
Published as a conference paper at ICLR 2017

OPTIMIZATION AS A MODEL FOR
FEW-SHOT LEARNING

Sachin Ravi∗and Hugo Larochelle
Twitter, Cambridge, USA
{sachinr,hugo}@twitter.com

ABSTRACT

Though deep neural networks have shown great success in the large data domain,
they generally perform poorly on few-shot learning tasks, where a classifier has to
quickly generalize after seeing very few examples from each class. The general
belief is that gradient-based optimization in high capacity classifiers requires many
iterative steps over many examples to perform well. Here, we propose an LSTM-
based meta-learner model to learn the exact optimization algorithm used to train
another learner neural network classifier in the few-shot regime. The parametriza-
tion of our model allows it to learn appropriate parameter updates specifically for
the scenario where a set amount of updates will be made, while also learning a
general initialization of the learner (classifier) network that allows for quick con-
vergence of training. We demonstrate that this meta-learning model is competitive
with deep metric-learning techniques for few-shot learning.

1 INTRODUCTION

Deep learning has shown great success in a variety of tasks with large amounts of labeled data in
image classification (He et al., 2015), machine translation (Wu et al., 2016), and speech modeling
(Oord et al., 2016). These achievements have relied on the fact that optimization of these deep,
high-capacity models requires many iterative updates across many labeled examples. This type of
optimization breaks down in the small data regime where we want to learn from very few labeled
examples. In this setting, rather than have one large dataset, we have a set of datasets, each with few
annotated examples per class. The motivation for this task lies not only in the fact that humans, even
children, can usually generalize after just one example of a given object, but also because models
excelling at this task would have many useful applications. Firstly, they would help alleviate data
collection as we would not require millions of labeled examples to attain reasonable performance.
Furthermore, in many fields, data exhibits the characteristic of having many different classes but few
examples per class. Models that are able to generalize from few examples would be able to capture
this type of data effectively.

There seem to be two main reasons why gradient-based optimization fails in the face of few la-
beled examples. Firstly, the variants of gradient-based optimization algorithms, such as momentum
(Nesterov, 1983), Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), and ADAM (Kingma &
Ba, 2014), weren’t designed specifically to perform well under the constraint of a set number of
updates. Specifically when applied to non-convex optimization problems, with a reasonable choice
of hyperparameters these algorithms don’t have very strong guarantees of speed of convergence,
beyond that they will eventually converge to a good solution after what could be many millions of
iterations. Secondly, for each separate dataset considered, the network would have to start from a
random initialization of its parameters, which considerably hurts its ability to converge to a good
solution after a few updates. Transfer learning (Caruana, 1995; Bengio et al., 2012; Donahue et al.,
2013) can be applied to alleviate this problem by fine-tuning a pre-trained network from another task
which has more labelled data; however, it has been observed that the benefit of a pre-trained network
greatly decreases as the task the network was trained on diverges from the target task (Yosinski et al.,
2014). What is needed is a systematic way to learn a beneficial common initialization that would

∗Work done as an intern at Twitter. Sachin is a PhD student at Princeton University and can be reached at
sachinr@princeton.edu.

1

Published as a conference paper at ICLR 2017

serve as a good point to start training for the set of datasets being considered. This would provide the
same benefits as transfer learning, but with the guarantee that the initialization is an optimal starting
point for fine-tuning.

Previous work has suggested one manner in which to acquire quick knowledge from few examples,
through the idea of meta-learning (Thrun, 1998; Schmidhuber et al., 1997). Meta-learning suggests
framing the learning problem at two levels. The first is quick acquisition of knowledge within each
separate task presented. This process is guided by the second, which involves slower extraction of
information learned across all the tasks.

We present a method here that addresses the weakness of neutral networks trained with gradient-
based optimization on the few-shot learning problem by framing the problem within a meta-learning
setting. We propose an LSTM-based meta-learner optimizer that is trained to optimize a learner
neural network classifier. The meta-learner captures both short-term knowledge within a task and
long-term knowledge common among all the tasks. By using an objective that directly captures an
optimization algorithm’s ability to have good generalization performance given only a set number
of updates, the meta-learner model is trained to converge a learner classifier to a good solution
quickly on each task. Additionally, the formulation of our meta-learner model allows it to learn a
task-common initialization for the learner classifier, which captures fundamental knowledge shared
among all the tasks.

