
Under review as a conference paper at ICLR 2018

AUTOREGRESSIVE GENERATIVE ADVERSARIAL NET-
WORKS /
CONFERENCE SUBMISSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Adversarial Networks (GANs) learn a generative model by playing an
adversarial game between a generator and an auxiliary discriminator, which classi-
fies data samples vs. generated ones. However, it does not explicitly model feature
co-occurrences in samples. In this paper, we propose a novel Autoregressive Gen-
erative Adversarial Network (ARGAN), that models the latent distribution of data
using an autoregressive model, rather than relying on binary classification of sam-
ples into data/generated categories. In this way, feature co-occurrences in samples
can be more efficiently captured. Our model was evaluated on two widely used
datasets: CIFAR-10 and STL-10. Its performance is competitive with respect to
other GAN models both quantitatively and qualitatively.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a new type of generative
model with wide-spread success. For example, they can be used to generate photo-realistic face and
bedroom images (Radford et al., 2015). Natural images contain a rich amount of features with spe-
cific co-occurrence configurations. A generative model should be able to learn these configurations
in order to perform well. In a GAN setting, a discriminator is used to learn features in data and helps
the generator to imitate them. The generator should be able to produce samples with certain feature
configurations – which are seen as likely by the discriminator – to satisfy the discriminator’s criteria.

However, GAN’s performance does not scale well to large datasets with high sample variation such
as ImageNet (Russakovsky et al., 2015). It can generate realistic textures, but the global consistency
is still lacking (Salimans et al., 2016). Recently several variations of GAN have been proposed
(Arjovsky et al., 2017; Mao et al., 2016; Zhao et al., 2016) to improve image generation. However
the issue of global inconsistency still persists.

We postulate that the issue of global inconsistency has to do with the discriminator of a GAN and
especially its classification nature to model detailed global structure. The discriminator architec-
ture is similar to ones used in classification or recognition tasks, whose aim is modeling p(y|x) but
not p(x), where y, x, p(x) represent class probabilities, data sample and data distribution, respec-
tively. However the overall aim of generative modeling is learning p(x). A good “teacher” a.k.a.
discriminator, should be able to learn p(x) in order to teach it to its “student” a.k.a. generator, but
the discriminator only learns p(x) implicitly by modeling p(y|x) in an adversarial way. However,
direct modeling of p(x) is time consuming and poses difficulties for capturing global structure in
high resolution images (van den Oord et al., 2016).

In order to alleviate this problem, we propose a latent space modeling where an adversarial encoder
learns the high dimensional feature vectors of real samples that are distinguishable from the fake
ones. The distinguishability criteria is the modeling error of an autoregressive model that tries to
model latent space distribution of real images p(f) where f represents high-dimensional features.
A good adversarial encoder should come up with features that produce low error if they belong
to real images and high error if they belong to fake ones. Different from the basic GAN, p(y|x),
discriminator, is not modeled but rather p(f |x), the encoder, and p(f), the autoregressive model.

1

Under review as a conference paper at ICLR 2018

Our proposed Autoregressive GAN (ARGAN) learns features in the real data distribution without
classification but instead by modeling the latent space of the encoder with an autoregressive model.
Since an autoregressive model factorizes latent space and learns features in a conditional way, it can
model feature co-occurrences more effectively than a classifier as used in conventional GAN.

Furthermore, we propose a combination of ARGAN and Patch-GAN (Isola et al., 2016). In this
setting, Patch-GAN ensures realistic local features while ARGAN deploys its capacity at the global
level. We show that PARGAN improves both qualitative and quantitative results of the generated
images.

We will release the source code and model data upon paper acceptance.

