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ABSTRACT

Understanding procedural language requires anticipating the causal effects of ac-
tions, even when they are not explicitly stated. In this work, we introduce Neural
Process Networks to understand procedural text through (neural) simulation of
action dynamics. Our model complements existing memory architectures with
dynamic entity tracking by explicitly modeling actions as state transformers. The
model updates the states of the entities by executing learned action operators. Em-
pirical results demonstrate that our proposed model can reason about the unstated
causal effects of actions, allowing it to provide more accurate contextual infor-
mation for understanding and generating procedural text, all while offering more
interpretable internal representations than existing alternatives.

1 INTRODUCTION

Understanding procedural text such as instructions or stories requires anticipating the implicit causal
effects of actions on entities. For example, given instructions such as “add blueberries to the muf-
fin mix, then bake for one half hour,” an intelligent agent must be able to anticipate a number of
entailed facts (e.g., the blueberries are now in the oven; their “temperature” will increase). While
this common sense reasoning is trivial for humans, most natural language understanding algorithms
do not have the capacity to reason about causal effects not mentioned directly in the surface strings
(Levy et al., 2015; Jia & Liang, 2017; Lucy & Gauthier, 2017).
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Figure 1: The process is a narrative of entity
state changes induced by actions. In each sen-
tence, these state changes are induced by simu-
lated actions and must be remembered.

In this paper, we introduce Neural Process Net-
works, a procedural language understanding sys-
tem that tracks common sense attributes through
neural simulation of action dynamics. Our net-
work models interpretation of natural language
instructions as a process of actions and their cu-
mulative effects on entities. More concretely,
reading one sentence at a time, our model atten-
tively selects what actions to execute on which
entities, and remembers the state changes in-
duced with a recurrent memory structure. In
Figure 1, for example, our model indexes the
“tomato” embedding, selects the “wash” and
“cut” functions and performs a computation that
changes the “tomato” embedding so that it can
reason about attributes such as its “SHAPE” and
“CLEANLINESS”.

Our model contributes to a recent line of research that aims to model aspects of world state changes,
such as language models and machine readers with explicit entity representations (Henaff et al.,
2016; Yang et al., 2016; Ji et al., 2017), as well as other more general purpose memory network
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variants (Weston et al., 2014; Sukhbaatar et al., 2015; Hill et al., 2015; Seo et al., 2016). This world-
centric modeling of procedural language (i.e., understanding by simulation) abstracts away from the
surface strings, complementing text-centric modeling of language, which focuses on syntactic and
semantic labeling of surface words (i.e., understanding by labeling).

Unlike previous approaches, however, our model also learns explicit action representations as func-
tional operators (See Figure 1). While representations of action semantics could be acquired through
an embodied agent that can see and interact with the world (Oh et al., 2015), we propose to learn
these representations from text. In particular, we require the model to be able to explain the causal
effects of actions by predicting natural language attributes about entities such as “LOCATION” and
“TEMPERATURE”. The model adjusts its representations of actions based on errors it makes in pre-
dicting the resultant state changes to attributes. This textual simulation allows us to model aspects
of action causality that are not readily available in existing simulation environments. Indeed, most
virtual environments offer limited aspects of the world – with a primary focus on spatial relations
(Oh et al., 2015; Chiappa et al., 2017; Wahlstrom et al., 2015). They leave out various other dimen-
sions of the world states that are implied by diverse everyday actions such as “dissolve” (change of
“COMPOSITION”) and “wash” (change of “CLEANLINESS”).

Empirical results demonstrate that parametrizing explicit action embeddings provides an inductive
bias that allows the neural process network to learn more informative context representations for
understanding and generating natural language procedural text. In addition, our model offers more
interpretable internal representations and can reason about the unstated causal effects of actions
explained through natural language descriptors. Finally, we include a new dataset with fine-grained
annotations on state changes, to be shared publicly, to encourage future research in this direction.

2 NEURAL PROCESS NETWORK

The neural process network is an interpreter that reads in natural language sentences, one at a time,
and simulates the process of actions being applied to relevant entities through learned representations
of actions and entities.