2 TASK DESCRIPTION

We first begin by detailing the meta-learning formulation we use. In the typical machine learning
setting, we are interested in a dataset D and usually split D so that we optimize parameters θ on a
training set Dtrain and evaluate its generalization on the test set Dtest. In meta-learning, however,
we are dealing with meta-sets D containing multiple regular datasets, where each D ∈ D has a split
of Dtrain and Dtest.

We consider the k-shot, N -class classification task, where for each dataset D, the training set con-
sists of k labelled examples for each of N classes, meaning that Dtrain consists of k ·N examples,
and Dtest has a set number of examples for evaluation. We note that previous work (Vinyals et al.,
2016) has used the term episode to describe each dataset consisting of a training and test set.

In meta-learning, we thus have different meta-sets for meta-training, meta-validation, and meta-
testing (Dmeta−train, Dmeta−validation, and Dmeta−test, respectively). On Dmeta−train, we are
interested in training a learning procedure (the meta-learner) that can take as input one of its train-
ing setsDtrain and produce a classifier (the learner) that achieves high average classification perfor-
mance on its corresponding test setDtest. Using Dmeta−validation we can perform hyper-parameter
selection of the meta-learner and evaluate its generalization performance on Dmeta−test.

For this formulation to correspond to the few-shot learning setting, each training set in datasets
D ∈ D will contain few labeled examples (we consider k = 1 or k = 5), that must be used to
generalize to good performance on the corresponding test set. An example of this formulation is
given in Figure 1.

3 MODEL

We now move to the description of our proposed model for meta-learning.

3.1 MODEL DESCRIPTION

Consider a single dataset, or episode, D ∈ Dmeta−train. Suppose we have a learner neural net
classifier with parameters θ that we want to train on Dtrain. The standard optimization algorithms
used to train deep neural networks are some variant of gradient descent, which uses updates of the
form

θt = θt−1 − αt∇θt−1Lt, (1)

2

Published as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta−train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta−test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta−train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

where θt−1 are the parameters of the learner after t − 1 updates, αt is the learning rate at time t,
Lt is the loss optimized by the learner for its tth update, ∇θt−1Lt is the gradient of that loss with
respect to parameters θt−1, and θt is the updated parameters of the learner.

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct−1 + it � c̃t, (2)
if ft = 1, ct−1 = θt−1, it = αt, and c̃t = −∇θt−1

Lt.
Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = θt, and the
candidate cell state c̃t = ∇θt−1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let
it = σ

(
WI ·

[
∇θt−1

Lt,Lt, θt−1, it−1

]
+ bI

)
,

meaning that the learning rate is a function of the current parameter value θt−1, the current gradient
∇θt−1

Lt, the current loss Lt, and the previous learning rate it−1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = σ
(
WF ·

[
∇θt−1Lt,Lt, θt−1, ft−1

]
+ bF

)
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that

3

Published as a conference paper at ICLR 2017

the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows
optimization to proceed rapidly. Lastly, note that though the meta-learner’s update rule matches the
cell state update of the LSTM, the meta-learner also bears similarity to the GRU (Cho et al., 2014)
hidden state update, with the exception that the forget and input gates aren’t tied to sum to one.

3.2 PARAMETER SHARING & PREPROCESSING

Because we want our meta-learner to produce updates for deep neural networks, which consist
of tens of thousands of parameters, to prevent an explosion of meta-learner parameters we need to
employ some sort of parameter sharing. Thus as in Andrychowicz et al. (2016), we share parameters
across the coordinates of the learner gradient. This means each coordinate has its own hidden and
cell state values but the LSTM parameters are the same across all coordinates. This allows us to
use a compact LSTM model and additionally has the nice property that the same update rule is used
for each coordinate, but one that is dependent on the respective history of each coordinate during
optimization. We can easily implement parameter sharing by having the input be a batch of gradient
coordinates and loss inputs (∇θt,iLt,Lt) for each dimension i.

