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ABSTRACT

We present graph attention networks (GATs), novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to
address the shortcomings of prior methods based on graph convolutions or their
approximations. By stacking layers in which nodes are able to attend over their
neighborhoods’ features, we enable (implicitly) specifying different weights to
different nodes in a neighborhood, without requiring any kind of computationally
intensive matrix operation (such as inversion) or depending on knowing the graph
structure upfront. In this way, we address several key challenges of spectral-based
graph neural networks simultaneously, and make our model readily applicable to
inductive as well as transductive problems. Our GAT models have achieved or
matched state-of-the-art results across four established transductive and inductive
graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as
well as a protein-protein interaction dataset (wherein test graphs remain unseen
during training).

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have been successfully applied to tackle problems such
as image classification (He et al., 2016), semantic segmentation (Jégou et al., 2017) or machine
translation (Gehring et al., 2016), where the underlying data representation has a grid-like structure.
These architectures efficiently reuse their local filters, with learnable parameters, by applying them
to all the input positions.

However, many interesting tasks involve data that can not be represented in a grid-like structure and
that instead lies in an irregular domain. This is the case of 3D meshes, social networks, telecommu-
nication networks, biological networks or brain connectomes. Such data can usually be represented
in the form of graphs.

There have been several attempts in the literature to extend neural networks to deal with arbitrarily
structured graphs. Early work used recursive neural networks to process data represented in graph
domains as directed acyclic graphs (Frasconi et al., 1998; Sperduti & Starita, 1997). Graph Neural
Networks (GNNs) were introduced in Gori et al. (2005) and Scarselli et al. (2009) as a generalization
of recursive neural networks that can directly deal with a more general class of graphs, e.g. cyclic,
directed and undirected graphs. GNNs consist of an iterative process, which propagates the node
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states until equilibrium; followed by a neural network, which produces an output for each node
based on its state. This idea was adopted and improved by Li et al. (2016), which propose to use
gated recurrent units (Cho et al., 2014) in the propagation step.

Nevertheless, there is an increasing interest in generalizing convolutions to the graph domain. Ad-
vances in this direction are often categorized as spectral approaches and non-spectral approaches.

On one hand, spectral approaches work with a spectral representation of the graphs and have been
successfully applied in the context of node classification. In Bruna et al. (2014), the convolution
operation is defined in the Fourier domain by computing the eigendecomposition of the graph Lapla-
cian, resulting in potentially intense computations and non-spatially localized filters. These issues
were addressed by subsequent works. Henaff et al. (2015) introduced a parameterization of the
spectral filters with smooth coefficients in order to make them spatially localized. Later, Defferrard
et al. (2016) proposed to approximate the filters by means of a Chebyshev expansion of the graph
Laplacian, removing the need to compute the eigenvectors of the Laplacian and yielding spatially
localized filters. Finally, Kipf & Welling (2017) simplified the previous method by restricting the
filters to operate in a 1-step neighborhood around each node. However, in all of the aforementioned
spectral approaches, the learned filters depend on the Laplacian eigenbasis, which depends on the
graph structure. Thus, a model trained on a specific structure can not be directly applied to a graph
with a different structure.

On the other hand, we have non-spectral approaches (Duvenaud et al., 2015; Atwood & Towsley,
2016; Hamilton et al., 2017), which define convolutions directly on the graph, operating on groups
of spatially close neighbors. One of the challenges of these approaches is to define an operator which
works with different sized neighborhoods and maintains the weight sharing property of CNNs. In
some cases, this requires learning a specific weight matrix for each node degree (Duvenaud et al.,
2015), using the powers of a transition matrix to define the neighborhood while learning weights for
each input channel and neighborhood degree (Atwood & Towsley, 2016), or extracting and normal-
izing neighborhoods containing a fixed number of nodes (Niepert et al., 2016). Monti et al. (2016)
presented mixture model CNNs (MoNet), a spatial approach which provides a unified generaliza-
tion of CNN architectures to graphs. More recently, Hamilton et al. (2017) introduced GraphSAGE,
a method for computing node representations in an inductive manner. This technique operates by
sampling a fixed-size neighborhood of each node, and then performing a specific aggregator over
it (such as the mean over all the sampled neighbors’ feature vectors, or the result of feeding them
through a recurrent neural network). This approach has yielded impressive performance across sev-
eral large-scale inductive benchmarks.