2.1 OVERVIEW AND NOTATION

The main component of the neural process network is the simulation module (§2.5), a recurrent
unit whose internals simulate the effects of actions being applied to entities. A set of V actions is
known a priori and an embedding is initialized for each one, F = {f1, ...fV }. Similarly, a set of
I entities is known and an embedding is initialized for each one: E = {e1, ...eI}. Each ei can be
considered to encode information about state attributes of that entity, which can be extracted by a
set of state predictors (§2.6). As the model reads text, it “applies” action embeddings to the entity
vectors, thereby changing the state information encoded about the entities.

For any document d, an initial list of entities Id is known and Ed = {ei|i ∈ Id} ⊂ E entity state
embeddings are initialized. As the neural process network reads a sentence from the document, it
selects a subset of both F (§2.3) and Ed (§2.4) based on the actions performed and entities affected
in the sentence. The entity state embeddings are changed by the action and the new embeddings
are used to predict end states for a set of state changes (§2.6). The prediction error for end states is
backpropagated to the action embeddings, learning action representations that model the simulation
of desired causal effects on entities. This process is broken down into five modules below. Unless
explicitly defined, all W and b variables are parametrized linear projections and biases. We use the
notation {ei}t when referring to the values of the entity embeddings before processing sentence st.

2.2 SENTENCE ENCODER

Given a sentence st, a Gated Recurrent Unit (Cho et al., 2014) encodes each word and outputs its
last hidden vector as a sentence encoding ht (Sutskever et al., 2014).

2.3 ACTION SELECTOR

Given ht from the sentence encoder, the action selector (bottom left in Fig. 2) contextually deter-
mines which action(s) from F to execute. For example, if the input sentence is “wash and cut
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Figure 2: Model Summary. The sentence encoder converts a sentence to a vector representation, ht. The action
selector and entity selector use the vector representation to choose the actions that are applied and the entities
that are acted upon in the sentence. The simulation module indexes the action and entity state embeddings,
and applies the transformation to the entities. The state predictors predict the new state of the entities if a state
change has occurred. Equation references are provided in parentheses.

beets”, both fwash and fcut must be selected. To account for multiple actions, we make a soft
selection over F , yielding a weighted sum of the selected action embeddings f̄t:

wp = MLP(ht)

w̄p =
wp∑V

j=1 wpj

f̄t = w̄ᵀ
pF

(1)

where MLP is a parametrized feed-forward network with a sigmoid activation and wp ∈ RV is the
attention distribution over V possible actions (§3.1). We compose the action embedding by taking
the weighted average of the selected actions.

2.4 ENTITY SELECTOR

Sentence Attention Given ht from the sentence encoder, the entity selector chooses relevant en-
tities using a soft attention mechanism:

h̃t = ReLU(W1ht + b1)

di = σ(eᵀi0W2[h̃t;wp])
(2)

where W2 is a bilinear mapping, ei0 is a unique key for each entity (§2.5), and di is the attention
weight for entity embedding ei. For example, in “wash and cut beets and carrots”, the model should
select ebeet and ecarrot.
Recurrent Attention While sentence attention would suffice if entities were always explicitly
mentioned, natural language often elides arguments or uses referent pronouns. As such, the module
must be able to consider entities mentioned in previous sentences. Using h̃t, the model computes
a soft choice over whether to choose affected entities from this step’s attention di or the previous
step’s attention distribution.

c = softmax(W3h̃t + b3)

ait = c1di + c2ait−1
+ c30

(3)
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where c ∈ R3 is the choice distribution, ait−1 is the previous sentence’s attention weight for each
entity, ait is the final attention for each entity, and 0 is a vector of zeroes (providing the option to
not change any entity). Prior entity attentions can propagate forward for multiple steps.

2.5 SIMULATION MODULE

Entity Memory A unique state embedding ei is initialized for every entity i in the document. A
unique key to index each embedding ei0 is set as the initial value of the embedding (Henaff et al.,
2016; Miller et al., 2016). After the model reads st, it modifies {ei}t to reflect changes influenced
by actions. At every time step, the entity memory receives the attention weights from the entity
selector, normalizes them and computes a weighted average of the relevant entity state embeddings:

αi =
ai∑Id
j=1 aj

(4) ēt =

Id∑
j=1

αiei (5)

Applicator Given the action summary embedding f̄t and the entity summary embedding ēt, the
applicator (middle right in Fig. 2) applies the selected actions to the selected entities, and outputs
the new proposal entity embedding kt.

kt = ReLU(f̄tW4ēt + b4) (6)

where W4 is a third order tensor projection. The vector kt is the new representation of the entity ēt
after the applicator simulates the action being applied to it.