Because the different coordinates of the gradients and the losses can be of very different magnitudes,
we need to be careful in normalizing the values so that the meta-learner is able to use them properly
during training. Thus, we also found that the preprocessing method of Andrychowicz et al. (2016)
worked well when applied to both the dimensions of the gradients and the losses at each time step:

x→

{(
log(|x|)

p , sgn(x)
)

if |x| ≥ e−p

(−1, epx) otherwise

This preprocessing adjusts the scaling of gradients and losses, while also separating the information
about their magnitude and their sign (the latter being mostly useful for gradients). We found that the
suggested value of p = 10 in the above formula worked well in our experiments.

3.3 TRAINING

The question now is how do we train the LSTM meta-learner model to be effective at few-shot
learning tasks? As observed in Vinyals et al. (2016), in order to perform well at this task, it is key
to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset (episode), D = (Dtrain, Dtest) ∈ Dmeta−test, a good meta-learner model will, given
a series of learner gradients and losses on the training set Dtrain, suggest a series of updates for the
classifier that pushes it towards good performance on the test set Dtest.

Thus to match test time conditions, when considering each dataset D ∈ Dmeta−train, the training
objective we use is the loss Ltest of the produced classifier on D’s test set Dtest. While iterating
over the examples in D’s training set Dtrain, at each time step t the LSTM meta-learner receives
(∇θt−1

Lt,Lt) from the learner (the classifier) and proposes the new set of parameters θt. The
process repeats for T steps, after which the classifier and its final parameters are evaluated on the
test set to produce the loss that is then used to train the meta-learner. The training algorithm is
described in Algorithm 1 and the corresponding computational graph is shown in Figure 2.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses Lt and gradients∇θt−1
Lt of the learner are

dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

4

Published as a conference paper at ICLR 2017

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; θ) is the output of learner M using parameters θ for inputs X. We also use ∇t as
a shorthand for∇θt−1Lt.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtracting
by the mean and dividing by the standard deviation. During training, the mean and standard devi-
ation are estimated using the current batch being trained on, whereas during evaluation a running
average of both statistics calculated on the training set is used. We need to be careful with batch
normalization for the learner network in the meta-learning setting, because we do not want to collect
mean and standard deviation statistics during meta-testing in a way that allows information to leak
between different datasets (episodes), being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each datasetD ∈ D
during Dmeta−test, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

5

Published as a conference paper at ICLR 2017

Algorithm 1 Train Meta-Learner
Input: Meta-training set Dmeta−train, Learner M with parameters θ, Meta-Learner R with
parameters Θ.

1: Θ0 ← random initialization
2:
3: for d = 1, n do
4: Dtrain, Dtest ← random dataset from Dmeta−train
5: θ0 ← c0 . Intialize learner parameters
6:
7: for t = 1, T do
8: Xt,Yt ← random batch from Dtrain

9: Lt ← L(M(Xt; θt−1),Yt) . Get loss of learner on train batch
10: ct ← R((∇θt−1Lt,Lt); Θd−1) . Get output of meta-learner using Equation 2
11: θt ← ct . Update learner parameters
12: end for
13:
14: X,Y ← Dtest

15: Ltest ← L(M(X; θT),Y) . Get loss of learner on test batch
16: Update Θd using∇Θd−1

Ltest . Update meta-learner parameters
17:
18: end for

4 RELATED WORK

While this work falls within the broad literature of transfer learning in general, we focus here on
positioning it relative to previous work on meta-learning and few-shot learning.

4.1 META-LEARNING

Meta-learning has a long history, but has grown to prominence recently as many have advocated
for it as a key to achieving human-level intelligence in the future (Lake et al., 2016). The ability to
learn at two levels (learning within each task presented, while accumulating knowledge about the
similarities and differences between tasks) is seen as being crucial to improving AI. Previous work
has used a variety of techniques in the meta-learning setting.

Schmidhuber (1992; 1993) explored using networks that learn how to modify their own weights over
a number of computations steps on the input. The updating of the weights is defined in a parametric
form that allows the prediction and weight-change process to be differentiable end-to-end. The
work of Bengio et al. (1990; 1995) and Bengio (1993) considered learning update rules for neural
networks that are biologically plausible. This property is enforced by allowing the parametric form
of the update to only have as input local information at each hidden unit to determine the weight
change. Different optimization methods, such as genetic programming or simulated annealing, are
used to train the learning rule.

