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Abstract

Complex machine learned models play an in-
creasingly important role in modern technolo-
gies, consuming large amounts of data to provide
a plethora of useful services. While these sys-
tems are highly effective, many of them are black
boxes and give no insight into how they make the
choices they make. Moreover, those that do often
do so at the model-level rather than the instance-
level. In this work, we present a method for de-
riving instance-level explanations for tree ensem-
ble models and examine its applications. Tree
ensemble models such as Random Forests and
Boosted Trees are used across industry with great
success; adding a level of insight simultaneously
boosts model effectiveness and consumer trust.

1. Model Explainability
As machine learned models drive more and more of our
everyday experiences, they have the potential to greatly en-
hance our lives. These models depend on vast amounts of
data about who we are, where we go, what we like, and
how we interact with technology. The technologies for tar-
geting, personalization and other types of inference have
become so useful that we are increasingly comfortable pro-
viding our data to support them.

While the technology is at times astoundingly sophisti-
cated, the aggregation and inference over our personal data
carries with it an inherent risk of violating our privacy and
trust. As we push the boundaries of what machine learning
can be used for, we reveal the limitations and biases inher-
ent in the system. For this reason, it becomes increasingly
important to provide insight into how the system made its
decisions. Understanding the factors that led to a machine-
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learned decision allows us to correct biases, or remove our
personal data. Revealing the reasons behind model deci-
sions has the potential to increase user trust and engage-
ment with the system. This type of transparency is healthy,
and of benefit both to the models and to their consumers.

Much previous work in presenting model explanations cen-
ters around rule-based systems, which are used in domains
where the model is an aid to human decision-making, such
as for medical diagnoses. In such systems, the model is
not the domain expert - rather, the human is the expert -
so the focus is on making the models as understandable as
possible at the expense of accuracy (Caruana et al., 2015).

Many modern technolgies, such as search engines, and
recommender and forecasting systems are built on highly
complex, highly accurate tree ensembles. These models do
not lend themselves to human-understandable explanations
at the instance level. Rather than present the exact features
from the model itself, such a system may reveal heuristics
derived from a single feature, or use the results of a second
more interpretable model whose decisions are not related
to the original model.

Ideally we would like to have our cake, and eat it too. We
would like a model that is both a highly accurate predictor,
and yields reasonably accurate explanations. One approach
is to start with a model that lends itself to interpretation, and
drive its accuracy to be on par with the state-of-the art. This
is the approach of Lou et al. (Lou et al., 2012), building off
of Generalized Additive Models (GAMs). In GAMs, the
distributions of values for a given feature function can be
plotted in two dimensions, which is a visualization of the
model a domain expert can easily interpret. However, not
all systems lend themselves to this type of visualization. In
particular, if the consumer of the model is not a domain
expert, the visualizations will not be meaningful. Further,
as the number of features increases, the number of 2D plots
produced also increases. There is a limit to how many can
be viewed before the information becomes overwhelming.

In this paper, we define model explainability as two distinct
processes:

1. Determining which features contributed to a model’s
decision at the instance level.
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2. Producing a human-readable representation of the
salient features.

We focus on the first process and ask the question: What
were the features that contributed to the model’s decision
for a given instance?

We start with tree ensembles, which are known to be highly
accurate for many classes of problems, and are in wide
use in industry. We use the structure of the model to de-
rive instance-level explanations, examining changes in ex-
pected output at each node along the path through the tree.
Changes in expectation are added to the influence of the
splitting feature, and these changes are aggregated across
all nodes in all trees. Additionally, we maintain feature
ranges within which feature contributions would remain
unchanged to provide additional insights. In this work we
focus on Random Forests, but the same methodology ap-
plies to other tree ensemble models. Additionally, while
our case study is classification, the same methods apply to
other tasks.

2. Related Work
In a trio of papers exploring Generalized Additive Models
(GAMs), Lou and Caruana et al. (Lou et al., 2012; 2013;
Caruana et al., 2015) propose that GAMs are especially
suited for model explanations because they lend themselves
to visualizing the distributions of the values of the feature
functions. The feature distributions can be plotted in 2D,
making these visualizations very easy for a person look-
ing at them to interpret. GAMs are not as accurate as full-
complexity models, such as Random Forests and Boosted
Trees, but they are far more accurate than rule-based sys-
tems, which are currently used for systems that must be
human-interpretable, such as medical diagnoses. In (Lou
et al., 2012) the authors show that the accuracy of GAMs
can be improved with complex shape functions, with no
harm to the interpretability of the models.