Entity Updater The entity updater interpolates the new proposal entity embedding kt and the set
of current entity embeddings {ei}t:

eit+1
= aitkt + (1− ait)eit (7)

yielding an updated set of entity embeddings {ei}t+1. Each embedding is updated proportional to its
entity’s unnormalized attention ai, allowing the model to completely overwrite the state embedding
for any entity. For example, in the sentence “mix the flour and water,” the embeddings for eflour and
ewater must both be overwritten by kt because they no longer exist outside of this new composition.

2.6 STATE PREDICTORS

Given the new proposal entity embedding kt, the state predictor (bottom right in Fig. 2) predicts
changes to the resulting entity embedding kt along the following six dimensions: location, cooked-
ness, temperature, composition, shape, and cleanliness. Discrete multi-class classifiers, one for each
dimension, take in kt and predict a unique end state for their corresponding state change type:

P (Ys|kt) = softmax(Wskt + bs) (8)

For location changes, which require contextual information to predict the end state, kt is concate-
nated with the original sentence representation ht to predict the final state.

3 TRAINING

3.1 STATE CHANGE KNOWLEDGE

In this work we focus on physical action verbs in cooking recipes. We manually collect a set of
384 actions such as cut, bake, boil, arrange, and place, organizing their causal effects along the
following predefined dimensions: LOCATION, COOKEDNESS, TEMPERATURE, SHAPE, CLEANLI-
NESS and COMPOSITION. The textual simulation operated by the model induces state changes along
these dimensions by applying actions functions from the above set of 384. For example, cut entails
a change in SHAPE, while bake entails a change in TEMPERATURE, COOKEDNESS, and even LO-
CATION. We annotate the state changes each action induces, as well as the end state of the action,
using Amazon Mechanical Turk. The set of possible end states for a state change can range from 2
for binary state changes to more than 200 (See Appendix C for details). Table 1 provides examples
of annotations in this action lexicon.
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Action State Change Types End States
braise COOKEDNESS; TEMPERATURE COOKED; HOT
chill TEMPERATURE COLD
knead SHAPE MOLDED
wash CLEANLINESS CLEAN
dissolve COMPOSITION COMPOSED
refrigerate TEMPERATURE; LOCATION COLD; REFRIGERATOR
slice SHAPE SEPARATED

Table 1: Example actions, the state changes they induce, and the possible end states

3.2 DATASET

For learning and evaluation, we use a subset of the Now You’re Cooking dataset (Kiddon et al.,
2016). We chose 65816 recipes for training, 175 recipes for development, and 700 recipes for
testing. For the development and test sets, crowdsourced workers densely annotate actions, entities
and state changes that occur in each sentence so that we can tune hyperparameters and evaluate on
gold evaluation sets. Annotation details are provided in Appendix C.3.

3.3 COMPONENT-WISE TRAINING

The neural process network is trained by jointly optimizing multiple losses for the action selector,
entity selector, and state change predictors. Importantly, our training scheme uses weak supervision
because dense annotations are prohibitively expensive to acquire at a very large scale. Thus, we
heuristically extract verb mentions from each recipe step and assign a state change label based on
the state changes induced by that action (§3.1). Entities are extracted similarly based on string
matching between the instructions and the ingredient list. We use the following losses for training:

Action Selection Loss Using noisy supervision, the action selector is trained to minimize the
cross-entropy loss for each possible action, allowing multiple actions to be chosen at each step if
multiple actions are mentioned in a sentence. The MLP in the action selector (Eq. 1) is pretrained.

Entity Selection Loss Similarly, to train the attentive entity selector, we minimize the binary
cross-entropy loss of predicting whether each entity is affected in the sentence.

State Change Loss For each state change predictor, we minimize the negative loglikelihood of
predicting the correct end state for each state change.

Coverage Loss An underlying assumption in many narratives is that all entities that are mentioned
should be important to the narrative. We add a loss term that penalizes narratives whose combined
attention weights for each entity does not sum to more than 1.