In Santoro et al. (2016), a memory-augmented neural network is trained to learn how to store and
retrieve memories to use for each classification task. The work of Andrychowicz et al. (2016) uses
an LSTM to train a neural network; however, they are interested in learning a general optimization
algorithm to train neural networks for large-scale classification, whereas we are interested in the
few-shot learning problem. This work also builds upon Hochreiter et al. (2001) and Bosc, both
of which used LSTMs to train multi-layer perceptrons to learn on binary classification and time-
series prediction tasks. Another related method is the work of Bertinetto et al. (2016), who train
a meta-learner to map a training example to the weights of a neural network that is then used to
classify future examples from this class; however, unlike our method the classifier network is directly
produced rather than being fine-tuned after multiple training steps. Our work also bears similarity
to Maclaurin et al. (2015), who tune the hyperparameters of gradient descent with momentum by
backpropagating through the chain of gradient steps to optimize the validation performance.

6

Published as a conference paper at ICLR 2017

4.2 FEW-SHOT LEARNING

The best performing methods for few-shot learning have been mainly metric learning methods.
Deep siamese networks (Koch, 2015) train a convolutional network to embed examples so that
items in the same class are close while items in different classes are far away, according to some
distance metric. Matching networks (Vinyals et al., 2016) refine this idea so that training and testing
conditions match, by defining a differentiable nearest neighbor loss involving the cosine similarities
of embeddings produced by a convolutional network.

5 EVALUATION

In this section, we describe the results of experiments, examining the properties of our model and
comparing our method’s performance against different approaches∗. Following Vinyals et al. (2016),
we consider the k-shot, N -class classification setting where a meta-learner trains on many related
but small training sets of k examples for each of N classes. We first split the list of all classes in
the data into disjoint sets and assign them to each meta-set of meta-training, meta-validation, and
meta-testing. To generate each instance of a k-shot, N -class task dataset D = (Dtrain, Dtest) ∈ D ,
we do the following: we first sampleN classes from the list of classes corresponding to the meta-set
we consider. We then sample k examples from each of those classes. These k examples together
compose the training set Dtrain. Then, an additional fixed amount of the rest of the examples are
sampled to yield a test set Dtest. We generally have 15 examples per class in the test sets. When
training the meta-learner, we iterate by sampling these datasets (episodes) repeatedly. For meta-
validation and meta-testing, however, we produce a fixed number of these datasets to evaluate each
method. We produce enough datasets to ensure that the confidence interval of the mean accuracy is
small.

For the learner, we use a simple CNN containing 4 convolutional layers, each of which is a 3 × 3
convolution with 32 filters, followed by batch normalization, a ReLU non-linearity, and lastly a
2× 2 max-pooling. The network then has a final linear layer followed by a softmax for the number
of classes being considered. The loss function L is the average negative log-probability assigned by
the learner to the correct class. For the meta-learner, we use a 2-layer LSTM, where the first layer is
a normal LSTM and the second layer is our modified LSTM meta-learner. The gradients and losses
are preprocessed and fed into the first layer LSTM, and the regular gradient coordinates are also
used by the second layer LSTM to implement the state update rule shown in (1). At each time step,
the learner’s loss and gradient is computed on a batch consisting of the entire training set Dtrain,
because we consider training sets with only a total of 5 or 25 examples. We train our LSTM with
ADAM using a learning rate of 0.001 and with gradient clipping using a value of 0.25.

5.1 EXPERIMENT RESULTS

The Mini-ImageNet dataset was proposed by Vinyals et al. (2016) as a benchmark offering the
challenges of the complexity of ImageNet images, without requiring the resources and infrastructure
necessary to run on the full ImageNet dataset. Because the exact splits used in Vinyals et al. (2016)
were not released, we create our own version of the Mini-Imagenet dataset by selecting a random
100 classes from ImageNet and picking 600 examples of each class. We use 64, 16, and 20 classes
for training, validation and testing, respectively. We consider 1-shot and 5-shot classification for
5 classes. We use 15 examples per class for evaluation in each test set. We compare against two
baselines and a recent metric-learning technique, Matching Networks (Vinyals et al., 2016), which
has achieved state-of-the-art results in few-shot learning. The results are shown in Table 1.

