.3

Training and Validation Splits. Our training framework and all baselines use examples from the TriviaQA (Joshi et al.,
2017) unfiltered.nocontext subset on HuggingFace Datasets (Lhoest et al., 2021). These examples are randomly
assigned to the following splits:

• SFT (10000 examples): used for summary distillation and the other SFT baselines (Factuality SFT, Claude Distill).

• Prompt Validation (1000 examples): used for all ICL-based baselines and to construct ICL examples for the simulated
reader, which uses an API-based LLM.

• Reward Model (20000 examples): used to train surrogate reader for LC, and binary reward model for Factuality RL
baseline.

• PPO (40000 examples): used for PPO with LC RL and Factuality RL methods.

• PPO Validation (1000 examples): during PPO, we evaluate reward model rewards on this split and store checkpoints
every 20 steps.

• Validation (1000 examples): used for tuning evaluation temperature and model selection for RL methods (described
below).

Summary distillation details. For each SFT dataset query q, we use the (non-confidence) ICL baseline to sample eight
long-form generations {zi}8i=1 ∼ πICL(z | q) (temperature 0.7) that are then summarized using a Claude few-shot prompt
s ∼ Summarize(s | z1, . . . , z8) (temperature 0.3). We use the dataset of (q, s) pairs to finetune the base Llama 2 7B model,
obtaining πSFT. The same temperature settings are used for obtaining Summary ICL context examples, and for the Direct
Summary Eval oracle baseline.

Surrogate and reward model details. Following our evaluation protocol for user forecasts (§4.1), we specify prompt
instructions so that LLM simulated forecasts fLLM(x, z) used in Algorithm 1 avoid the use of background knowledge.
Dataset construction for the surrogate reader models ForecastProbs and ExtractAnswers is described in Algorithm 1.

For LC RL, we use the following training details:

• ForecastProbs: a Llama 2 7B–based model initialized with the LC SFT parameters and trained using a binary
cross-entropy loss on prompts from the Reward Model split.

• ExtractAnswers: a RedPajama 3B–based model initialized from the pretrained model weights and trained with causal
language modeling on targets formatted as a delimited list of possible answers, e.g., “Sushi; Sashimi; Nigiri”.
We used a 3B model instead of Llama 2 7B due to computational constraints, i.e., to fit all standard PPO models such
as the policy, reference policy, value model, and reward models into GPU memory on an 8x80GB A100 node.

For Factuality RL, we use the following training details:

• Reward Model: a Llama 2 7B–based model initialized with the Factuality SFT parameters and trained using binary
cross-entropy loss on prompts from the Reward Model split, with binary correctness labels from Claude 2.0. In
producing binary correctness labels for a given (question, ground-truth answer, generation) tuple (x, y, z), Claude is
given access to the ground-truth answer. Therefore, determining binary correctness is a simple extractive task that we
find Claude performs with very high accuracy.

We tune all reward models over a wide range of learning rates; see codebase for details on hyperparameters.

3https://github.com/tatsu-lab/linguistic calibration
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PPO implementation and training. We use a standard implementation of PPO from Dubois et al. (2023) and train with 8
80GB A100 GPUs using Flash Attention 2 (Dao et al., 2022; Dao, 2023) and PyTorch FSDP (Zhao et al., 2023). For both
PPO-based methods (LC RL and Factuality RL), we use default hyperparameters other than the following:

• We use a larger step batch size (512) with one optimization epoch per step for better training stability.

• We shorten query len to 128 tokens, because our PPO inputs were essentially all under this length.

• We use a slightly lower temperature during the rollout phase (0.7 instead of 1.0).

• We use the paged adamw 8bit optimizer (Dettmers et al., 2022) due to computational constraints. We also use
this optimizer for SFT and reward model training for consistency, and find it had no negative impact on validation
performance compared to AdamW (Loshchilov & Hutter, 2019).

• We train for 1500 PPO steps.

We tune the KL penalty and learning rate of both PPO methods across a wide range, ultimately finding that kl coef of 0.1
and learning rate of 1e-5 works best for both methods.

For the LC RL objective, we find that λ = 5, C = 5 works well to enforce normalization of downstream forecasts and
prevent reward hacking. In the log-loss term, we clip the probability of the ground-truth answer at ϵ =1e-4 for numerical
stability.