Since GAMs lend themselves to visualization, the contri-
bution of their work is to push their accuracy to be on par
with full-complexity models, without sacrificing efficiency,
so that the models can scale and provide accurate results,
while still being human interpretable. To this end, the au-
thors propose GA2Ms, which allow the inclusion of pairs
of features, where the features interact (Lou et al., 2013).
This yields more accurate models, while still being able to
be visualized, because pairwise feature interactions can be
shown on a heatmap. The authors further investigate ef-
ficient methods for discovering the most informative pair-
wise feature interactions.

In the third paper (Caruana et al., 2015) the authors present
applications of GA2Ms for classifying patients as likely
to respond to treatment for pneumonia, and for classify-

ing patients as likely to be readmitted to the hospital. In
this work, the authors focus on a case study in the medical
domain, which is one of the primary applications of the re-
search into intelligible models. Because the model is used
as an aid to human reasoning, it is not useful if it does not
provide insight into the decision, and the model’s predic-
tions can be less accurate since the care provider will use
the model input as one factor in deciding care for a patient.

For many systems, there will be no human intervention,
and the system’s utility is first and foremost dependent
on its accuracy. There are many instances where a sys-
tem would benefit from providing the user insight into the
model decision, that are not at liberty to change the mod-
eling architecture. Tree Ensembles are widely used across
industry, for many search, personalization and recommen-
dation systems. In contrast to the work of Caruana et al.,
we focus on providing instance-level explanations for deci-
sions made by Random Forests and Boosted Trees. Other
approaches to this problem exist: Ribeiro et al. (Ribeiro
et al., 2016) proposed a method for instance-level explana-
tions of black-box classification models, and work by Hara
et al. (Hara and Hayashi, 2016) has focused on providing
similar insights by building a simpler model for interpre-
tation. Our approach differs from the black-box approach
by taking into account the structure of tree ensemble mod-
els, allowing for other insights besides a raw feature rank-
ing. It differs from both approaches by directly interpreting
the original model rather than building an additional inter-
pretable model.

It should be noted that work on feature selection (for an
overview see (Forman, 2003)) is not sufficient here, be-
cause feature selection provides weighting of features at
the model level, but does not give insight into the decision
for a given instance.

3. Decision Tree Models
A predictive decision tree is a directed acyclic graph satis-
fying the following conditions:

• There is a single node, called the root, which has no
incoming edges.

• Every other node in the graph has exactly one incom-
ing edge.

• There is only one path from the root to any given node.

• The nodes at the bottom of the tree, called leaves, have
no outgoing edges. Output predictions are stored in
these nodes.

Each non-leaf node splits on one or more features, but in
this work we focus on univariate splits. A split on feature
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xij is described by xij ≤ t, where t is some threshold
value. Instances satisfying the inequality progress to the
left subtree, while instances which do not satisfy the in-
equality progress to the right. Instances continue through
the tree until they reach a leaf node, at which point they are
assigned a prediction F (xi) according to the leaf node’s
output.

Decision tree learning involves deciding which feature to
split on at each node n. This is done by selecting the fea-
ture j and threshold t that minimize a function S(x,y, j, t)
across all incoming instances (x,y). The choice of split
function does not affect our algorithm. Our experiments
use:

Sj =
∑
i∈L

(yi − µL)2 +
∑
i∈R

(yi − µR)2 (1)

where µL is the mean yi of instances with xij ≤ t, and µR
is the mean yi of instances with xij > t.

3.1. Tree Ensembles

A tree ensemble is a collection of K decision trees whose
output F (x) for an instance x takes the form:

F (x) = f({Fk(x), k = 1..K}) (2)

where Fk(x) is the prediction of the kth tree for instance
x. In this work, we consider tree ensembles of the form:

F (x) = f(

K∑
k=1

Fk(x)) (3)

where f is a monotonically increasing function.

3.2. Random Forests

Random forests (Breiman, 2001) are tree ensemble models
for which each tree is trained independently. Trees are each
trained on a bootstrap sample of the data using a random
subset of the features. In this work, outputs were written as
indicated above, with:

f(v) =
1

1 + e−αv+β
(4)

where v is the summed output and α, β ∈ R.

4. The Explainability Model
The model we present aims to describe, for a given instance
xi, the influence that each feature j’s particular value xij

had on the final output F (xi). We assume a tree ensemble
model has already been trained, and that its structure cannot
be modified. The tree ensemble output takes the form

F (xi) = f(

T∑
k=1

Fk(xi)) (5)

where T is the number of trees in the ensemble, f is a
monotonically increasing function and Fk is the output of
the kth tree. Our model works as follows:

1. Assign outputOk(n) to each node n in trees k = 1..K
prior to prediction time.

2. At prediction time, consider each tree one at a time,
tracing the path of a given instance down the tree, and
monitoring the change in output at each node. The
output change for each node is added to the influence
of that feature. The sum of all changes for a given
feature is that feature’s contribution.