The first baseline we use is a nearest-neighbor baseline (Baseline-nearest-neighbor), where we first
train a network to classify between all the classes jointly in the original meta-training set. At meta-
test time, for each dataset D, we embed all the items in the training set using our trained network
and then use nearest-neighbor matching among the embedded training examples to classify each test
example. The second baseline we use (Baseline-finetune) represents a coarser version of our meta-
learner model. As in the first baseline, we start by training a network to classify jointly between all
classes in the meta-training set. We then use the meta-validation set to search over SGD hyperpa-
rameters, where each training set is used to fine-tune the pre-trained network before evaluating on

∗Code can be found at https://github.com/twitter/meta-learning-lstm.

7

https://github.com/twitter/meta-learning-lstm

Published as a conference paper at ICLR 2017

Model 5-class
1-shot 5-shot

Baseline-finetune 28.86± 0.54% 49.79± 0.79%
Baseline-nearest-neighbor 41.08± 0.70% 51.04± 0.65%

Matching Network 43.40± 0.78% 51.09± 0.71%
Matching Network FCE 43.56± 0.84% 55.31± 0.73%

Meta-Learner LSTM (OURS) 43.44± 0.77% 60.60± 0.71%

Table 1: Average classification accuracies on Mini-ImageNet with 95% confidence intervals.
Marked in bold are the best results for each scenario, as well as other results with an overlapping
confidence interval.

the test set. We use a fixed number of updates for fine tuning and search over the learning rate and
learning rate decay used during the course of these updates.

For Matching Networks, we implemented our own version of both the basic and the fully-conditional
embedding (FCE) versions. In the basic version, a convolutional network is trained to learn indepen-
dent embeddings for examples in the training and test set. In the FCE version, a bidirectional-LSTM
is used to learn an embedding for the training set such that each training example’s embedding is
also a function of all the other training examples. Additionally, an attention-LSTM is used so that
a test example embedding is also a function of all the embeddings of the training set. We do not
consider fine-tuning the network using the train set during meta-testing to improve performance as
mentioned in Vinyals et al. (2016), but do note that our meta-learner could also be fine-tuned using
this data. Note that to remain consistent with Vinyals et al. (2016), our baseline and matching net
convolutional networks have 4 layers each with 64 filters. We also added dropout to each convolu-
tional block in matching nets to prevent overfitting.

For our meta-learner, we train different models for the 1-shot and 5-shot tasks, that make 12 and
5 updates, respectively. We noticed that better performance for each task was attained if the meta-
learner is explicitly trained to do the set number of updates during meta-training that will be used
during meta-testing.

We attain results that are much better than the baselines discussed and competitive with Matching
Networks. For 5-shot, we are able to do much better than Matching Networks, whereas for 1-shot,
the confidence interval for our performance intersects the interval for Matching Networks. Again,
we note that the numbers do not match the ones provided by Vinyals et al. (2016) simply because we
created our version of the dataset and implemented our own versions of their model. It is interesting
to note that the fine-tuned baseline is worse than the nearest-neighbor baseline. Because we are not
regularizing the classifier, with very few updates the fine-tuning model overfits, especially in the
1-shot case. This propensity to overfit speaks to the benefit of meta-training the initialization of the
classifier end-to-end as is done in the meta-learning LSTM.

5.2 VISUALIZATION OF META-LEARNER

We also visualize the optimization strategy learned by the meta-learner, in Figure 3. We can look
at the it and ft gate values in Equation 2 at each update step, to try to get an understanding of how
the meta-learner updates the learner during training. We visualize the gate values while training
on different datasets Dtrain, to observe whether there are variations between training sets. We
consider both 1-shot and 5-shot classification settings, where the meta-learner is making 10 and 5
updates, respectively. For the forget gate values for both tasks, the meta-learner seems to adopt a
simple weight decay strategy that seems consistent across different layers. The input gate values
are harder to interpret to glean the meta-learner’s strategy. However, there seems to a be a lot of
variability between different datasets, indicating that the meta-learner isn’t simply learning a fixed
optimization strategy. Additionally, there seem to be differences between the two tasks, suggesting
that the meta-learner has adopted different methods to deal with the different conditions of each
setting.

8

Published as a conference paper at ICLR 2017

(a) Forget gate values for 1-shot meta-learner
(b) Input gate values for 1-shot meta-learner

(c) Forget gate values for 5-shot meta-learner (d) Input gate values for 5-shot meta-learner

Figure 3: Visualization of the input and forget values output by the meta-learner during the course
of its updates. Layers 1 − 4 represent the values for a randomly selected parameter from the 4
convolutional layers and layer 5 represents the values for a random parameter from fully-connected
layer. The different curves represent training steps on different datasets.