Model selection for RL methods. We perform model selection for PPO-based methods (LC RL, Factuality RL) by taking
the 5 PPO checkpoints with the highest reward model rewards on the PPO Validation split, evaluating them on the Validation
split with the API-based LLM simulated reader, and selecting the checkpoint with the best ECE.
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E Evaluation Framework
Test Dataset Splits. We use the following test dataset splits.

• TriviaQA (Joshi et al., 2017) (11313 examples): take the validation split from the unfiltered.nocontext subset
from HuggingFace Datasets (Wolf et al., 2020; Lhoest et al., 2021).

• Jeopardy (Kaggle, 2020) (10638 examples): take a random sample of the train subset from HuggingFace Datasets.
These questions are initially written in the indirect Jeopardy-style format (“For the last 8 years of his life, Galileo was
under house arrest for espousing this man’s theory”), so we use Claude 2.0 to convert them into direct questions x.

• SciQ (Welbl et al., 2017) (13679 QA examples): combine train, validation, and test splits from allenai/sciq on
HuggingFace Datasets. SciQ is a dataset of crowdsourced science exam questions in biology, chemistry, earth science,
and physics, spanning elementary level to college introductory material.

• BioASQ (Krithara et al., 2023) (1515 QA examples): we use the 2024 BioASQ12 Task B dataset, which is a
biomedical QA dataset annotated by a team of experts. Specifically, we use their 1515 “factoid” examples, which
have a short-answer gold label (e.g., “proprotein convertase subtilisin/kex in type 9”). The dataset is available at
http://participants-area.bioasq.org/datasets.

• Person Biography Generation (Min et al., 2023) (500 entities): use the unlabeled split of Wikipedia entities from
the FactScore dataset.

TriviaQA, Jeopardy, SciQ, and BioASQ are question-answering datasets which we repurpose for long-form evaluation.
Specifically, for these question-answering datasets, we use an API-based LLM (Claude 2.0) to convert questions x into
open-ended queries q that allow us to sample long-form generations z ∼ π(z | q) on the topic of the question x (as we do at
training time, cf. §3.1). For Person Biography Generation, we construct open-ended queries using the fixed template “Write
a paragraph bio about {entity}.”.

Reader expected calibration error (reader ECE). The reader ECE metric is precisely the expected calibration metric
(Guo et al., 2017) applied to a reader f : X×Z → ∆|Y|. Given N question-answer pairs {(x(i), y(i))}Ni=1 and corresponding
long-form generations {z(i)}Ni=1, we partition them into M bins by max forecast probability maxy f(x

(i), z(i))y. ECE is
then expressed as

ECE =

M∑
j=1

|Bj |
N
|Acc(Bj)− Conf(Bj)| , where

Conf(Bj) =
1

|Bj |
∑
i∈Bj

max
y

f(x(i), z(i))y, Acc(Bj) =
1

|Bj |
∑
i∈Bj

1[y(i) = argmax
y

f(x(i), z(i))y].

We set the number of bins as M = 20 on simulated QA evaluations, and M = 10 on all others. Lastly, we note that log loss
is not a reasonable evaluation metric in our setting because simulated and human readers can assign zero probability to the
ground-truth class label resulting in infinite log loss.

Confidence intervals. We report bootstrap 0.95 confidence intervals in all frontier plots and tabular results, except for
the BioASQ dataset. BioASQ is a relatively small dataset (1515 examples; it is expert-written) and therefore we report
Student’s t distribution 0.95 confidence intervals over 10 evaluation seeds. In reliability diagrams for BioASQ, we report the
reliability diagram computed over samples pooled across all seeds in blue, and per-seed reliability diagrams in gray.

E.1 Simulated Evaluation

Simulated reader. Simulated forecasts f(x, z) are a distribution over possible answers to the question x, based on
long-form LM generations z. All simulated forecasts in this paper are formed using an API-based LLM simulated reader
fLLM. We use Claude due to compute constraints, but other LLMs such as GPT-4 are well-capable of producing high-quality
forecasts. These simulated forecasts are used in two parts of our training and evaluation frameworks:
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• Training framework: simulated forecasts are used as ground-truth targets for training the surrogate reader f̃ (cf.
Algorithm 1). Then the surrogate reader is used during PPO, enabling efficient training by avoiding calls to API-based
LLMs.

