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ABSTRACT

In this paper we propose a generative model for graphs formulated as a variational
autoencoder. We sidestep hurdles associated with linearization of graphs by having
the decoder output a probabilistic fully-connected graph of a predefined maximum
size directly at once. We evaluate on the challenging task of molecule generation.

1 INTRODUCTION

Deep learning on graphs has very recently become a popular research topic (Bronstein et al., 2017).
Past work has concentrated on learning graph embedding tasks so far, i.e. encoding an input graph
into a vector representation. This is in stark contrast with fast-paced advances in generative models
for images and text. Hence, it is an intriguing question how one can transfer this progress to the
domain of graphs, i.e. their decoding from a vector representation.

However, learning to generate graphs is a difficult problem. Unlike sequence generation, graphs can
have arbitrary connectivity and there is no clear best way how to linearize their construction in a
sequence of steps: Vinyals et al. (2015) empirically found out that the linearization order matters
when learning on sets. On the other hand, iterative construction of discrete structures during training
without step-wise supervision involves discrete decisions, which are not differentiable and therefore
problematic for back-propagation.

In this work, we propose to sidestep these hurdles by having the decoder output a probabilistic
fully-connected graph of a predefined maximum size directly at once. In a probabilistic graph, the
existence of nodes and edges, as well as their attributes, are modeled as independent random variables.
The method, coined GraphVAE, is formulated in the framework of variational autoencoders Kingma
& Welling (2013) and demonstrated on the task of molecule generation.

Related Work. Johnson (2017) constructs a probabilistic (multi)graph according to a sequence of
input sentences to answer a query. While our model also outputs a probabilistic graph, we do not
assume having a prescribed order of construction transformations available and we formulate the
learning problem as an autoencoder. Xu et al. (2017) learns to produce a scene graph from an input
image and a set of object proposals. In contrast, our method does not need to specify the number
of nodes or the structure explicitly. Related work pre-dating deep learning includes random graphs
(Erdos & Rényi, 1960; Barabási & Albert, 1999) or stochastic blockmodels (Snijders & Nowicki,
1997). Cheminformatics has exploited progress made in text generation for string representation of
molecules (Gómez-Bombarelli et al., 2016; Olivecrona et al., 2017; Segler et al., 2017). As the syntax
is brittle, many invalid strings tend to be generated, which has been recently addressed by Kusner
et al. (2017) by incorporating grammar rules into decoding. While encouraging, their approach
does not guarantee semantic (chemical) validity, similarly as our method. An advantage of a graph
representation to text is the possibility to predict attributes in addition to the base structure.

2 METHOD

Our main idea is to output a probabilistic fully-connected graph and use a standard graph matching
algorithm to align it to the ground truth. We observe the task can become much simpler if we restrict
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Figure 1: Illustration of the proposed variational graph autoencoder. Starting from a discrete
attributed graph G = (A,E, F ) on n nodes (e.g. a representation of propylene oxide), stochastic
graph encoder qφ(z|G) embeds the graph into continuous representation z. Given a point in the latent
space, our novel graph decoder pθ(G|z) outputs a probabilistic fully-connected graph G̃ = (Ã, Ẽ, F̃ )
on predefined k ≥ n nodes, from which discrete samples may be drawn. Reconstruction ability of
the autoencoder is facilitated by approximate graph matching for aligning G with G̃.

the domain to the set of all graphs on maximum k nodes, where k is fairly small (tens). Under this
assumption, handling dense graph representations is still computationally tractable.

Graph Decoder. We propose to make the decoder output a probabilistic fully-connected graph
G̃ = (Ã, Ẽ, F̃ ) on k nodes at once. The predicted adjacency matrix Ã ∈ [0, 1]k×k contains both
node probabilities Ãa,a and edge probabilities Ãa,b for nodes a 6= b. The edge attribute tensor
Ẽ ∈ Rk×k×de indicates class probabilities for edges and, similarly, the node attribute matrix
F̃ ∈ Rk×dn contains class probabilities for nodes. At test time, a point estimate of G̃ can be obtained
by taking argmax in Ã, Ẽ, and F̃ , which can result in a discrete graph on less than k nodes.

Objective Function. Let G = (A,E, F ) be a graph on n ≤ k nodes. We wish to learn an encoder
and a decoder to map between the space of graphs G and their continuous embedding z ∈ Rc,
see Figure 1. The whole model is formulated as a variational autoencoder Kingma & Welling
(2013), trained by minimizing L(φ, θ;G) = Eqφ(z|G)[− log pθ(G|z)] + KL[qφ(z|G)||p(z)]. The
reconstruction likelihood pθ(G|z) = P (G|G̃) enforces high similarity of sampled generated graphs
to the input graph G. We use a simplistic isotropic Gaussian prior p(z) = N(0, I) for regularization.