Lcover = − 1

Id

Id∑
i=1

log

S∑
t=1

ait (9)

where ait is the attention weight for a particular entity at sentence t and Id is the number of entities
in a document.

∑S
t=1 ait is upper bounded by 1. This is similar to the coverage penalty used in

neural machine translation (Tu et al., 2016).

4 EXPERIMENTAL SETUP

We evaluate our model on a set of intrinsic tasks centered around tracking entities and state changes
in recipes to show that the model can simulate preliminary dynamics of the recipe task. Additionally,
we provide a qualitative analysis of the internal components of our model. Finally, we evaluate the
quality of the states encoded by our model on the extrinsic task of generating future steps in a recipe.

4.1 INTRINSIC EVALUATION - TRACKING

In the tracking task, we evaluate the model’s ability to identify which entities are selected and what
changes have been made to them in every step. We break the tracking task into two separate evalua-
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Model Entity Selection State Change
F1 UR CR F1 ACC

2-layer LSTM Entity Recognizer 50.98 74.03 13.33 - -
Adapted Gated Recurrent Unit 45.94 67.69 7.74 41.16 52.69
Adapted Recurrent Entity Network 48.57 71.88 9.87 42.32 53.47
- Recurrent Attention (Eq. 3) 48.91 72.32 12.67 42.14 50.48
- Coverage Loss (Eq. 9) 55.18 73.98 20.23 44.44 55.20
- Action Connections (Eq. 2) 54.85 73.54 20.03 44.05 54.81
- Action Selector Pretraining 54.91 73.87 20.30 44.28 55.00
+ Pretrained Action Embeddings 55.16 74.02 20.32 44.02 55.03
- Action Embedding Updates 53.79 70.77 18.60 44.27 55.02
Full Model 55.39 74.88 20.45 44.65 55.07

Table 2: Results for entity selection and state change selection

tions, entity selection and end state prediction, and also investigate whether the model learns internal
representations that approximate recipe dynamics.

Metrics In the entity selection test, we report the F1 score of choosing the correct entities in any
step. A selected entity is defined as one whose attention weight ai is greater than 50% (§2.4).
Because entities may be harder to predict when they have been combined with other entities (e.g.,
the mixture may have a new name), we also report the recall for selecting combined (CR) and
uncombined (UR) entities. In the end state prediction test, we report how often the model correctly
predicts the state change performed in a recipe step and the resultant end state. This score is then
scaled by the accuracy of predicting which entities were changed in that same step. We report the
average F1 and accuracy across the six state change types.

Baselines We compare our models against two baselines. First, we built a GRU model that is
trained to predict entities and state changes independently. This can be viewed as a bare minimum
network with no action representations or recurrent entity memory. The second baseline is a Re-
current Entity Network (Henaff et al., 2016) with changes to fit our task. First, the model can tie
memory cells to a subset of the full list of entities so that it only considers entities that are present in
a particular recipe. Second, the entity distribution for writing to the memory cells is re-used when
we query the memory cells. The normalized weighted average of the entity cells is used as the in-
put to the state predictors. The unnormalized attention when writing to each cell is used to predict
selected entities. Both baselines are trained with entity selection and state change losses (§3.3).

Ablations We report results on six ablations. First, we remove the recurrent attention (Eq. 3). The
model only predicts entities using the current encoder hidden state. In the second ablation, the model
is trained with no coverage penalty (Eq. 9). The third ablation prunes the connection from the action
selector wp to the entity selector (Eq. 2). We also explore not pretraining the action selector. Finally,
we look at two ablations where we intialize the action embeddings with vectors from a skipgram
model. In the first, the model operates normally, and in the second, we do not allow gradients to
backpropagate to the action embeddings, updating only the mapping tensor W4 instead (Eq. 6).

4.2 EXTRINSIC EVALUATION - GENERATION

The generation task tests whether our system can produce the next step in a recipe based on the
previous steps that have been performed. The model is provided all of the previous steps as context.

Metrics We report the combined BLEU score and ROUGE score of the generated sequence rela-
tive to the reference sequence. Each candidate sequence has one reference sentence. Both metrics
are computed at the corpus-level. Also reported are “VF1”, the F1 score for the overlap of the ac-
tions performed in the reference sequence and the verbs mentioned in the generated sequence, and
“SF1”, the F1 score for the overlap of end states annotated in the reference sequence and predicted
by the generated sequences. End states for the generated sequences are extracted using the lexicon
from Section 3.1 based on the actions performed in the sentence.