Attention mechanisms have become almost a de facto standard in many sequence-based tasks (Bah-
danau et al., 2015; Gehring et al., 2016). One of the benefits of attention mechanisms is that they
allow for dealing with variable sized inputs, focusing on the most relevant parts of the input to make
decisions. When an attention mechanism is used to compute a representation of a single sequence,
it is commonly referred to as self-attention or intra-attention. Together with Recurrent Neural Net-
works (RNNs) or convolutions, self-attention has proven to be useful for tasks such as machine
reading (Cheng et al., 2016) and learning sentence representations (Lin et al., 2017). However,
Vaswani et al. (2017) showed that not only self-attention can improve a method based on RNNs or
convolutions, but also that it is sufficient for constructing a powerful model obtaining state-of-the-art
performance on the machine translation task.

Inspired by this recent work, we introduce an attention-based architecture to perform node classifica-
tion of graph-structured data. The idea is to compute the hidden representations of each node in the
graph, by attending over its neighbors, following a self-attention strategy. The attention architecture
has several interesting properties: (1) the operation is efficient, since it is parallelizable across node-
neighbor pairs; (2) it can be applied to graph nodes having different degrees by specifying arbitrary
weights to the neighbors; and (3) the model is directly applicable to inductive learning problems,
including tasks where the model has to generalize to completely unseen graphs. We validate the
proposed approach on four challenging benchmarks: Cora, Citeseer and Pubmed citation networks
as well as an inductive protein-protein interaction dataset, achieving or matching state-of-the-art re-
sults that highlight the potential of attention-based models when dealing with arbitrarily structured
graphs.
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It is worth noting that, as Kipf & Welling (2017) and Atwood & Towsley (2016), our work can also
be reformulated as a particular instance of MoNet (Monti et al., 2016). Moreover, our approach of
sharing a neural network computation across edges is reminiscent of the formulation of relational
networks (Santoro et al., 2017) and VAIN (Hoshen, 2017), wherein relations between objects or
agents are aggregated pair-wise, by employing a shared mechanism. Similarly, our proposed at-
tention model can be connected to the works by Duan et al. (2017) and Denil et al. (2017), which
use a neighborhood attention operation to compute attention coefficients between different objects
in an environment. Other related approaches include locally linear embedding (LLE) (Roweis &
Saul, 2000) and memory networks (Weston et al., 2014). LLE selects a fixed number of neighbors
around each data point, and learns a weight coefficient for each neighbor to reconstruct each point
as a weighted sum of its neighbors. A second optimization step extracts the point’s feature embed-
ding. Memory networks also share some connections with our work, in particular, if we interpret
the neighborhood of a node as the memory, which is used to compute the node features by attending
over its values, and then is updated by storing the new features in the same position.

2 GAT ARCHITECTURE

In this section, we will present the building block layer used to construct arbitrary graph attention
networks (through stacking this layer), and directly outline its theoretical and practical benefits and
limitations compared to prior work in the domain of neural graph processing.

2.1 GRAPH ATTENTIONAL LAYER

We will start by describing a single graph attentional layer, as the sole layer utilized throughout
all of the GAT architectures used in our experiments. The particular attentional setup utilized by us
closely follows the work of Bahdanau et al. (2015)—but the framework is agnostic to the particular
choice of attention mechanism.

The input to our layer is a set of node features, h = {~h1,~h2, . . . ,~hN},~hi ∈ RF , where N is the
number of nodes, and F is the number of features in each node. The layer produces a new set of node
features (of potentially different cardinality F ′), h′ = {~h′1,~h′2, . . . ,~h′N},~h′i ∈ RF ′

, as its output.