Since no particular ordering of nodes is imposed in either G̃ or G and matrix representation of
graphs is not invariant to permutations of nodes, we assume knowledge of a binary assignment matrix
X ∈ {0, 1}k×n, defined below, to map information between both graphs. Specifically, input adjacency
matrix is mapped as A′ = XAXT , whereas the predicted node attribute matrix and slices of edge
attribute matrix are transferred as F̃ ′ = XT F̃ and Ẽ′·,·,l = XT Ẽ·,·,lX . The maximum likelihood
estimate for adjacency is the cross-entropy log p(A′|z) = 1/k

∑
aA
′
a,a log Ãa,a+(1−A′a,a) log(1−

Ãa,a)+1/k(k − 1)
∑
a6=bA

′
a,b log Ãa,b+(1−A′a,b) log(1−Ãa,b), for node attributes log p(F |z) =

1/n
∑
i logF

T
i,·F̃
′
i,·, and for edge attributes log p(E|z) = 1/(||A||1 − n)

∑
i 6=j logE

T
i,j,·Ẽ

′
i,j,·. The

formulation considers existence of both matched and unmatched nodes and edges but attributes of
only the matched ones. The overall reconstruction loss is a weighed sum of the previous terms:
− log p(G|z) = −λA log p(A′|z)− λF log p(F |z)− λE log p(E|z).

Graph Matching. The goal of graph matching is to find correspondences X ∈ {0, 1}k×n between
nodes of graphs G and G̃ based on the similarities of their node pairs i, j ∈ G and a, b ∈ G̃ defined
as S((i, j), (a, b)) = (ETi,j,·Ẽa,b,·)Ai,jÃa,bÃa,aÃb,b[i 6= j ∧ a 6= b] + (FTi,·F̃a,·)Ãa,a[i = j ∧ a = b].
The first term evaluates similarity between edge pairs and the second term between node pairs.
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Table 1: Performance of QM9 models over varied em-
bedding size c. Baselines listed only for the embedding
size c with the highest Valid ratio.

log pθ(G|z) Valid Unique Novel

Ours c = 20 -0.660 0.485 0.457 0.575
Ours c = 40 -0.537 0.542 0.618 0.617
Ours c = 60 -0.486 0.517 0.695 0.570
Ours c = 80 -0.482 0.557 0.760 0.616

CVAE c = 60 – 0.103 0.675 0.900
GVAE c = 20 – 0.602 0.093 0.809
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Figure 2: Decodings over a random 2D plane
in z-space. Chemically invalid graphs in red.

We use max-pooling matching by Cho et al. (2014), a simple but effective algorithm amendable
to batch mode, for obtaining a continuous assignment matrix X∗, which we discretize as X using
Hungarian algorithm to obtain a strict one-on-one mapping. While this operation is non-differentiable,
gradient can still flow to the decoder directly through the loss function and training convergence
proceeds without problems. To summarize, our method aims to find the best graph matching and then
further improve on it by gradient descent on the loss.

Details. A feed forward network with edge-conditioned graph convolutions (Simonovsky & Ko-
modakis, 2017) is used as encoder with the graph-level output model of Li et al. (2015b). The decoder
is a deterministic multi-layer perceptron with three outputs under sigmoid or softmax activations in
its last layer. The proposed model is expected to be useful only for generating small graphs due to
growth of number of parameters (O(k2)) and matching complexity (O(k4)). Nevertheless, for many
applications even generation of small graphs is still very useful.

3 EVALUATION

Graph representation of molecules is a convenient testbed for generative models due to canonical
visualization and automated chemical validation of samples. Chemical constraints on compatible
types of bonds and atom valences make the space of valid graphs complicated and molecule generation
challenging. In fact, a single addition or removal of edge or change in atom or bond type can make
a molecule chemically invalid. We compare our model to the character-based generator of Gómez-
Bombarelli et al. (2016) (CVAE) and the grammar-based generator of Kusner et al. (2017) (GVAE)
on QM9 dataset (Ramakrishnan et al., 2014) of about 134k organic molecules of up to 9 heavy atoms.

Quantitative Evaluation. The quality of a decoder can be evaluated by the validity and variety of
generated graphs. We draw ns = 104 samples z(s) ∼ p(z) and compute the discrete point estimate
of their decodings Ĝ(s) = argmax pθ(G|z(s)). Let V be the list of chemically valid samples
from Ĝ(s). We are interested in the ratio Valid = |V |/ns, the fraction of unique correct graphs
Unique = |set(V )|/|V |, and the fraction of novel graphs Novel = 1− |set(V ) ∩QM9|/|set(V )|.
In Table 1, up to 55% of generated molecules are chemically valid. It is also remarkable that about
60% of generated molecules are out of the dataset, i.e. the network has never seen them during
training. Looking at the baselines, CVAE can output only very few valid samples as expected, while
GVAE generates the highest number of valid samples (60%) but of very low variance (less than 10%).
We observe reconstruction loss decrease due to larger c providing more freedom up to some level.

Qualitative Evaluation. To visually judge the quality and smoothness of the learned embedding z,
we decode points sampled along a random 2D plane in Figure 2 (for c = 40 and within 5 units from
center of coordinates). The image shows a varied and fairly smooth mix of molecules.
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