Just as there are multiple ways to assign outputs to leaf
nodes, there are multiple ways to assign outputs to internal
nodes. In this work we use expected value.

More formally, assume there is some prior distribution Pk
across all leaf nodes in the kth tree. Let Pk(l) be the prior
probability of arriving in leaf node l in the kth tree, and∑
l Pk(l) = 1. Similarly, let Ok(l) be the output at leaf

node l. Consider a node n in tree k for which both children
are leaf nodes. The expected output at node n is defined as
the expectation across the leaves nl and nr, namely:

Ek[n] =
Pk(nl)Ok(nl) + Pk(nr)Ok(nr)

Pk(nl) + Pk(nr)
(6)

More generally, the expected output at any node n can be
written:

Ek[n] =

∑
l∈L(n) Pk(l)Ok(l)∑

l∈L(n) Pk(l)
(7)

where L(n) is the set of all leaf nodes reachable from n.
Let Pk(n) be defined as

∑
l∈L(n) Pk(l) for every node n.

If nl and nr are the children of node n, the expectation can
be rewritten as:

Ek[n] = Pk(nl)E[nl] + Pk(nr)E[nr] (8)

This form yields the same result as Equation 7 but allows
for more efficient computation. If traversing the tree in
post-order, the expectations can be computed in time com-
plexityO(|Nk|) whereNk is the set of all nodes in the tree.
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Given this definition of Ek[n], the influence of a node n
splitting on feature j for a given instance x is computed
as the change in expected output from that node to the next
node along x’s path. More concretely, consider a tree k and
an instance x, and let nq(x) be the qth node along the path
x takes through tree k from the root node to the leaf node.
The influence Inflk(nq) of node nq’s split on feature j in
tree k is:

Inflk(nq) = ∆Ek[nq → nq+1] = Ek[nq+1]−Ek[nq] (9)

The overall influence of a feature j in tree k is the sum of
the influence of all nodes along x’s path that split on feature
j, namely:

FeatInflk(j) =
∑

n∈Pathk(x)

Inflk(n)Ik(j, n) (10)

where Pathk(x) is the set of all nodes along instance x’s
path through tree k, and Ik(j, n) is an indicator function
which is 1 if node n splits on feature j and 0 otherwise.
The feature influence across all trees is simply:

FeatInfl(j) =
∑

k=1..K

FeatInflk(j) (11)

4.1. Feature Influence Ranges

An extension of this method allows us to gain additional
insight by generating feature influence ranges. These are
ranges vi,j,min ≤ xij ≤ vi,j,max such that the path di-
rection after each node split on feature j for instance xi

would remain unchanged. In other words, as long as
vi,j,min ≤ xij ≤ vi,j,max, all feature influence contribu-
tions by nodes n ∈ Path(xi) splitting on feature j would
remain unchanged. These ranges are computed for tree k
as follows:

vk,i,j,min = max(tn∀n ∈ Pathk(xi)

: Ik(n, j) = 1, Lk(n) = 0) (12)
vk,i,j,max = min(tn∀n ∈ Pathk(xi)

: Ik(n, j) = 1, Lk(n) = 1) (13)

where tn is the split threshold for node n and Lk(n) in-
dicates a split where xi went left. Aggregating across all
trees to find the narrowest range, we have:

vi,j,min = max(vk,i,j,min, k = 1..K) (14)
vi,j,max = min(vk,i,j,max, k = 1..K) (15)

We can gain more insight by generating two ranges for each
feature j in tree k: One for cases where Inflk(n) > 0 and

one for cases where Inflk(n) < 0. Let these be called
v+k,min, v+k,max, v−k,min and v−k,max with implicit dependen-
cies on i, j and implicit Ik(n, j) = 1. We then have:

v+k,min = max(tn∀n ∈ Pathk(xi)

: Inflk(n) > 0, Lk(n) = 0) (16)

v+k,max = min(tn∀n ∈ Pathk(xi)

: Inflk(n) > 0, Lk(n) = 1) (17)

v−k,min = max(tn∀n ∈ Pathk(xi)

: Inflk(n) < 0, Lk(n) = 0) (18)

v−k,max = min(tn∀n ∈ Pathk(xi)

: Inflk(n) < 0, Lk(n) = 1) (19)

Aggregation is once again:

v+min = max(v+k,min, k = 1..K) (20)

v+max = min(v+k,,max, k = 1..K) (21)

v−min = max(v−k,,min, k = 1..K) (22)

v−max = min(v−k,,max, k = 1..K) (23)

which gives us the range values for each feature, partitioned
by contribution direction. The following section demon-
strates the above methods on a public data set.