Setup To apply our model to the task of recipe step generation, we input the context sentences
through the neural process network and record the entity state vectors once the entire context has
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Good

st−1 Add tomato paste, broth, garlic, chili powder, cumin, chile peppers, and water.
st Bring to boil, then turn very low, cover and simmer until meat is tender.

selected meat, garlic, chili powder, tomato paste, cumin, chiles, beef broth, water
correct Same + [oil]

Good

st−4 Stir in oats, sugar, flour, corn syrup, milk, vanilla extract, and salt.
st−3 Mix well.
st−2 Drop by measuring teaspoonfuls onto cookie sheets.
st−1 Bake 5 - 7 minutes.

st Let cool.
selected oats, sugar, flour, corn syrup, milk, vanilla extract, salt
correct oats, sugar, flour, corn syrup, milk, vanilla extract, salt

Good

st−1 In a large saucepan over low heat, melt marshmallows.
st Add sprinkles, cereal, and raisins, stir until well coated.

selected marshmallows, cereal, raisins
correct marshmallows, cereal, raisins, sprinkles

Bad

st−3 Ladle the barbecue sauce around the crust and spread.
st−2 Add mozzarella, yellow cheddar, and monterey jack cheese.
st−1 Next, add onion mixture and sliced chicken breast .

st Top pizza with jalapeno peppers.
selected jalapenos
correct crust, sauce, mozzarella, cheddar, monterey jack, white onion, chicken, jalapenos

Bad

st−2 Combine 1 cup flour, salt, and 1 tbsp sugar.
st−1 Cut in butter until mixture is crumbly, then sprinkle with vinegar .

st Gather dough into a ball and press into bottom of 9 inch springform pan.
selected butter, vinegar
correct flour, salt, sugar, butter, vinegar

Table 3: Examples of the model selecting entities for sentence st. The previous sentences are
provided as context in cases where they are relevant.

been read (§2.5). These vectors can be viewed as a snapshot of the current state of the entities
once the preceding context has been simulated inside the neural process network. We encode these
vectors using a bidirectional GRU (Cho et al., 2014) and take the final time step hidden state eI . A
different GRU encodes the context words in the same way (yielding hT ) and the first hidden state
input to the decoder is computed using the projection function:

h̃0 = W5(eI ◦ hT ) (10)

where ◦ is the Hadamard product between the two encoder outputs. All models are trained by mini-
mizing the negative loglikelihood of predicting the next word for the full sequence. Implementation
details can be found in Appendix A.

Baselines For the generation task, we use three baselines: a seq2seq model with no attention
(Sutskever et al., 2014), an attentive seq2seq model (Bahdanau et al., 2014), and a similar variant
as our NPN generator, except where the entity states have been computed by the Recurrent Entity
Network (EntNet) baseline (§4.1). Implementation details for baselines can be found in Appendix B.

5 EXPERIMENTAL RESULTS

5.1 INTRINSIC EVALUATIONS

Entity Selection As shown in Table 8, our full model outperforms all baselines at selecting enti-
ties, with an F1 score of 55.39%. The ablation study shows that the recurrent attention, coverage
loss, action connections and action selector pretraining improve performance. Our success at pre-
dicting entities extends to both uncomposed entities, which are still in their raw forms (e.g., melt the
butter→ butter), and composed entities, in which all of the entities that make up a composition must
be selected. For example, in a Cooking lasagna recipe, if the final step involves baking the prepared
lasagna, the model must select all the entities that make up the lasagna (e.g., lasagna sheets, beef,
tomato sauce). In Table 3, we provide examples of our model’s ability to handle complex cases such
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Action Nearest Neighbor Actions
cut slice, split, snap, slash, carve, slit, chop
boil cook, microwave, fry, steam, simmer
add sprinkle, mix, reduce, splash, stir, dust

wash rinse, scrub, refresh, soak, wipe, scale
mash spread, puree, squeeze, liquefy, blend
place ease, put, lace, arrange, leave
rinse wash, refresh, soak, wipe, scrub, clean
warm reheat, ignite, heat, light, crisp, preheat
steam microwave, crisp, boil, parboil, heat

sprinkle top, pat, add, dip, salt, season
grease coat, rub, dribble, spray, smear, line