2 RELATED WORK

In various GAN models, the discriminator can be partitioned into two parts, a feature learner (en-
coder) and an assigner, which assigns values to distinguish two distributions either data or model. A
vanilla GAN learns features by using an adversarial encoder (E) and a linear classifier (c) as assigner
(Fig. 1). The Wasserstein GAN (WGAN) (Arjovsky et al., 2017) follows a similar idea and uses
an adversarial encoder with a linear separator (s) as assigner, which separates real features from
generated ones on a single dimensional space. Energy-based GAN (EBGAN) (Zhao et al., 2016)
slightly departs from this trend and uses an encoder to learn features and a decoder (D) as assigner,
which reconstructs input of encoder. In EBGAN, different from the previous methods, energy value
is not the output of the assigner but the reconstruction. In the proposed ARGAN model, features are
learned with an encoder, and an autoregressive model (R) is used as assigner. Similar to EBGAN,
energy value is not the assigner’s output but rather its difference from the target, which corresponds
to the modeling error of the assigner. For the generator all models are the same, a noise sample (z)
is fed into a generator (G) that maps it into the data space.

Figure 1: A simplified comparison of GAN models including the proposed Autoregressive GAN.

Another type of generative model is proposed by van den Oord et al. (2016) and Theis & Bethge
(2015), who model the joint distribution of pixels, p(x), with an RNN in an autoregressive way.
During test time samples are generated by sampling one pixel at a time from the model. In our work,
autoregressive modeling is used in the latent space, and the features incoming to autoregressor are
learned in an adversarial manner. Hence instead of modeling data in the data space, they are modeled
in the feature space, which is learned by an adversarial encoder concurrently. Modeling distribution
in the latent space can focus on semantics of data rather than low level features like correlation
between adjacent pixels. Furthermore, our model runs as fast as vanilla GAN during test time since
recurrent modeling is only used during training as an auxiliary model.

The closest work to our method is Denoising Feature Matching Warde-Farley & Bengio (2017).
Even though Denoising Feature Matching uses density estimation in the latent space, there are ma-
jor differences which makes learning dynamic of our model totally different then theirs. (i) Their
method is complementary to GAN objective while our method can be learned standalone. (ii) More
importantly their discriminator (encoder + classifier) are trained as in original GAN objective which
means that features learned from the data distribution are based on classifier’s feedback not on den-
sity model’s. This crucial difference make both works different than one another. (iii) In our model
feature co-occurrences is modeled explicitly. (iv) Motivation for both works are totally different.

2

Under review as a conference paper at ICLR 2018

3 METHOD

3.1 PRELIMINARY

GAN is a two player min-max game between a generatorG and a discriminatorD, as formulated by
Eq. 1. G takes a noise sample z and maps it into data space G(z; θg), while D tries to discriminate
between samples coming from G and real samples x. Overal, D’s aim is to learn features that
separate samples coming from pg , generator’s distribution, and samples coming from pdata, real
data distribution. G’s aim is to produce samples that are indistinguishable from the real ones. In
practice, the objective for G is changed with Eq. 3 in order to improve gradient flow, especially
during the initial part of the training. At each iteration, D maximizes Eq. 2 while G maximizes
Eq. 3. This procedure continues until it reaches the equilibrium pg ≈ pdata, which is a saddle point
of Eq. 1.

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2)

max
G

Ez∼pz(z)[log(D(G(z)))] (3)

3.2 AUTOREGRESSIVE GAN (ARGAN)

The discriminator of GAN can be separated into two parts: D = d ◦ E where E is an adversarial
encoder, and d is a linear binary classifier. The objective of E is to produce linearly separable
distributions of features freal ∼ E(x) and ffake ∼ E(G(z)). Instead of using a classifier d to
separate distributions, we propose to use an autoregressive model,R, to model the latent distribution
of real samples p(freal). This model should produce a small error for samples coming from p(freal)
and a large error for samples coming from p(ffake) so that it can differentiate one distribution from
the other.

Figure 2: Proposed Autoregressive GAN (ARGAN) architecture.