5. Results
To test this model, we used the publicly available UCI
1995 Adult Census dataset (Lichman, 2013), wherein the
classification task is to determine whether an individual is
making over $50K/year or not. The training set contained
32,561 rows, and the test set contained 16,281 rows with
positive class ratios of 24% and 23.6% respectively and
labels yi ∈ {−1, 1}. Categorical variables were expanded
into 0/1 indicators. The set of features used was as follows:

Numerical Features Categorical Features
work class capital gain
education capital loss
native country hours-per-week
marital status (mar) education num
occupation (job) age
relationship (rel)
sex
race

Note that for each of the categorical features, an individ-
ual will have all values. For example, the same individual
will have the features “marital status (Married) = 1” and
“marital status (Never married) = 0”.

We trained a Random Forest model of 100 trees with at
most 20 leaves per tree, at least 10 instances per leaf, a
bootstrap sample size of 70% and a feature sample size
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of 70%, achieving 90% AUC, and an Accuracy of 85.8%.
The prior distributions Pk was computed using the training
data. Examining the top 3 positive and negative outputs of
the model on instances in the test set, we have:

Person A (95.1%) (Makes >$50K)
Rank Feature Influence Min Max
1 capital gain +74.9 7073.5 ∞
2 education num +22.0 12.5 ∞
3 mar (Married) +19.3 0.5 ∞
1 rel (Husband) -12.27 −∞ 0.5
2 job (Prof special) -0.73 −∞ 0.5
3 capital loss -0.60 −∞ 1740.5

Person B (50.3%) (Makes ≤$50K)
Rank Feature Influence Min Max
1 education num +35.19 12.5 ∞
2 rel (Husband) +19.35 0.5 ∞
3 mar (Married) +19.33 0.5 ∞
1 hours-per-week -38.42 −∞ 30.5
2 capital gain -5.39 −∞ 5036.5
3 workclass (Self-emp) -3.19 0.5 ∞

Person C (9.15%) (Makes ≤$50K)
Rank Feature Influence Min Max
1 mar (Married) +22.39 0.5 ∞
2 age +5.97 36.5 59.5
3 mar (Never married) +1.68 −∞ 0.5
1 rel (Husband) -12.97 −∞ 0.5
2 education num -10.73 −∞ 9.5
3 job (Other service) -4.32 0.5 ∞

6. Discussion
The results of our method are often intuitive and can pro-
vide insights into the model. For Person A, the method in-
dicates high capital gains were a strong positive influence.
This makes intuitive sense– an individual with capital gains
has owned and sold capital assets, implying affluence. The
second influencer, years of education, also makes sense. In
the dataset, college graduates had 13 years of education,
so having over 12.5 years of education implies Person A
graduated from college. Additionally, Person A is married,
suggesting either a higher household income or a more sta-
ble life.

On the other hand, the strongest negative influencer was
the individual not being a husband. This illustrates an un-
fortunate bias in the model. “Husband” frequently comes
up as an influence, but “Wife” does not. In the training
data, 40% of individuals were husbands, while only 5%
were wives. A similar proportion of husbands and wives
made over $50K, and among those making over $50K 75%

were husbands while 10% were wives. Since husbands are
8 times as prevalent in the data as wives, one might expect
the model to focus on their attributes. The reason for hus-
bands being more prevalent could link to societal biases.
The other negative influences, not being in a specialty and
having low capital losses, are also intuitive but have rela-
tively low influence.

Person B was more difficult for the model to discern. On
the one hand, they are a college graduate, a husband and
are married, all of which are taken as positive influencers.
On the other hand, they work 30 or fewer hours per week
(as opposed to the usual 40+), have less than 5036.5 in
capital gains, and are self-employed. Once again, the in-
fluencers make intuitive sense– someone who works fewer
hours, has fewer capital assets and is self-employed may
not make $50K/year.

Person C is another obvious case for the model. Even
though they are married (a big positive signal), are between
the ages of 37 and 59 (late in career but before retirement)
and are not currently not married, there are numerous neg-
ative signals. They are not a husband, have a high school
education and work in the service industry.

While a person thinking of the characteristics of an exam-
ple might choose a different ranking of influencers, the fea-
ture ranking gives insight into the model’s process. This
can be useful to model developers looking to improve per-
formance or to identify bias in the data, or to end-users
wondering what influenced a prediction. In this case, mar-
riage and relationships seem to be important indicators,
along with education and capital asset activity.

7. Conclusion
In this work, we defined the problem of explainability for
tree ensembles, and proposed a method for per-instance ex-
plainability. We demonstrated the results in a brief case
study, as a proof of concept. We leave the full evaluation
of the explanations for future work, along with producing
human-readable summaries of the model explanations.
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