In order to obtain sufficient expressive power to transform the input features into higher-level fea-
tures, at least one learnable linear transformation is required. To that end, as an initial step, a shared
linear transformation, parametrized by a weight matrix, W ∈ RF ′×F , is applied to every node. We
then perform self-attention on the nodes—a shared attentional mechanism a : RF ′ × RF ′ → R
computes attention coefficients

eij = a(W~hi,W~hj) (1)

that indicate the importance of node j’s features to node i. In its most general formulation, the model
allows every node to attend on every other node, dropping all structural information. We inject the
graph structure into the mechanism by performing masked attention—we only compute eij for nodes
j ∈ Ni, where Ni is some neighborhood of node i in the graph. In all our experiments, these will
be exactly the first-order neighbors of i (including i). To make coefficients easily comparable across
different nodes, we normalize them across all choices of j using the softmax function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

. (2)

In our experiments, the attention mechanism a is a single-layer feedforward neural network,
parametrized by a weight vector ~a ∈ R2F ′

, and applying the LeakyReLU nonlinearity (with negative
input slope α = 0.2). Fully expanded out, the coefficients computed by the attention mechanism
(illustrated by Figure 1 (left)) may then be expressed as:

αij =
exp

(
LeakyReLU

(
~aT [W~hi‖W~hj ]

))
∑

k∈Ni
exp

(
LeakyReLU

(
~aT [W~hi‖W~hk]

)) (3)

where ·T represents transposition and ‖ is the concatenation operation.
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Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a ∈ R2F ′

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h′1.

Once obtained, the normalized attention coefficients are used to compute a linear combination of the
features corresponding to them, to serve as the final output features for every node (after potentially
applying a nonlinearity, σ):

~h′i = σ

∑
j∈Ni

αijW~hj

 . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h′i =

K

‖
k=1

σ

∑
j∈Ni

αk
ijW

k~hj

 (5)

where ‖ represents concatenation, αk
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h′, will consist of KF ′ features (rather than F ′)
for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h′i = σ

 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k~hj

 (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:
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• Computationally, it is highly efficient: the operation of the self-attentional layer can be
parallelized across all edges, and the computation of output features can be parallelized
across all nodes. No eigendecompositions or similar computationally intensive matrix op-
erations are required. The time complexity of a single GAT attention head computing F ′
features may be expressed as O(|V |FF ′ + |E|F ′), where F is the number of input fea-
tures, and |V | and |E| are the numbers of nodes and edges in the graph, respectively. This
complexity is on par with the baseline methods such as Graph Convolutional Networks
(GCNs) (Kipf & Welling, 2017). Applying multi-head attention multiplies the storage and
parameter requirements by a factor of K, while the individual heads’ computations are
fully independent and can be parallelized.

• As opposed to GCNs, our model allows for (implicitly) assigning different importances to
nodes of a same neighborhood, enabling a leap in model capacity. Furthermore, analyzing
the learned attentional weights may lead to benefits in interpretability, as was the case in
the machine translation domain (e.g. the qualitative analysis of Bahdanau et al. (2015)).

• The attention mechanism is applied in a shared manner to all edges in the graph, and there-
fore it does not depend on upfront access to the global graph structure or (features of) all of
its nodes (a limitation of many prior techniques). This has several desirable implications:

– The graph is not required to be undirected (we may simply leave out computing αij if
edge j → i is not present).

– It makes our technique directly applicable to inductive learning—including tasks
where the model is evaluated on graphs that are completely unseen during training.

• The recently published inductive method of Hamilton et al. (2017) samples a fixed-size
neighborhood of each node, in order to keep its computational footprint consistent; this
does not allow it access to the entirety of the neighborhood while performing inference.
Moreover, this technique achieved some of its strongest results when an LSTM (Hochreiter
& Schmidhuber, 1997)-based neighborhood aggregator is used. This assumes the existence
of a consistent sequential node ordering across neighborhoods, and the authors have rec-
tified it by consistently feeding randomly-ordered sequences to the LSTM. Our technique
does not suffer from either of these issues—it works with the entirety of the neighborhood
(at the expense of a variable computational footprint, which is still on-par with methods
like the GCN), and does not assume any ordering within it.

• As mentioned in Section 1, GAT can be reformulated as a particular instance of MoNet
(Monti et al., 2016). More specifically, setting the pseudo-coordinate function to be
u(x, y) = f(x)‖f(y), where f(x) represent (potentially MLP-transformed) features of
node x and ‖ is concatenation; and the weight function to be wj(u) = softmax(MLP(u))
(with the softmax performed over the entire neighborhood of a node) would make MoNet’s
patch operator similar to ours. Nevertheless, one should note that, in comparison to previ-
ously considered MoNet instances, our model uses node features for similarity computa-
tions, rather than the node’s structural properties (which would assume knowing the graph
structure upfront).