An overview of the proposed ARGAN architecture is depicted in Fig. 2. When compared to vanilla
GAN (Fig. 1), this model replaces the classifier layer with a factorization of features and autore-
gressive modeling of the factorized features. The autoregressive model can be represented with a
multi-layer LSTM or other types of RNN models. Instead of using class discrimination as the learn-
ing signal, the autoregressive model’s prediction loss is used. The intuition is that an autoregressive
model would model the feature distribution better than fully connected layers by factorizing f and
modeling conditional distributions:

p(f) = p(f1, ..., fN) =

N∏
n=1

p(fn|f<n). (4)

The proposed Autoregressive GAN (ARGAN) is formulated as in Eq. 5, where G is the generator
function, E is the encoder, L is the loss function as defined in Eq. 6, and θG, θE , θR are the
parameters for generator, encoder, and autoregressive model, respectively.

min
θG

max
θE ,θR

Ex∼pdata(x)[L(E(x; θE), θR)]− Ez∼pz [L(E(G(z; θG); θE); θR)] (5)

3

Under review as a conference paper at ICLR 2018

L(f ; θR) =
Nf∑
i=1

log pθR(fi|f<i) (6)

In practice, we found that Eq. 5 is unstable due to θR’s maximization of the second term being
unbounded. Instead θR is optimized only over the first term of Eq. 5. In this case, the objective for
G and E stays the same (Eq. 7), while θR is optimized only on real sample features that are coming
from E(x) but not on E(G(z)) (Eq. 8):

min
θG

max
θE

Ex∼pdata(x)[L(E(x; θE); θR)]− Ez∼pz [L(E(G(z; θG); θE); θR)] (7)

max
θR

Ex∼pdata(x)[L(E(x; θE); θR)] (8)

When θE maximizes Eq. 7, it tries to learns features that yield low error for real samples and high
error for generated ones. In this way, E exploits structures that are common on data samples but not
on generated ones. When θR maximizes Eq. 8, it fits to features coming from real examples only.

We have not used any distribution function at the output layer ofR since it is not meant to be sampled
but rather used during training as an auxiliary model. Using the model only during training removes
test time sampling error (Huszár, 2015), which happens when conditional samples come from model
distribution rather than data distribution.

Figure 3: (a) Spatial Factorization: 2×2×4 feature tensor factorized into 1×1×4 tensors which
corresponds to factorization along spatial dimensions, (b) Channel-wise Factorization: 2×2×4
feature tensor factorized into 2×2×1 tensors which corresponds to factorization along depth (or
channel) dimensions.

We do make the independence assumption when factorizing features in order to reduce computa-
tion time during training. Instead of conditioning single features on another, feature groups are
conditioned on other feature groups by making the assumption that features in the same groups are
independent from each other. Fig. 3 shows two types of factorization we use to model Spatial-wise
ARGAN (S-ARGAN) and Channel-wise ARGAN (C-ARGAN). Even though the independence as-
sumption does not strictly hold, in practice both of them work equally well.

3.3 PATCH-GAN + S-ARGAN (PARGAN)

Unlike vanilla GAN which produces single value for each sample, Patch-GAN (Isola et al., 2016),
(Li & Wand, 2016) takes multiple patches from a sample and produces a value for each patch. Hence
for a single sample, multiple scores from different regions are evaluated. Even though Patch-GAN
can help the generator to produce locally realistic samples, it does not take the global arrangement
into account. Isola et al. (2016) used Patch-GAN combined with L1 loss for image-to-image trans-
lation. While Patch-GAN ensures realism of local content, a pixel-wise loss with ground truth is
used to enforce global arrangement.

For image generation as in our work, there is no ground truth to relate withG(z), hence it is not clear
how to enforce global arrangement. Therefore, in this paper, we propose S-ARGAN to ensure global

4

Under review as a conference paper at ICLR 2018

Algorithm 1 ARGAN Training Procedure

1: θG, θE , θR ← initialize network parameters
2: repeat
3: x(1), ..., x(M) ∼ pdata(x) . Sample from data distribution
4: z(1), ..., z(M) ∼ pnoise(z) . Sample from noise distribution
5: f

(j)
r ← E(x(j)), for j = 1,...,M . Compute features for training examples

6: f
(j)
f ← E(G(z(j))), for j = 1,...,M . Compute features for generated samples