Table 4: Most similar actions based on cosine sim-
ilarity of action embeddings

Figure 3: Change in cosine similarity of entity
state embeddings

Model BLEU ROUGE-L VF1 SF1
Vanilla Seq2Seq 2.81 33.00 16.17 40.21
Attentive Seq2Seq 2.83 33.18 16.97 41.43
EntNet Generator 2.30 32.71 17.53 42.43
NPN Generator 3.74 35.64 20.12 43.40

Table 5: Generation Results

as compositional entities (Ex. 1, 3), and elided arguments over long time windows (Ex. 2). We also
provide examples where the model fails to select the correct entities because it does not identify the
mapping between a reference construct such as “pizza” (Ex. 4) or “dough” (Ex. 5) and the set of
entities that composes it, showcasing the difficulty of selecting the full set for a composed entity.
State Change Tracking In Table 8, we show that our full model outperforms competitive base-
lines such as Recurrent Entity Networks (Henaff et al., 2016) and jointly trained GRUs. While the
ablation without the coverage loss shows higher accuracy, we attribute this to the fact that it predicts
a smaller number of total state changes. Interestingly, initializing action embeddings with skipgram
vectors and locking their values shows relatively high performance, indicating the potential gains in
using powerful pretrained representations to represent actions.
Action Embeddings In our model, each action is assigned its own embedding, but many actions
induce similar changes in the physical world (e.g.,“cut” and “slice”). After training, we compute
the pairwise cosine similarity between each pair of action embeddings. In Table 4, we see that
actions that perform similar functions are neighbors in embedding space, indicating the model has
captured certain semantic properties of these actions. Learning action representations through the
state changes they induce has allowed the model to cluster actions by their transformation functions.
Entity Compositions When individual entities are combined into new constructs, our model av-
erages their state embeddings (Eq. 5), applies an action embedding to them (Eq. 6), and writes them
to memory (Eq. 7). The state embeddings of entities that are combined should be overwritten by
the same new embedding. In Figure 3, we present the percentage increase in cosine similarity for
state embeddings of entities that are combined in a sentence (blue) as opposed to the percentage
increase for those that are not (red bars). While the soft attention mechanism for entity selection
allows similarities to leak between entity embeddings, our system is generally able to model the
compositionality patterns that result from entities being combined into new constructs.

5.2 EXTRINSIC EVALUATIONS

Recipe Step Generation Our results in Table 5 indicate that sequences generated using the neural
process network entity states as additional input yield higher scores than competitive baselines. The
entity states allow the model to predict next steps conditioned on a representation of the world being
simulated by the neural process network. Additionally, the higher VF1 and SF1 scores indicate that
the model is indeed using the extra information to better predict the actions that should follow the
context provided. Example generations for each baselines from the dev set are provided in Table 6,
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Context Preheat oven to 425 degrees.
Reference Melt butter in saucepan and mix in bourbon, thyme, pepper, and salt.

NPN Melt butter in skillet.
Seq2seq Lightly grease 4 x 8 baking pan with sunflower oil.

Attentive Seq2seq Combine all ingredients and mix well.
EntNet In a large bowl, combine flour, baking powder, baking soda, salt, and pepper.

Context Pour egg mixture over caramelized sugar in cake pan. Place cake pan in large shallow
baking dish. Bake for 55 minutes or until knife inserted into flan comes out clean.

Reference Cover and chill at least 8 hours.
NPN Refrigerate until ready to use.

Seq2seq Serve at room temperature.
Attentive Seq2seq Store in an airtight container.

EntNet Store in an airtight container.
Context Cut squash into large pieces and steam. Remove cooked squash from shells;

Reference Measure 4 cups pulp and reserve remainder for another dish.
NPN Drain.

Seq2seq Mash pulp with a fork.
Attentive Seq2seq Set aside.

EntNet Set aside.