6 CONCLUSION

We described an LSTM-based model for meta-learning, which is inspired from the parameter up-
dates suggested by gradient descent optimization algorithms. Our LSTM meta-learner uses its state
to represent the learning updates of the parameters of a classifier. It is trained to discover both a
good initialization for the learner’s parameters, as well as a successful mechanism for updating the
learner’s parameters to a given small training set for some new classification task. Our experiments
demonstrate that our approach outperforms natural baselines and is competitive to the state-of-the-
art in metric learning for few-shot learning.

In this work, we focused our study to the few-shot and few-classes setting. However, it would be
more valuable to train meta-learners that can perform well across a full spectrum of settings, i.e. for
few or lots of training examples and for few or lots of possible classes. Our future work will thus
consider moving towards this more challenging scenario.

ACKNOWLEDGMENTS

We thank Jake Snell, Kevin Swersky, and Oriol Vinyals for helpful discussions of this work.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom
Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient descent. CoRR,
abs/1606.04474, 2016. URL http://arxiv.org/abs/1606.04474.

9

http://arxiv.org/abs/1606.04474

Published as a conference paper at ICLR 2017

Samy Bengio. Optimisation d’une régle d’apprentissage pour réseaux de neurones artificiels. PhD
thesis, Département d’Informatique et Recherche Opérationnelle. Université de Montréal, 1993.

Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for ANNs.
Neural Processing Letters, 2(4):26–30, 1995.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Université
de Montréal, Département d’informatique et de recherche opérationnelle, 1990.

Yoshua Bengio et al. Deep learning of representations for unsupervised and transfer learning. ICML
Unsupervised and Transfer Learning, 27:17–36, 2012.

Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip H. S. Torr, and Andrea Vedaldi. Learning
feed-forward one-shot learners. CoRR, abs/1606.05233, 2016. URL http://arxiv.org/
abs/1606.05233.

Tom Bosc. Learning to learn neural networks.

Rich Caruana. Learning many related tasks at the same time with backpropagation. Advances in
neural information processing systems, pp. 657–664, 1995.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR,
abs/1310.1531, 2013. URL http://arxiv.org/abs/1310.1531.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1953048.2021068.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient de-
scent. In IN LECTURE NOTES ON COMP. SCI. 2130, PROC. INTL. CONF. ON ARTI NEURAL
NETWORKS (ICANN-2001, pp. 87–94. Springer, 2001.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Gregory Koch. Siamese neural networks for one-shot image recognition. PhD thesis, University of
Toronto, 2015.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. CoRR, abs/1604.00289, 2016. URL http://arxiv.
org/abs/1604.00289.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
1983.

10

http://arxiv.org/abs/1606.05233
http://arxiv.org/abs/1606.05233
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1310.1531
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1604.00289
http://arxiv.org/abs/1604.00289

Published as a conference paper at ICLR 2017

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy P. Lillicrap. One-
shot learning with memory-augmented neural networks. CoRR, abs/1605.06065, 2016. URL
http://arxiv.org/abs/1605.06065.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. A neural network that embeds its own meta-levels. In Neural Networks, 1993.,
IEEE International Conference on, pp. 407–412. IEEE, 1993.

Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-story
algorithm, adaptive levin search, and incremental self-improvement. Machine Learning, 28(1):
105–130, 1997.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. CoRR, abs/1606.04080, 2016. URL http://arxiv.
org/abs/1606.04080.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? CoRR, abs/1411.1792, 2014. URL http://arxiv.org/abs/1411.
1792.

Wojciech Zaremba. An empirical exploration of recurrent network architectures. 2015.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.
URL http://arxiv.org/abs/1212.5701.

11

http://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1212.5701

	Introduction
	Task Description
	Model
	Model Description
	Parameter Sharing & Preprocessing
	Training
	Gradient independence assumption
	Initialization of Meta-Learner LSTM

	Batch Normalization

	Related Work
	Meta-learning
	Few-shot learning

	Evaluation
	Experiment Results
	Visualization of meta-learner

	Conclusion