We were able to produce a version of the GAT layer that leverages sparse matrix operations, reducing
the storage complexity to linear in the number of nodes and edges and enabling the execution of
GAT models on larger graph datasets. However, the tensor manipulation framework we used only
supports sparse matrix multiplication for rank-2 tensors, which limits the batching capabilities of
the layer as it is currently implemented (especially for datasets with multiple graphs). Appropriately
addressing this constraint is an important direction for future work. Depending on the regularity of
the graph structure in place, GPUs may not be able to offer major performance benefits compared
to CPUs in these sparse scenarios. It should also be noted that the size of the “receptive field” of
our model is upper-bounded by the depth of the network (similarly as for GCN and similar models).
Techniques such as skip connections (He et al., 2016) could be readily applied for appropriately
extending the depth, however. Lastly, parallelization across all the graph edges, especially in a
distributed manner, may involve a lot of redundant computation, as the neighborhoods will often
highly overlap in graphs of interest.
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Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)

3 EVALUATION

We have performed comparative evaluation of GAT models against a wide variety of strong base-
lines and previous approaches, on four established graph-based benchmark tasks (transductive as
well as inductive), achieving or matching state-of-the-art performance across all of them. This sec-
tion summarizes our experimental setup, results, and a brief qualitative analysis of a GAT model’s
extracted feature representations.

3.1 DATASETS

Transductive learning We utilize three standard citation network benchmark datasets—Cora,
Citeseer and Pubmed (Sen et al., 2008)—and closely follow the transductive experimental setup of
Yang et al. (2016). In all of these datasets, nodes correspond to documents and edges to (undirected)
citations. Node features correspond to elements of a bag-of-words representation of a document.
Each node has a class label. We allow for only 20 nodes per class to be used for training—however,
honoring the transductive setup, the training algorithm has access to all of the nodes’ feature vec-
tors. The predictive power of the trained models is evaluated on 1000 test nodes, and we use 500
additional nodes for validation purposes (the same ones as used by Kipf & Welling (2017)). The
Cora dataset contains 2708 nodes, 5429 edges, 7 classes and 1433 features per node. The Citeseer
dataset contains 3327 nodes, 4732 edges, 6 classes and 3703 features per node. The Pubmed dataset
contains 19717 nodes, 44338 edges, 3 classes and 500 features per node.

Inductive learning We make use of a protein-protein interaction (PPI) dataset that consists of
graphs corresponding to different human tissues (Zitnik & Leskovec, 2017). The dataset contains
20 graphs for training, 2 for validation and 2 for testing. Critically, testing graphs remain com-
pletely unobserved during training. To construct the graphs, we used the preprocessed data provided
by Hamilton et al. (2017). The average number of nodes per graph is 2372. Each node has 50
features that are composed of positional gene sets, motif gene sets and immunological signatures.
There are 121 labels for each node set from gene ontology, collected from the Molecular Signatures
Database (Subramanian et al., 2005), and a node can possess several labels simultaneously.

An overview of the interesting characteristics of the datasets is given in Table 1.

3.2 STATE-OF-THE-ART METHODS

Transductive learning For transductive learning tasks, we compare against the same strong base-
lines and state-of-the-art approaches as specified in Kipf & Welling (2017). This includes label
propagation (LP) (Zhu et al., 2003), semi-supervised embedding (SemiEmb) (Weston et al., 2012),
manifold regularization (ManiReg) (Belkin et al., 2006), skip-gram based graph embeddings (Deep-
Walk) (Perozzi et al., 2014), the iterative classification algorithm (ICA) (Lu & Getoor, 2003) and
Planetoid (Yang et al., 2016). We also directly compare our model against GCNs (Kipf & Welling,
2017), as well as graph convolutional models utilising higher-order Chebyshev filters (Defferrard
et al., 2016), and the MoNet model presented in Monti et al. (2016).

6



Published as a conference paper at ICLR 2018

Inductive learning For the inductive learning task, we compare against the four different super-
vised GraphSAGE inductive methods presented in Hamilton et al. (2017). These provide a variety
of approaches to aggregating features within a sampled neighborhood: GraphSAGE-GCN (which
extends a graph convolution-style operation to the inductive setting), GraphSAGE-mean (taking
the elementwise mean value of feature vectors), GraphSAGE-LSTM (aggregating by feeding the
neighborhood features into an LSTM) and GraphSAGE-pool (taking the elementwise maximization
operation of feature vectors transformed by a shared nonlinear multilayer perceptron). The other
transductive approaches are either completely inappropriate in an inductive setting or assume that
nodes are incrementally added to a single graph, making them unusable for the setup where test
graphs are completely unseen during training (such as the PPI dataset).

