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ABSTRACT

This paper presents an empirical study of weights in deep neural networks and
propose a quantitative metric, Logarithmical Geometric Mean of absolute weight
parameter (LoGM), to evaluate the impact of weight on training convergence. We
develop an automatic tool to measure LoGM and conduct extensive experiments
on ImageNet with three well-known deep convolutional neural networks (CNNs).
We discover two empirical observations from the experiments on same model: 1)
LoGM variance is small between weight snapshots per iteration; and 2) each CNN
model has a reasonable divergence region. Preliminary results show our method-
ology is effective with convergence problem exposure time reduction from weeks
to minutes. Three known convergence issues are confirmed and one new problem
is detected at early stage of feature development. To the best of our knowledge,
our work is first attempt to understand the impact of weight on convergence. We
believe that our methodology is general and applicable on all deep learning frame-
works. The code and training snapshots will be made publicly available.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have demonstrated great success with break-through
results on computer vision tasks such as image classification (Krizhevsky et al. (2012);Szegedy et al.
(2015);Simonyan & Zisserman (2014);He et al. (2016)), object detection (Ren et al. (2015);Liu et al.
(2016)), and semantic segmentation (Long et al. (2015);He et al. (2017)). With the improvement of
hardware computation powers and software framework optimizations, it provides more chances for
users to complete training on classical and new models. Recent work shows multi-node training
with large batch size is becoming popular to accelerate the time to train significantly by leveraging
more hardware resources (Goyal et al. (2017);You et al. (2017);Gitman & Ginsburg (2017)).

Regardless of the publication of CNN models, users may encounter convergence problem under
their own environment. In general, convergence problem consists of two aspects: 1) training loss is
not a number (NaN) or loss trend is not healthy; and 2) training cannot reach state of the art (SOTA)
accuracy. To investigate the issue, users may compare the value with a reference implementation
(called co-simulation). However, it cannot provide the insights on complex convergence problem
with training optimization (e.g., Winograd-based convolution (Lavin & Gray (2016))) and model
optimization (e.g., weight quantization (Han et al. (2015))). Without effective diagnostic tool, users
have to wait and observe the training loss from time to time, debug the code or tune the hyper-
parameters, and restart a new round of training. Recent research discussed the convergent learning
on activation during training and proposed neuron aligns between two networks (Li et al. (2015)) to
facilitate the training process. Unfortunately, there is no systematic study on convergence problem
by weights, although weight snapshot is the most critical output of training.

In this paper, we propose a quantitative metric, Logarithmical Geometry Mean of absolute weight
parameter (LoGM). LoGM inherits from standard geometric mean but is well-tuned to support the
weight snapshot with millions of learnable weight parameters trained from CNNs. We develop
an automatic tool to measure LoGM by weight on top of Intel Caffe1 and conduct extensive ex-

1https://github.com/intel/caffe
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periments on ImageNet with three CNN models. We discover two empirical observations from the
experiments: 1) LoGM variance is small between weight snapshots per iteration on same model; and
2) each CNN model has a reasonable divergence region. Preliminary results show our methodology
is effective with convergence problem exposure time reduction from weeks to minutes. We confirm
three known convergence issues and identify one new problem at early stage of feature develop-
ment. To the best of our knowledge, our work is first attempt to understand the impact of weight
on convergence. We believe that our methodology is general and applicable on all deep learning
frameworks (e.g., TensorFlow, MXNet, and Caffe2). We recommend our metric tool is complemen-
tary to existing co-simulation tool to identify the convergence issues more effectively. The code and
training snapshots will be made publicly available.

2 QUANTITATIVE METRIC

We define a quantitative metric LoGM in Equation (1) to measure the impact of weight. LoGM in-
herits from traditional geometric mean but is well-tuned to support the weight snapshot with millions
of learnable weight parameters trained from CNNs. We define n is the number of weight parameters
in a weight snapshot and use 10 as logarithm base to make the value more human-readable.

LoGM =

∑n
i log |wi|

n
(1)

The metric indicates the similar idea of computation flow with multiplication of input activations
and weight parameters from the perspective of model inference (with the assumption of negligible
additions). Note that we also employ another widely-used metric standard deviation (STD) in our
empirical study at the beginning. However, experimental result shows STD is not general for existing
CNN models. It leads to unexpected big variance for modern CNN models with batch normalization
(BN) (Ioffe & Szegedy (2015)) due to magnitude difference of weight number in convolution and
BN. Therefore, it requires additional effort to handle the models with or without BN in practice. To
make the metric simple and consistent, we employ LoGM as the only metric in our empirical study.