• Evaluation framework: in our question-answering evaluations, we sample a held-out question-answer pair (x, y) ∼
p(x, y), convert x into open-ended query q, and evaluate the accuracy and ECE of the simulated forecast fLLM(x, z)
for z ∼ π(z | q) sampled from a variety of LMs such as LC RL and Factuality RL.

In both cases, we obtain simulated forecasts by decomposing reading into two prompts, one for ExtractAnswers and one for
ForecastProbs, following the description in §3. This is just one way of implementing a reader, and there are likely other
reasonable ways to obtain high-quality probabilistic predictions conditioned on long-form text.

In order to compute accuracy and ECE for the evaluation framework, we need to obtain the confidence and correctness of
each forecast. We direct the reader to our codebase4 for all prompts.

Accuracy and ECE for confidence-based methods. The confidence of a forecast is obtained by simply taking its
argmax probability maxy∈Y f(x, z)y. Recall that for question-answering evaluation datasets, we prompt an API-based
LLM to perform the ForecastProbs operation. We find a zero-shot prompt is effective because confidence statements
in z associated with the question x are usually numerical (and even when they are occasionally linguistic, Claude 2.0
produces reasonable confidence estimations). The correctness is obtained by determining whether the top answer in the
forecast is correct, i.e., 1[y = argmaxy′∈Y f(x, z)y′ ]. In practice, we perform this check by prompting Claude with the
question x, ground-truth answer choice y, and the argmax answer choice, and asking the LLM to decide whether the two
answers are semantically equivalent, using a few-shot prompt. For TriviaQA and Jeopardy, which are general-domain
knowledge tasks, claude-2.0 can perform this semantic equivalence check reliably. For the domain-specific tasks
SciQ and BioASQ, we use the more powerful claude-3-opus-20240229 to perform this semantic equivalence check,
because the ground-truth and argmax answers are more complicated; e.g., y = “hormone receptor-positive, human epidermal
growth factor receptor 2-negative”, argmax = “hormone-receptor-positive, HER2-negative breast cancer patients”. This
semantic equivalence check avoids the false negative issues that string match–based metrics encounter due to paraphrases,
which are very common in our open-ended, long-form generation setting.

Accuracy and ECE for non-confidence methods. Our evaluation for non-confidence methods closely follows the pipeline
for confidence-based methods. We extract answers using the ExtractAnswers prompt, which accounts for the possibility that
models may provide multiple mutually exclusive answers to the question x. We select the “argmax” answer by taking the
answer which appears first in the paragraph z. Because non-confidence methods are not prompted or trained to produce
confidence statements, we fix their confidence values to 1. Then, we compute ECE for non-confidence methods in closed
form as (1− Accuracy). This approach is validated by our human evaluations, in which the correlation between a fixed
confidence value of 1 and the human-interpreted argmax probability of Factuality RL is 0.993, over 1000+ samples (cf.
Table 7).

Temperature tuning. We tuned the decoding temperature for generating paragraphs across the range {0.1, 0.3, 0.5, 0.7}
for the core methods (LC RL, LC SFT, Factuality RL, Factuality SFT) on the TriviaQA Validation split with simulated
reader evaluation. We found that temperature 0.3 uniformly performed the best across methods. Therefore we defaulted to
paragraph decoding temperature 0.3 for evaluation throughout. We found that temperature 0.2 consistently worked well for
simulated reader operations ExtractAnswers, ForecastProbs, and for checking semantic equivalence.

Other evaluation details. Because we prompt our LMs with open-ended queries (q := “Write a paragraph about {x}”)
it is rarely possible that a paragraph z will not provide information that answers question x. We account for this during
evaluation by allowing the ExtractAnswers prompt to return an empty list if z does not provide any plausible answers to
the question. For any example with an empty extracted list, we consider the accuracy to be 0 and the confidence to be 1,
which is the most conservative possible penalty for both accuracy and ECE. Because we significantly outperform baselines
finetuned with RL for factuality, we account for the possibility of better responsiveness to the prompt (and therefore fewer
empty ExtractAnswers lists) explaining our improvements.

4https://github.com/tatsu-lab/linguistic calibration
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E.2 FactScore-Based Evaluation Metric

We use an automated FactScore-based (Min et al., 2023) metric using an API-based LLM (Claude 2.0 in our case) to test the
accuracy and calibration of generated biographies z at the per-claim level, probing for the quality of confidences throughout
long-form generations. §4.3 describes this metric in detail. Prompts and code for this metric are available in our codebase.