Additionally, for both tasks we provide the performance of a per-node shared multilayer perceptron
(MLP) classifier (that does not incorporate graph structure at all).

3.3 EXPERIMENTAL SETUP

Transductive learning For the transductive learning tasks, we apply a two-layer GAT model. Its
architectural hyperparameters have been optimized on the Cora dataset and are then reused for Cite-
seer. The first layer consists of K = 8 attention heads computing F ′ = 8 features each (for a total
of 64 features), followed by an exponential linear unit (ELU) (Clevert et al., 2016) nonlinearity. The
second layer is used for classification: a single attention head that computes C features (where C
is the number of classes), followed by a softmax activation. For coping with the small training set
sizes, regularization is liberally applied within the model. During training, we apply L2 regulariza-
tion with λ = 0.0005. Furthermore, dropout (Srivastava et al., 2014) with p = 0.6 is applied to
both layers’ inputs, as well as to the normalized attention coefficients (critically, this means that at
each training iteration, each node is exposed to a stochastically sampled neighborhood). Similarly
as observed by Monti et al. (2016), we found that Pubmed’s training set size (60 examples) required
slight changes to the GAT architecture: we have applied K = 8 output attention heads (instead of
one), and strengthened the L2 regularization to λ = 0.001. Otherwise, the architecture matches the
one used for Cora and Citeseer.

Inductive learning For the inductive learning task, we apply a three-layer GAT model. Both of the
first two layers consist of K = 4 attention heads computing F ′ = 256 features (for a total of 1024
features), followed by an ELU nonlinearity. The final layer is used for (multi-label) classification:
K = 6 attention heads computing 121 features each, that are averaged and followed by a logistic
sigmoid activation. The training sets for this task are sufficiently large and we found no need to apply
L2 regularization or dropout—we have, however, successfully employed skip connections (He et al.,
2016) across the intermediate attentional layer. We utilize a batch size of 2 graphs during training. To
strictly evaluate the benefits of applying an attention mechanism in this setting (i.e. comparing with
a near GCN-equivalent model), we also provide the results when a constant attention mechanism,
a(x, y) = 1, is used, with the same architecture—this will assign the same weight to every neighbor.

Both models are initialized using Glorot initialization (Glorot & Bengio, 2010) and trained to mini-
mize cross-entropy on the training nodes using the Adam SGD optimizer (Kingma & Ba, 2014) with
an initial learning rate of 0.01 for Pubmed, and 0.005 for all other datasets. In both cases we use
an early stopping strategy on both the cross-entropy loss and accuracy (transductive) or micro-F1

(inductive) score on the validation nodes, with a patience of 100 epochs1.

3.4 RESULTS

The results of our comparative evaluation experiments are summarized in Tables 2 and 3.

For the transductive tasks, we report the mean classification accuracy (with standard deviation) on
the test nodes of our method after 100 runs, and reuse the metrics already reported in Kipf & Welling
(2017) and Monti et al. (2016) for state-of-the-art techniques. Specifically, for the Chebyshev filter-
based approach (Defferrard et al., 2016), we provide the maximum reported performance for filters
of orders K = 2 and K = 3. In order to fairly assess the benefits of the attention mechanism,
we further evaluate a GCN model that computes 64 hidden features, attempting both the ReLU and

1Our implementation of the GAT layer may be found at: https://github.com/PetarV-/GAT.
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Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed.
GCN-64∗ corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive
Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%
LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%
GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7 ± 0.5% — 78.8 ± 0.3%

GCN-64∗ 81.4 ± 0.5% 70.9 ± 0.5% 79.0 ± 0.3%
GAT (ours) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

Table 3: Summary of results in terms of micro-averaged F1 scores, for the PPI dataset. GraphSAGE∗
corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture.
Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention
mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive
Method PPI
Random 0.396
MLP 0.422
GraphSAGE-GCN (Hamilton et al., 2017) 0.500
GraphSAGE-mean (Hamilton et al., 2017) 0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al., 2017) 0.600

GraphSAGE∗ 0.768
Const-GAT (ours) 0.934 ± 0.006
GAT (ours) 0.973 ± 0.002

ELU activation, and reporting (as GCN-64∗) the better result after 100 runs (which was the ReLU
in all three cases).