Table 6: Examples of the model generating sentences compared to baselines. The context and
reference are provided first, followed by our model’s generation and then the baseline generations

showing that the NPN generator can use information about ingredient states to reason about the
most likely next step. The first and second examples are interesting as it shows that the NPN-aware
model has learned to condition on entity state – knowing that raw butter will likely be melted or that a
cooked flan must be refrigerated. The third example is also interesting because the model learns that
cooked vegetables such as squash will sometimes be drained, even if it is not relevant to this recipe
because the squash is steamed. The seq2seq and EntNet baselines, meanwhile, output reasonable
sentences given the immediate context, but do not exhibit understanding of global patterns.

6 RELATED WORK

Recent studies in machine comprehension have used a neural memory component to store a running
representation of processed text (Weston et al., 2014; Sukhbaatar et al., 2015; Hill et al., 2015; Seo
et al., 2016). While these approaches map text to memory vectors using standard neural encoder
approaches, our model, in contrast, directly interprets text in terms of the effects actions induce in
entities, providing an inductive bias for learning how to represent stored memories. More recent
work in machine comprehension also sought to couple the memory representation with tracking en-
tity states (Henaff et al., 2016). Our work seeks to provide a relatively more structured representation
of domain-specific action knowledge to provide an inductive bias to the reasoning process.

Neural Programmers (Neelakantan et al., 2015; 2016) have also used functions to simulate reason-
ing, by building a model to select rows in a database and applying operation on those selected rows.
While their work explicitly defined the effect of a number of operations for those rows, we provide
a framework for learning representations for a more expansive set of actions, allowing the model to
learn representations for how actions change the state space.

Works on instructional language studied the task of building discrete graph representations of recipes
using probabilistic models (Kiddon et al., 2015; Mori et al., 2014; 2012). We propose a complemen-
tary new model by integrating action and entity relations into the neural network architecture and
also address the additional challenge of tracking the state changes of the entities.

Additional work in tracking states with visual or multimodal context has focused on 1) building
graph representations for how entities change in goal-oriented domains (Gao et al., 2016; Liu et al.,
2016; Si et al., 2011) or 2) tracking visual state changes based on decisions taken by agents in
environment simulators such as videos or games (Chiappa et al., 2017; Wahlstrom et al., 2015; Oh
et al., 2015). Our work, in contrast, models state changes in embedding space using only text-based
signals to map real-world actions to algebraic transformations.
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7 CONCLUSION

We introduced the Neural Process Network for modeling a process of actions and their causal ef-
fects on entities by learning action transformations that change entity state representations. The
model maintains a recurrent memory structure to track entity states and is trained to predict the state
changes that entities undergo. Empirical results demonstrate that our model can learn the causal
effects of action semantics in the cooking domain and track the dynamic state changes of entities,
showing advantages over competitive baselines.
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A TRAINING DETAILS OF OUR FULL MODEL AND ABLATIONS

A.1 TRACKING MODELS

The hidden size of the instruction encoder is 100, the embedding sizes of action functions and en-
tities are 30. We use dropout with a rate of 0.3 before any non-recurrent fully connected layers
Srivastava et al. (2014). We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
.001 and decay by a factor of 0.1 if we see no improvement on validation loss over three epochs.
We stop training early if the development loss does not decrease for five epochs. The batch size
is 64. We use two instruction encoders, one for the entity selector, and one for the action selector.
Word embeddings and entity embeddings are initialized with skipgram embeddings (Mikolov et al.,
2013a;b) using a word2vec model trained on the training set. We use a vocabulary size of 7358 for
words, and 2996 for entities. Gradients with respect to the coverage loss (Eq. 9) are only backprop-
agated in steps where no entity is annotated as being selected. To account for the false negatives
in the training data due to the heuristic generation of the labels, gradients with respect to the entity
selection loss are zeroed when no entity label is present.

A.2 GENERATION MODEL

The hidden size of the context encoder is 200. The hidden size of the state vector encoder is 200.
State vectors have dimensionality 30 (the same as in the neural process network). Dropout of 0.3
is used during training in the decoder. The context and state representations are projected jointly
using an element-wise product followed by a linear projection Kim et al. (2016). Both encoders and
the decoder are single layer. The learning rate is 0.0003 initially and is halved every 5 epochs. The
model is trained with the Adam optimizer.