7: p
(j)
r ← R(f

(j)
r), for j = 1,...,M . Compute predictions for training examples

8: p
(j)
f ← R(f

(j)
f), for j = 1,...,M . Compute predictions for training examples

9: LθG ← 1
M

∑M
j=1

∑Nf

i=1 |p
(j)
fi
− f (j)fi+1

| . Compute loss for generator

10: LθE ← 1
M

∑M
j=1

∑Nf

i=1 |p
(j)
ri − f

(j)
ri+1 | − 1

M

∑M
j=1

∑Nf

i=1 |p
(j)
fi
− f (j)fi+1

|
11: LθR ← 1

M

∑M
j=1

∑Nf

i=1 |p
(j)
ri − f

(j)
ri+1 | . Compute loss for autoregressive model

12: θG ← θG −∇θGLθG . Update parameters of generator
13: θE ← θE −∇θELθE . Update parameters of encoder
14: θR ← θR −∇θRLθR . Update parameters of autoregressive model
15: until convergence

consistency. In this case, Patch-GAN decides whether individual patches are realistic or not, while
S-ARGAN examines whether their arrangement is spatially consistent. Beware that S-ARGAN by
itself can give feedback into individual channels, however using it with Patch-GAN makes training
easier and produces better results. Fig. 4 shows how the latent space of the encoder is factorized and
feeds into S-ARGAN and Patch-GAN.

Figure 4: Left: A feature tensor factorized in spatial fashion. Right (top): An autoregressive model
on factorized features. Right (bottom): Patch-GAN: a single discriminator is used for each spatial
tensor

The objective of the Patch-GAN for discriminator and generator is given in Eq. 9 and Eq. 10 where
D = d ⊕ E, ⊕ is convolution operation, E(.) ∈ Rh×w×c is the same encoder used in previous
section and d ∈ Rc×1×1×1 is the convolutional kernel. D(.) produces an activation map with size
Rh×w. Each activation is matched to its corresponding target by using least square loss. We use
the least square version of GAN objective (Mao et al., 2016) rather than vanilla GAN objective
(Eq. 2, Eq. 3) since vanilla GAN produces high error for generator later in the training. PARGAN
objective is a simple summation of ARGAN objective (Eq. 7), Eq. 8) and Patch-GAN objective
(Eq. 9), Eq. 10) without any hyperparameter.

max
D

Ex∼pdata(x)[
1

hw

∑
h

∑
w

(D(x)h,w − 1)2] + Ez∼pz(z)[
1

hw

∑
h

∑
w

(D(G(z))h,w)
2] (9)

max
G

Ez∼pz(z)[
1

hw

∑
h

∑
w

(D(G(z))h,w − 1)2] (10)

5

Under review as a conference paper at ICLR 2018

4 EXPERIMENTS

We have conducted experiments on CIFAR-10 (Krizhevsky et al.), STL-10 (Coates et al., 2011)
and CelebA (Liu et al., 2015) databases. CIFAR-10 has 60,000 images of 32×32 pixels with 10
classes: airplane, automobile, bird, cat, dear, dog, frog, horse, ship, and truck. We have used 50,000
training set images to train our model. STL-10 is a subset of ImageNet and more complex than
CIFAR-10. There are 13,000 labeled and 100,000 unlabeled images with 96×96 pixels resolution.
CelebA contains 200K aligned face images. The images are cropped to leave face are roughly. All
of our experiments have been conducted without any labels from datasets.