2.1 IMPLEMENTATION DETAILS

Algorithm 1 illustrates the pseudocode on how to compute LoGM on weight. It is straightforward
with nested loops: traversing layers from a weight snapshot W at outside loop and weight parameters
from a layer at inside loop. At inside loop, it accumulates the logarithm of absolute of each weight
parameter. Finally, it computes the mean value of sum by the number of weight parameters.

Algorithm 1 Compute LoGM by weight
Input: weight snapshot W
Output: LoGM

sum = 0; num = 0
for each layer L in W do

for each parameter w in L do
sum += log(abs(w))
num += 1

result = sum / num
return result

We implement the algorithm with Python interface on Intel Caffe and develop the tool to measure
automatically. The algorithm is general and easily applicable on all other deep learning frameworks.

3 EXPERIMENTS

We perform empirical study on GoogleNet-V1, VGG-16, and ResNet-50. We use the models with
hyper-parameters under Intel Caffe and leverage multi-node training on Intel@ Xeon PhiTM Proces-
sor 7250 with Omni-Path architecture. We employ standard ImageNet as training dataset, consisting
of 1,281,167 training images and 50,000 validation images in 1,000 classes.
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3.1 EMPIRICAL OBSERVATIONS

We summarize two empirical observations during experiments on the same well-trained model2.
Observation 1: LoGM variance is small between weight snapshots per iteration. We perform the
experiments with iteration level on three models and measure LoGM variance as shown in Figure 1.

Figure 1: LoGM Variance

Observation 2: Each CNN model has a reasonable divergence region. We extend the experiments
from iteration to epoch level and show the divergence region per epoch in Table 1.

Table 1: Divergence Region

Topology Divergence Region
GoogleNet-V1 (-0.09817, 0.09665)
VGG-16 (-0.13456, 0.01279)
ResNet-50 (-0.03719, 0.03691)

3.2 APPLICATIONS

We apply the divergence region in real applications with 3 issues confirmed and 1 new detected. We
demonstrate two case studies on weight quantization and Winograd convolution optimization.

3.2.1 WEIGHT QUANTIZATION

Weight quantization can reduce the data size transfer on network under multi-node training by da-
ta compression and decompression. VGG-16 is a typical model with heavy weight parameters in
full-connected layers. During feature development, weight partition is utilized with different scaling
factor. However, there is a subtle bug in decompression with wrong scaling, which leads the model
cannot reach SOTA accuracy. We measure the divergence variance on the first two weight snapshots
per iteration and find that the value is out of the reasonable region. After bug fixing, weight quanti-
zation works well. Comparing with regular training by weeks on single CPU node, the case shows
our methodology can shorten the debugging cycle significantly from weeks to minutes.

3.2.2 WINOGRAD-BASED CONVOLUTION OPTIMIZATION

Winograd is a new class of fast algorithms for convolutional neural networks to speed up convolution
computation on small filters. Intel@ math kernel library for deep neural networks (MKL-DNN) is
an open source performance library for deep learning applications intended for acceleration of deep
learning frameworks on Intel architecture3. We enable Winograd convolution algorithm on Intel
Caffe with MKL-DNN Winograd primitive and perform the training on VGG-16. The divergence
variance is 0.16922 on first two iterations in VGG-16 training, which is out of valid divergence
region. We report the convergence issue and confirm with MKL-DNN team.

3.3 SUMMARY

We believe the above observations are not limited to CNN models used in our experiments. We
recommend users measure reasonable divergence region on their own CNN model as baseline and
apply the similar idea in real applications.

2Well-trained model is proved to reach SOTA accuracy.
3https://github.com/01org/mkl-dnn

3



Workshop track - ICLR 2018

REFERENCES

Yang You Igor Gitman and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015. URL
http://arxiv.org/abs/1510.00149.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv preprint arX-
iv:1703.06870, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4021, 2016.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Feature Extraction: Modern Ques-
tions and Challenges, pp. 196–212, 2015.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer
vision, pp. 21–37. Springer, 2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic seg-
mentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3431–3440, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Yang You, Zhao Zhang, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Imagenet training in 24
minutes. arXiv preprint arXiv:1709.05011, 2017.

4

http://arxiv.org/abs/1510.00149

	Introduction
	Quantitative Metric
	Implementation Details

	Experiments
	Empirical Observations
	Applications
	Weight Quantization
	Winograd-based Convolution Optimization

	Summary