B TRAINING DETAILS OF BASELINES

B.1 TRACKING BASELINES

Joint Gated Recurrent Unit The hidden state of the GRU is 100. We use a dropout with a rate
of 0.3 before any non-recurrent fully connected layers. We use the Adam optimizer with a learning
rate of .001 and decay by a factor of 0.1 if we see no improvement on validation loss over a single
epoch. We stop training early if the development loss does not decrease for five epochs. The batch
size is 64. We use encoders, one for the entity selector, and one for the state change predictors.
Word embeddings are initialized with skipgram embeddings using a word2vec model trained on the
training set. We use a vocabulary size of 7358 for words.

Recurrent Entity Networks Memory cells are tied to the entities in the document. For a recipe
with 12 ingredients, 12 entity cells are initialized. All hyperparameters are the same as the in the
bAbI task from Henaff et al. (2016). The learning rate start at 0.01 and is halved every 25 epochs.
Entity cells and word embeddings are 100 dimensional. The encoder is a multiplicative mask initial-
ized the same as in Henaff et al. (2016). Intermediate supervision from the weak labels is provided
to help predict entities. A separate encoder is used for computing the attention over memory cells
and the content to write to the memory. Dropout of 0.3 is used in the encoders. The batch size is 64.
We use a vocabulary size of 7358 for words, and 2996 for entities.

B.2 GENERATION BASELINES

Seq2seq The encoder and decoder are both single-layer GRUs with hidden size 200. We use
dropout with probability 0.3 in the decoder. We train with the Adam optimizer starting with a
learning rate 0.0003 that is halved every 5 epochs. The encoder is bidirectional. The model is
trained to minimize the negative loglikelihood of predicting the next word.

Attentive Seq2seq The encoder is the same as in the seq2seq baseline. A multiplicative attention
between the decoder hidden state and the context vectors is used to compute the attention over
the context at every decoder time step. The model is trained with the same learning rate, learning
schedule and loss function as the seq2seq baseline.
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EntNet Generator The model is trained in the same way as the NPN generator model in Ap-
pendix A.2 except that the state representations used as input are produced from by EntNet baseline
described in Section 4.1 and Appendix B.1.

C ANNOTATIONS

C.1 ANNOTATING STATE CHANGES

We provide workers with a verb, its definition, an illustrative image of the action, and a set of
sentences where the verb is mentioned. Workers are provided a checklist of the six state change
types and instructed to identify which of them the verb causes. They are free to identify multiple
changes. Seven workers annotate each verb and we assign a state change based on majority vote. Of
the set of 384 verbs extracted, only 342 have a state change type identified with them. Of those, 74
entail multiple state change types.

C.2 ANNOTATING END STATES

We give workers a verb, a state change type, and an example with the verb and ask them to provide
an end state for the ingredient the verb is applied to in the example. We then use the answers to
manually aggregate a set of end states for each state change type. These end states are used as labels
when the model predicting state changes. For example, a LOCATION change might lead to an end
state of “pan,” “pot”, or “oven.” End states for each state change type are provided in Table 7.

State Change Type End States
Temperature hot; cold; room
Composition composed; not composed
Cleanliness clean; dirty; dry
Cookedness cooked; raw
Shape molded; hit; deformed; separated
Location pan, pot, cupboard, screen, scale,

garbage, 260 more

Table 7: End states for each state change type

C.3 ANNOTATING DEVELOPMENT AND TEST SETS

Annotators are instructed to note any entities that undergo one of the six state changes in each step,
as well as to identify new combinations of ingredients that are created. For example, the sentence
“Cut the tomatoes and add to the onions” would involve a SHAPE change for the tomatoes and a
combination created from the “tomatoes” and “onions”. In a separate task, three workers are asked
to identify the actions performed in every sentence of the development and test set recipes. If an
action receives a majority vote that it is performed, it is included in the annotations.

D ADDITIONAL RESULTS

D.1 REMOVING TRAINING DATA

14



Published as a conference paper at ICLR 2018

Model Entity Selection State Change
F1 UR CR F1 ACC

25% training data kept 54.34 75.71 21.17 2.52 50.23
50% training data kept 55.12 76.04 19.05 36.34 54.66
75% training data kept 56.64 76.03 21.00 48.86 57.62
100% training data 56.84 74.98 21.14 50.56 57.87

Table 8: Results for entity selection and state change selection on the development set when ran-
domly dropping a percentage of the training labels
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