There is no agreed-upon evaluation metric for generative models (Theis et al., 2015). One commonly
used metric is the Inception score (Salimans et al., 2016) which is well correlated with human
judgment. Inception score is exp(Ex[KL(p(y|x)||p(y))]), where p(y|x) is the conditional class
probability which should ideally have low entropy, and p(y) is the marginal class probability which
should ideally have high entropy. Higher values of inception score are better. For evaluation, 50,000
images are generated and fed into the official Inception score code1 with 10 splits.2

The network architecture for each dataset is similar to Radford et al. (2015); details are provided in
the Appendix. We have used transposed convolution with strides 2 in generator until it matches the
size of the data. In the discriminator, convolutions with stride 2 are used until it reaches a pre-defined
feature map size. BatchNorm (Ioffe & Szegedy, 2015) is used in both generator and discriminator,
except the last layer of generator and first layer of discriminator. When C-ARGAN is used, the
depth of the last layer in E restricted to 256 in order to reduce computation time during training. In
the case of S-ARGAN and PARGAN, the depth of the last layer is 512. We have used single layer
LSTM for S-ARGAN, and multi-layer LSTM for C-ARGAN since single level produces blurry
results. ADAM is used as optimizer with learning rate 0.0001 and β1 = 0.5.

Interestingly, the L2 loss could not produce results as good as L1 loss in R’s objective (Eq. 6).
Hence, we have conducted all our experiments using L1 loss in the autoregressive model. In the
case of C-ARGAN and S-ARGAN, the generator is updated t times to catch encoder. We found
t to be an important hyper-parameter to tune. By using grid search, we choose t = 3 in all our
experiments. With this setting, the error of the generator closely follows the error of the encoder.

4.1 QUALITATIVE RESULTS

Generated images for the proposed S-ARGAN, C-ARGAN and PARGAN for CIFAR-10 are shown
in Fig. 5. Note that none of the images in this paper are cherry picked. Overall images look sharp
even though not all of them feature recognizable objects. For CIFAR-10, only 32x32 resolution
is explored. Fig. 6 shows 48x48 pixel image generation from STL-10 dataset for S-ARGAN, C-
ARGAN and PARGAN. We have also used PARGAN on the 96x96 STL-10 to show it can scale
to higher resolutions (Fig. 7). Certain objects like car, ship, horse, and some other animals are
recognizable. For CelebA generation we have used SW-ARGAN with 64x64 resolution (Fig. 8).
The face images looks realistic in general with small artifacts in certain samples.

4.2 QUANTITATIVE RESULTS

Inception scores for the proposed S-ARGAN, C-ARGAN and PARGAN on CIFAR-10 and STL-
10 are given in Table 1. We compare our results with other baseline GAN models3 like DCGAN
(Radford et al., 2015), EBGAN (Dai et al., 2017), WGAN (Gulrajani et al., 2017) rather than
extensions such as D2GAN (Dinh Nguyen et al., 2017), MGGAN (Hoang et al., 2017), DFM
(Warde-Farley & Bengio, 2017). These extensions can be combined with our model in the same
way as they are combined with vanilla GAN. C-ARGAN and S-ARGAN show competitive results

1 https://github.com/openai/improved-gan/tree/master/inception_score
2 In other papers information about which model is used when reporting the score is often missing. For

example, one can run the same model several times and publish the best score. In order to produce unbiased
estimates, we have run our model and collected the score more than 10 times when there is no perceptual
improvement over generated images. We published the averages of the scores.

3To be clear, each baseline GAN optimizes different divergence, for example basic GAN, WGAN, EGBAN,
optimizes Jensen-Shannon, Wasserstein and total variance respectively. While extension does not change di-
vergence but rather model architecture etc.

6

https://github.com/openai/improved-gan/tree/master/inception_score

Under review as a conference paper at ICLR 2018

Figure 5: Generation for CIFAR-10 dataset. (Left): S-ARGAN. (Middle): C-ARGAN. (Right):
PARGAN

Figure 6: Generation for STL-10 dataset with 48x48 resolution. (Left): S-ARGAN. (Middle): C-
ARGAN. (Right): PARGAN

with vanilla GAN, while PARGAN outperforms them. PARGAN is competitive with WGAN-GP on
the same architecture (DCGAN) even though WGAN-GP performs better with ResNet (Gulrajani
et al., 2017).

Table 1: Inception scores on CIFAR-10 and STL-10.