Forecasting confidences. As part of this metric, for confidence-based methods, we need to forecast probabilities which
are used to compute ECE. As compared to the question-answering evaluations, this evaluation considers all claims in the
generated paragraph and tends to have a higher proportion of claims with linguistic confidence statements. Therefore, we
use the following procedure to assign probabilities to each claim. When a claim has a clear numerical uncertainty (e.g.,
a percentage) this is a simple extractive task which API-based LLMs perform well by default. For interpreting linguistic
uncertainties, we provide the LLM with a mapping between linguistic phrases and probabilities collected in a linguistics
human study (Wallsten, 1990), and allow it to generalize from this mapping to phrases that are not present in it (Table 5).
We believe that developing better strategies to interpret linguistic confidence statements in a manner tailored to a given user

Linguistic Confidence Phrase Probability

Almost Impossible 0.05
Doubtful 0.1

Improbable 0.1
Unlikely 0.15
Possible 0.3
Tossup 0.5

Good Chance 0.65
Likely 0.75

Probable 0.75
Almost Certain 0.95

Table 5: Ground-truth linguistic confidence mapping used in our FactScore probability interpretation prompt, from Wallsten
(1990).

population is exciting future work (discussed in §6).

E.3 Human Evaluation

Task. In order to compute our accuracy and ECE metrics using forecasts from human crowdworkers, we asked crowd-
workers to provide the following for a given question, ground-truth answer, and long-form generation tuple (x, y, z):

• Confidence: the max probability of their forecast distribution maxy∈Y f(x, z)y .

• Correctness: a binary indicator of whether or not their top answer was correct, 1[y = argmaxy′∈Y f(x, z)y′ ].

We asked human crowdworkers to interpret the generated paragraphs literally, and provided a couple examples. These
examples were intentionally selected to be unambiguous, i.e., numerical confidences, to ensure we were not biasing towards
any particular manner of interpreting linguistic confidences.

Qualification. We conducted two qualification rounds with our human annotators for the question-answering TriviaQA
experiment. In the first round, we sent a single question-answer pair (x, y) sampled from TriviaQA, along with 3 model
outputs (from LC RL, LC SFT, and Factuality RL) to 117 workers, out of which 32 matched the expected output. This
example was selected to be unambiguous. In the second round, we sent the 32 workers who passed the previous test a
roughly hour-long test (examples also selected to be unambiguous; the student authors of this paper agreed on all confidence
and correctness labels of the hour-long test). Among these annotators, we took the top 15 performers for the main annotation
process.
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Main annotation round. During the main annotation process, we simply selected examples uniformly at random from the
TriviaQA test set, including examples which were potentially ambiguous due to linguistic confidence statements. Overall,
we collected annotations for 1008 examples (each with 3 model outputs) from human crowdworkers.

Quality assurance. We compared crowdworker agreement with Claude 2.0 as a quality assurance measure. Five of the
annotators had agreement rates which dropped significantly after the qualification round, from perfect performance on the
hour-long test to less than 0.40 Cohen’s kappa agreement with Claude. Therefore, we discontinued working with these
annotators and removed their labels.

Payment. To determine payment, the authors of this paper timed our own completion time of the task, which was an
average of approximately 1.3 minutes. Following best practices for crowdworker payment (Whiting et al., 2019; Liang
et al., 2023), we used a conservative estimate of annotation time of 3 minutes per task and set the per-task payment to $0.85
amounting to a compensation of $17 per hour, greater than the California minimum wage of $16 per hour.

Agreement statistics. In Table 6 we report interannotator agreement (i.e., agreement between crowdworkers) computed
over 5% of the collected samples, for each of the tested models.

Model Correlation on Confidence Cohen’s Kappa on Correctness

LC RL 0.886 0.850
LC SFT 0.719 0.842

Factuality RL 1.000 0.758

Table 6: Interannotator Agreement.

In Table 7, we report human agreement with Claude 2.0 over all examples.

Model Correlation on Confidence Cohen’s Kappa on Correctness

LC RL 0.626 0.739
LC SFT 0.618 0.748

Factuality RL 0.993 0.741

Table 7: Human-Claude 2.0 Agreement.
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