For the inductive task, we report the micro-averaged F1 score on the nodes of the two unseen test
graphs, averaged after 10 runs, and reuse the metrics already reported in Hamilton et al. (2017) for
the other techniques. Specifically, as our setup is supervised, we compare against the supervised
GraphSAGE approaches. To evaluate the benefits of aggregating across the entire neighborhood,
we further provide (as GraphSAGE∗) the best result we were able to achieve with GraphSAGE by
just modifying its architecture (this was with a three-layer GraphSAGE-LSTM with [512, 512, 726]
features computed in each layer and 128 features used for aggregating neighborhoods). Finally,
we report the 10-run result of our constant attention GAT model (as Const-GAT), to fairly evaluate
the benefits of the attention mechanism against a GCN-like aggregation scheme (with the same
architecture).

Our results successfully demonstrate state-of-the-art performance being achieved or matched across
all four datasets—in concordance with our expectations, as per the discussion in Section 2.2. More
specifically, we are able to improve upon GCNs by a margin of 1.5% and 1.6% on Cora and Cite-
seer, respectively, suggesting that assigning different weights to nodes of a same neighborhood may
be beneficial. It is worth noting the improvements achieved on the PPI dataset: Our GAT model
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improves by 20.5% w.r.t. the best GraphSAGE result we were able to obtain, demonstrating that our
model has the potential to be applied in inductive settings, and that larger predictive power can be
leveraged by observing the entire neighborhood. Furthermore, it improves by 3.9% w.r.t. Const-GAT
(the identical architecture with constant attention mechanism), once again directly demonstrating the
significance of being able to assign different weights to different neighbors.

The effectiveness of the learned feature representations may also be investigated qualitatively—and
for this purpose we provide a visualization of the t-SNE (Maaten & Hinton, 2008)-transformed
feature representations extracted by the first layer of a GAT model pre-trained on the Cora dataset
(Figure 2). The representation exhibits discernible clustering in the projected 2D space. Note that
these clusters correspond to the seven labels of the dataset, verifying the model’s discriminative
power across the seven topic classes of Cora. Additionally, we visualize the relative strengths of
the normalized attention coefficients (averaged across all eight attention heads). Properly interpret-
ing these coefficients (as performed by e.g. Bahdanau et al. (2015)) will require further domain
knowledge about the dataset under study, and is left for future work.

4 CONCLUSIONS

We have presented graph attention networks (GATs), novel convolution-style neural networks that
operate on graph-structured data, leveraging masked self-attentional layers. The graph attentional
layer utilized throughout these networks is computationally efficient (does not require computation-
ally intensive matrix operations, and is parallelizable across all nodes in the graph), allows for (im-
plicitly) assigning different importances to different nodes within a neighborhood while dealing with
different sized neighborhoods, and does not depend on knowing the entire graph structure upfront—
thus addressing many of the theoretical issues with previous spectral-based approaches. Our models
leveraging attention have successfully achieved or matched state-of-the-art performance across four
well-established node classification benchmarks, both transductive and inductive (especially, with
completely unseen graphs used for testing).

There are several potential improvements and extensions to graph attention networks that could be
addressed as future work, such as overcoming the practical problems described in subsection 2.2 to
be able to handle larger batch sizes. A particularly interesting research direction would be taking
advantage of the attention mechanism to perform a thorough analysis on the model interpretability.

Figure 2: A t-SNE plot of the computed feature representations of a pre-trained GAT model’s
first hidden layer on the Cora dataset. Node colors denote classes. Edge thickness indicates ag-
gregated normalized attention coefficients between nodes i and j, across all eight attention heads
(
∑K

k=1 α
k
ij + αk

ji).

9



Published as a conference paper at ICLR 2018

Moreover, extending the method to perform graph classification instead of node classification would
also be relevant from the application perspective. Finally, extending the model to incorporate edge
features (possibly indicating relationship among nodes) would allow us to tackle a larger variety of
problems.
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