Model CIFAR-10 STL-10
Real data 11.24 ± 0.16 26.08 ± 0.26

ALI (Dumoulin et al., 2016) 5.34 ± 0.05 -
BEGAN (Berthelot et al., 2017) 5.62 -

D2GAN (Dinh Nguyen et al., 2017) 7.15 ± 0.07 7.98
MGGAN (Hoang et al., 2017) 8.23 9.09

DFM (Warde-Farley & Bengio, 2017) 7.72 ± 0.13 8.51 ± 0.13
Improved-GAN (Salimans et al., 2016) 6.86 ± 0.06 -

DCGAN (Radford et al., 2015) 6.40 ± 0.05 7.54
EBGAN (Zhao et al., 2016) 6.74 ± 0.09 -

WGAN-GP (ResNet) (Gulrajani et al., 2017) 7.86 ± 0.07 9.05 ± 0.12
WGAN-GP (DCGAN) (Our implementation) 6.80 -

S-ARGAN (Proposed) 6.50 7.44
C-ARGAN (Proposed) 6.46 7.60
PARGAN (Proposed) 6.86 7.89

5 CONCLUSIONS AND FUTURE WORK

We have proposed a novel GAN model and successfully trained it on CIFAR-10 and STL-10
datasets. It models the latent distribution of real samples, which is learned via adversarial training.

7

Under review as a conference paper at ICLR 2018

Figure 7: Generation for STL-10 dataset with 96x96 resolution PARGAN.

Besides, we have combined the proposed model with Patch-GAN to further improve the stability of
training and the quality of generated images.

In this work, we have used a simple autoregressive model. Our model can be further enhanced by
more advanced latent space modeling, such as bidirectional modules (Schuster & Paliwal, 1997),
2D LSTM (Theis & Bethge, 2015), hierarchical modules (Mehri et al., 2017) etc.

As future work, we would like to extend this method to ImageNet which has even larger sample
variation. Combining our models with MGGAN (Hoang et al., 2017) is another potential research
direction.

REFERENCES

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. ArXiv e-prints, January 2017.

David Berthelot, Tom Schumm, and Luke Metz. BEGAN: boundary equilibrium generative ad-
versarial networks. CoRR, abs/1703.10717, 2017. URL http://arxiv.org/abs/1703.
10717.

A. Coates, H. Lee, and A.Y. Ng. An analysis of single-layer networks in unsupervised feature
learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudk (eds.), Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of JMLR
Workshop and Conference Proceedings, pp. 215–223. JMLR W&CP, 2011. URL http://
jmlr.csail.mit.edu/proceedings/papers/v15/coates11a.html.

Z. Dai, A. Almahairi, P. Bachman, E. Hovy, and A. Courville. Calibrating Energy-based Generative
Adversarial Networks. ArXiv e-prints, February 2017.

8

http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1703.10717
http://jmlr.csail.mit.edu/proceedings/papers/v15/coates11a.html
http://jmlr.csail.mit.edu/proceedings/papers/v15/coates11a.html

Under review as a conference paper at ICLR 2018

Figure 8: Generation for CelebA dataset with 64x64 resolution SW-ARGAN.

T. Dinh Nguyen, T. Le, H. Vu, and D. Phung. Dual Discriminator Generative Adversarial Nets.
ArXiv e-prints, September 2017.

V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville.
Adversarially Learned Inference. ArXiv e-prints, June 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Pro-
cessing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014. URL http://papers.
nips.cc/paper/5423-generative-adversarial-nets.pdf.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved Training of Wasser-
stein GANs. ArXiv e-prints, March 2017.

Q. Hoang, T. Dinh Nguyen, T. Le, and D. Phung. Multi-Generator Generative Adversarial Nets.
ArXiv e-prints, August 2017.

F. Huszár. How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
ArXiv e-prints, November 2015.

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. ArXiv e-prints, February 2015.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with Conditional Adver-
sarial Networks. ArXiv e-prints, November 2016.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

9

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2018

C. Li and M. Wand. Precomputed Real-Time Texture Synthesis with Markovian Generative Adver-
sarial Networks. ArXiv e-prints, April 2016.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), 2015.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, and Zhen Wang. Multi-class generative
adversarial networks with the L2 loss function. CoRR, abs/1611.04076, 2016. URL http:
//arxiv.org/abs/1611.04076.

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo,
Aaron Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end neural audio
generation model. 2017. URL https://openreview.net/forum?id=SkxKPDv5xl.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015. URL http://
arxiv.org/abs/1511.06434.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. CoRR, abs/1606.03498, 2016. URL http://arxiv.
org/abs/1606.03498.

M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. Trans. Sig. Proc., 45(11):
2673–2681, November 1997. ISSN 1053-587X. doi: 10.1109/78.650093. URL http://dx.
doi.org/10.1109/78.650093.

L. Theis and M. Bethge. Generative Image Modeling Using Spatial LSTMs. ArXiv e-prints, June
2015.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. ArXiv
e-prints, November 2015.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
CoRR, abs/1601.06759, 2016. URL http://arxiv.org/abs/1601.06759.

David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with denoising
feature matching. 2017. URL https://openreview.net/forum?id=S1X7nhsxl.

Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun. Energy-based generative adversarial network.
CoRR, abs/1609.03126, 2016. URL http://arxiv.org/abs/1609.03126.

10

http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1611.04076
https://openreview.net/forum?id=SkxKPDv5xl
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
http://arxiv.org/abs/1601.06759
https://openreview.net/forum?id=S1X7nhsxl
http://arxiv.org/abs/1609.03126

Under review as a conference paper at ICLR 2018

A NETWORK ARCHITECTURES

Network architecture for CIFAR-10:

• Generator: FC(100,512*4*4)-BN-ReLU-DC(512,256;4c2s)-BN-ReLU-
DC(256,128;4c2s)-BN-ReLU-DC(128,3;4c2s)-Tanh

• Feature Learner: CV(3,64;4c2s)-BN-LRec-CV(64,128;4c2s)-BN-LRec-
CV(128,256;4c2s) -BN-LRec-CV(256,512;4c2s)-BN-LRec

• Autoregressive model for C-ARGAN: 2 layer LSTM, hidden size:128
• Autoregressive model for S-ARGAN: 1 layer LSTM, hidden size:512
• Autoregressive model for PARGAN: 1 layer LSTM, hidden size:512
• Patch-wise discriminator for PARGAN: CV(512,1;1c1s)

Network architecture for STL-10:

• Generator: FC(100,512*3*3)-BN-ReLU-DC(512,256;4c2s)-BN-ReLU-
DC(256,256;4c2s)-BN-ReLU-DC(256,128;4c2s)-BN-ReLU-DC(128,3;4c2s)-Tanh

• Feature Learner: CV(3,64;4c2s)-BN-LRec-CV(64,128;4c2s)-BN-LRec-
CV(128,256;4c2s) -BN-LRec-CV(256,512;4c2s)-BN-LRec

• Autoregressive model for C-ARGAN: 2 layer LSTM, hidden size:128
• Autoregressive model for S-ARGAN: 1 layer LSTM, hidden size:512
• Autoregressive model for PARGAN: 1 layer LSTM, hidden size:512
• Patch-wise discriminator for PARGAN: CV(512,1;1c1s)

FC(100,512) denotes fully connected layer from 100 to 512 dimensions, BN is batch-normalization,
DC(512,256;4c2s) is transposed convolution with input channels 512 and output channels 256, while
4c2s denotes filter size 4 and stride 2 (fractional stride in this case). CV is convolution layer and
LRec is leaky ReLU.

11

	Introduction
	Related Work
	Method
	Preliminary
	Autoregressive GAN (ARGAN)
	Patch-GAN + S-ARGAN (PARGAN)

	Experiments
	Qualitative Results
	Quantitative Results

	Conclusions and Future Work
	Network Architectures

